2012

M.Sc.

1st Semester Examination

BIOTECHNOLOGY

PAPER-BIT-103

Full Marks: 40

Time: 2 Hours

The figures in the right-hand margin indicate full marks.

Candidates.are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

- 1. Answer any five questions from the following: 5×2
 - (a) What are porins? What role do they play?
 - (b) Mention the molecular mechanism of flagellar movement of bacteria.
 - (c) State the function of KDPG aldolase.

- (d) What is Plaque count?
- (e) Why Com EA is important during transformation in Bacillus subtilis?
- (f) State the role of sterols in mycoplasma membrane.
- (g) What is growth rate constant?

Group-B

Answer any two questions from the following: 5×2

- 2. (a) Is there any difference between a capsule and a clime layer? What increases the virulence of anthrox bacillus? State the role of UDP-glucose in capsule formation in Streptococcus pneumoniae. 2+1+2
 - (b) What is transcription antitermination in α phage? How the molecular switch in the Or region works? Write a short note on "Prophage". 1+2+2
 - (c) How do sulfa drugs act as anti bacterial agents?

5

(d) What is ED Pathway? Mention its benefit in terms of bioenergetics and anabolic pathways. 2+3

Group—C

Answer any two questions.

- 3. What are the different forms F factor takes in a E. Colicell? State the importance of tra gene products during conjugation. What are nonconjugative, mobilizable plasmids?
 4+5+1
- **4.** How 5-hydroxymethylcytosine help T_4 bacteriophage? What are metastable structures? T_4 DNA molecule is terminally redundant explain. Write short notes on
 - (i) Introns in T₄:
 - (ii) Regulation of T_4 gene expression. 3+1+2+4
- 5. How bacteria show resistance to oxidising biocides? How concatemers in viral genomes are formed? With a suitable diagram describe different major viral structural arrangements.
 2+2+6
- **6.** Mention different ecological types of biological N_2 fixer with suitable examples. Write the regulatory process and the major components involved in N_2 fixation. How do different bacteria protect their nitrogenase from O_2 during N_2 fixation?