NEW

2018

Part I

MATHEMATICS

PAPER-I

(General)

Full Marks: 90

Time: 3 Hours

The figures in the right-hand margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Illustrate the answers wherever necessary.

Group-A

(Classical Algebra)

[Marks : 25]

1. Answer any one question :

1×15

(a) (i) If α, β, γ are the roots of the equation $x^3 + 3x + 1 = 0$, find the equation where roots are $\frac{\alpha}{\beta} + \frac{\beta}{\gamma}, \frac{\beta}{\gamma} + \frac{\gamma}{\beta}, \frac{\gamma}{\alpha} + \frac{\alpha}{\gamma}$ and hence find the value

of
$$\sum \left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$$
.

4+1

- (ii) Show that the equation $\tan\left(i\log\left(\frac{x-iy}{x+iy}\right)\right)=2$ represents the rectangular hyperbola $x^2-y^2=xy$.
- (iii) Solve by Cardan's method $x^3 3x + 1 = 0$.
- (b) (i) If $x = \cos \alpha + i \sin \alpha$, $y = \cos \beta + i \sin \beta$, $z = \cos \gamma + i \sin \gamma$ and x + y + z = xyz, prove that $\cos (\beta - \gamma) + \cos (\gamma - \alpha) + \cos (\alpha - \beta) = -1$.

(ii) Solve by Cramer's rule:

$$x+y+z=6$$

 $x-y+2z=5$
 $3x+5y-7z=-8$

(iii) If $A = \begin{pmatrix} 5 & 4 & -2 \\ 4 & 5 & -2 \\ -2 & -2 & 2 \end{pmatrix}$, then show that $A^2 - 11A + 10I_3 = 0$, where I_3 is the 3×3 unit matrix. Hence find A^{-1} .

2. Answer any one question:

1×8

5

(a) (i) Find the sum of the 33th powers of the roots of the equation $x^5 - 1 = 0$.

- (ii) Prove that every skew-symmetric determinant of even order is a perfect square. 4
- (b) (i) Investigate for what values of λ and μ the following equations x+y+z=6, x+2y+3z=10, $x+2y+\lambda z=\mu$ have (I) no solution, (II) a unique solution and (III) an infinite number of solutions.
 - (ii) Find the range of the values of k for which the equation $x^4 + 4x^3 2x^2 12x + k = 0$ has four real and unequal roofs.
- 3. Answer any one question :

 1×2

(a) Show that all the values of i^i are real, where $i = \sqrt{-1}$.

2

(b) If A be a skew-symmetric matrix, then show that the matrix A^2 is symmetric.

Group—B

(Modern Algebra)

[Marks : 20]

4. Answer any two questions:

2×8

(a) (i) Let $G = \{1, w, w^2\}$ be the set of the three cube roofs of unity. Show that G is a group under

usual multiplication of complex numbers and G has no proper subgroup. 4+1

- (ii) Let $f: R \to R$ and $g: R \to R$ be given by the formula : $g(x) = x^2$, $f(x) = \sin x$ ($x \in R$). Then prove that $f \circ g \neq g \circ f$ where ($f \circ g$) and ($g \circ f$) are the composite maps.
- (b) (i) Let $M = \left\{ \begin{bmatrix} a & b \\ 2b & a \end{bmatrix} : a, b \text{ are rational numbers} \right\}$.

Prove that under usual matrix addition and matrix multiplication, M is a field. 5

- (ii) If R is a ring such that $a^2 = a \forall a \in R$ prove that (i) $a + a = 0 \ \forall a \in R$ and (ii) a + b = 0 implies $a = b, b \in R$.
- (c) (i) Find the eigen values and the corresponding eigen vectors of the matrix

$$\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

(ii) For three non-empty sets A,B,C, prove that $A\times (B\cap C) = (A\times B)\cap (A\times C)$ 3

5. Answer any one question:

1×4

(a) If H_1 and H_2 are two subgroups of a group G, then prove that $H_1 \cap H_2$ is also a subgroup of G.

(b) Prove that a ring R is commutative, if $(a+b)^2 = a^2 + 2ab + b^2$ for every $a,b \in R$.

Group-C

(Analytic Geometry)

[Marks: 30]

6. Answer any one questions :

1×15

4

(a) (i) Reduce the equation $x^2 + 4xy + y^2 - 2x + 2y + 6 = 0 \text{ to its canonical form. Hence find the nature of the curve.}$

7+1

- (ii) Prove that the straight line lx + my + n = 0touches the parabola $y^2 - 4px + 4pq = 0$ if $l^2q + \ln pm^2 = 0$.
- (b) (i) If PQ is a variable chord of the $\operatorname{conic} \frac{l}{r} = 1 e \cdot \cos \theta$, subtending a constant angle 2β at the focus S, where S is the pole, show that the locus of the foot of the perpendicular from S on PQ is the curve

$$r^{2}(e^{2}-\sec^{2}\beta)+2elr\cos\theta+l^{2}=0$$
 8

Show that the straight lines (ii)

$$\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$$
 and $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$

intersect. Find their point of intersection and the equation of the plane in which they lie.

Answer any one question :

1×8

- PSP' is a focal chord of the conic. Prove that (a) (i) the angle between the tangents at P and P' i. $\tan^{-1}\frac{2e\sin\alpha}{1-\alpha^2}$, where α is the angle between the chord and the major axis. 5
 - (ii) Show that if the planes x = cy + bz, y = az + cx, z = bx + ay pass through one straight line, then 3 $a^2 + b^2 + c^2 + 2abc = 1$
- Find the image of the point (1,3,4) on the plane (b) (i) 2x-y+z-9=0.3
 - A plane passing through a fixed point (a,b,c) (ii) cuts the axes in A,B,C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x} + \frac{b}{u} + \frac{c}{z} = 2$.

8. Answer any one question :

4×1

- (a) Find the equation of the sphere which touches the two planes 3x+2y-6z+7=0 and 3x+2y-6z+35=0 and whose centre lies on the straight line x=0, 2y+z=0.
- (b) Determine the angle between the lines of intersection of the plane x-3y+z=0 and the cone $x^2-5y^2+z^2=0$.

Answer any one question:

 1×3

- (a) Find the angle by which the axes should be rotated so that the equation $7x^2 + 4xy + 3y^2$ becomes another equation in which the term xy is absent.
- (b) Determine the nature of the conic $\frac{3}{r} = 2 + 4\cos\theta$ and also find the length of its latus rectum.

Group-D

(Vector Algebra)

[Marks : 15]

10. Answer any one question:

1×8

(a) (i) If $\vec{\alpha}, \vec{\beta}, \vec{\gamma}$ are three vectors such that $\vec{\alpha} + \vec{\beta} + \vec{\gamma} = 0$ and $|\vec{\alpha}| = 3, |\vec{\beta}| = 5, |\vec{\gamma}| = 6$ then show that $\vec{\alpha} \cdot \vec{\beta} + \vec{\beta} \cdot \vec{\gamma} + \vec{\gamma} \cdot \vec{\alpha} = -35$.

- Show that the diagonals of a rhombus are at (ii) right anyles.
- A particle, acted on by constant forces (b) (i) $4\hat{i} + 2\hat{j} + 3\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$, is displaced from the point $\hat{i} + 2\hat{j}$ to $2\hat{i} - \hat{j} + 3\hat{k}$. Find the work done by the forces.
 - Given $\vec{\alpha} = 3\hat{i} \hat{j}$, $\vec{\beta} = 2\hat{i} + \hat{j} 3\hat{k}$, express $\vec{\beta}$ the form $\overrightarrow{\beta} = \overrightarrow{\beta_1} + \overrightarrow{\beta_2}$, where $\overrightarrow{\beta_2}$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta_2}$ is perpendicular to $\overrightarrow{\alpha}$.

11. Answer any one question:

 4×1

(a) Show that
$$|\vec{\alpha} \times \vec{\beta}|^2 |\vec{\alpha} \times \vec{\gamma}|^2 - \left\{ (\vec{\alpha} \times \vec{\beta}) \cdot (\vec{\alpha} \times \vec{\gamma}) \right\}^2 = |\vec{\alpha}|^2 [\vec{\alpha} \vec{\beta} \vec{\gamma}]^2$$
.

- (b) If the vectors $\overrightarrow{\alpha}$ and $\overrightarrow{\gamma}$ be perpendicular to each other, then show that the vectors $\overrightarrow{\alpha} \times (\overrightarrow{\beta} \times \overrightarrow{\gamma})$ $(\vec{\alpha} \times \vec{\beta}) \times \vec{\gamma}$ are also perpendicular to each other. 4
- 12. Answer any one question :

 3×1

- (a) Find the condition of intersection of two straight lines: $\vec{r} = \vec{a} + t\vec{b}$ and $\vec{r} = \vec{c} + s\vec{d}$ where t and s are scalars. 3
- (b) Find the torque about the point B(3,-1,3) of a force P(4, 2, 1) passing through the point A(5, 2, 4).