M.Sc. 1st Semester Examination, 2013

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Complex Analysis)

PAPER-MTM-102

Full Marks: 50

Time: 2 hours

Answer Q. No. 4 and any two from the rest

The figures in the right-hand margin indicate marks

1. (a) Show by an example that a function

$$f(z) = u(x, y) + iv(x, y)$$

ceases to be differentiable at the point (x_0, y_0) in the domain C even if the Cauchy-Riemann equations are satisfied at that point.

(b) Let

$$f(z) = \frac{x^3 - y^3}{x^2 + y^2} + i \frac{x^3 + y^3}{x^2 + y^2}, \ z = x + iy \neq 0$$
$$= 0, \quad z = 0$$

Show that though C-R equations are satisfied at (0,0) but f'(0) does not exist.

4

(c) When is a function f(z) said to have a pole of order m at z_0 ? If a function f(z) has a pole of order m at z_0 , prove that $\frac{1}{f(z)}$ has a zero of order m at z_0 .

4

(d) If $f(z) = Z^5 - 3iz + 2z - 1 + i$, evaluate $\int_C \frac{f'(z)}{f(z)} dz$

4

Where C encloses all the zeroes of f(z).

ŧ

2. (a) Expand $f(z) = \sin z$ in a Taylor series about $z = \frac{\pi}{4}$.

4

(b) Find the number of zeroes of the polynomial

$$z^4 - 5z + 1$$

in the annulus 1 < |z| < 2.

4

- (c) Find all the Möbius transformation which transforms the half plane $I(z) \ge 0$ onto the unit circular disc $|w| \le 1$.
- (d) Prove that the given function

$$f(z) = \frac{z^8 + z^4 + 2}{(9z^2 + 12z + 4)(z - 1)^3}$$

has three singularities.

4

3. (a) Evaluate

$$\oint_C \frac{dz}{z-a}$$

where C is any simple closed curve and z = a is outside C.

4

- (b) State and prove Rouche's theorem.
- (c) Evaluate the following by the method of contour integration (any two): 4×2

$$(i) \qquad \int_0^{2\pi} \frac{dx}{s + 3\sin x}$$

$$(ii) \int_{0}^{\infty} \frac{\sin x}{x(1+x^2)} dx$$

(4)

$$(iii) \quad \int_{-\infty}^{\infty} \frac{dx}{x^2 + x + 1}$$

(iv)
$$\int_0^\infty \frac{x^{a-1}}{1+x} dx$$
, $0 < a < 1$.

- **4.** Answer any *four* questions of the following: 2×4
 - (a) Find Res f(z) at z = 0 where

$$f(z) = \frac{z-3}{z^2} \sin \frac{1}{1-z}$$

- (b) When is a function f(z) said to be analytic in a given domain in the complex z-plane?
- (c) Locate and name the singularity of

$$f(z) = \frac{z}{\left(z^2 + 4\right)^2}.$$

- (d) Construct the analytic function w = f(z) if its real part is $e^x \cos y$ and if f(0) = 1.
- (e) Evaluate

$$\int_{C} \frac{\cos z}{z^3}$$

(5)

where C is a positively oriented closed curve around the origin.

(f) Define residue theorem.

[Internal Assessment: 10 Marks]