M.Sc. 4th Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-401

(Topology/Data Structure and Design and Analysis of Algorithms)

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

GROUP - A

(Topology)

[Marks: 25]

1. Answer any two questions:

 1×2

- (a) Consider the topology on $X = \{a, b, c, d, e\}$. Find the closed subsets of X.
- (b) Define a bicontinuous mapping.
- (c) Define Tychonoff space.

2. Answer any three questions:

 4×3

(a) Let \mathcal{F} be the collection of subsets of N consisting of null set φ and all subsets of the form

$$G_m = \{m, m+1, m+2, \ldots\}$$

for all $m \in \mathbb{N}$. Show that \mathcal{F} is a topology.

- (b) Prove that on the set of all real numbers the upper limit topology is finer than the usual topology.
- (c) Let $\{\mathcal{F}_{\lambda} : \lambda \in \Lambda\}$, where Λ is arbitrary index set, be the arbitrary collection of topologies for X.

$$\bigcap_{\lambda\in\Lambda}\mathscr{F}_{\lambda}$$

is a topology.

(d) Define the derived set A^d of a subset A of a topological space. If \overline{A} denotes the closure of A, prove that

$$\overline{A} = A \cup A^d$$
.

(e) Prove that a topological space X is a T_1 -space if and only if every singleton subset of X is closed.

3. Answer any *one* question:

 6×1

- (a) Let f be a mapping from R to R defined by $f(x) = x^2$ for all $x \in R$. Find whether f is
 - (i) \mathcal{U} \mathcal{U} continuous
 - (ii) I-2 continuous
 - (iii) S- 2/ continuous

where $\mathcal{U}, \mathcal{I}, S$ are respectively usual, indiscrete and lower limit topologies. 2+2+2

(b) Prove that every convergent sequence in a Hausdorff space has a unique limit. Is the converse true?

Justify your answer. 2 + 2 + 2

[Internal Assessment: 5 Marks]

GROUP - B

(Data Structure and Design and Analysis of Algorithms)

[Marks: 25]

Answer Q.No. 4 and any two from the rest

4. Answer any two questions:

 2×2

(a) Define the data structure "queue". How it differ from stack?

- (b) Describe a method to represent a graph into computer.
- (c) Define big oh and small oh notations which are used to analysis an algorithm.
- (d) Define heap.
- 5. Write merge sort algorithm to arrange a set of real numbers in ascending order. What is the time complexity of this algorithm?
- 6. Write an algorithm for performing linear search over a linked list with one link field in each node. What is the time complexity of this algorithm? 7 + 1
- 7. What do you mean by postfix expression? Write an algorithm to evaluate a postfix expression. 1+7
- 8. (a) Write a recursive algorithm to traverse a binary tree in postorder, inorder and preorder.
 - (b) Write a general algorithm for divide-and-conquer method and find an expression to find time complexity of this algorithm.

 4 + 4

[Internal Assessment: 5 Marks]