M.Sc. 3rd Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Practical on Advanced Numerical and Statistical Lab.)

(Practical)

PAPER-MTM-307

Full Marks: 25

Time: 2 hours

Answer one question

The figures in the right-hand margin indicate marks

[Problem: 20 Marks; Lab. note book and Viva: 5 Marks]

Question will be selected by Lottery

1. Write a program to evaluate a determinant by Gauss elimination method, using partial pivoting. Test your program for the following determinant.

$$\begin{bmatrix} 2 & 5 & 2 & 1 \\ 2 & 0 & 2 & -1 \\ 1 & 5 & 7 & 0 \\ 4 & 1 & 3 & 1 \end{bmatrix}$$

2. Write a program to find the inverse of a matrix of partial pivoting. Write a program to solve a system of linear equations by Gauss Seidal iteration method. Test your program for the following equations:

$$12x_1 + 3x_2 - x_3 = 15$$

$$x_1 + 8x_2 - 3x_3 = -9$$

$$-3x_1 + 4x_2 - 10x_3 = 18$$

3. Write a program to solve a system of linear equations by matrix inverse method. Test your program for the following equations:

$$2x_1 + 3x_2 - x_3 = 4$$

$$x_1 + 8x_2 - 3x_3 = 6$$

$$-3x_1 + 4x_2 - 4x_3 = -3$$

4. Write a program to solve a system of linear equations by LU decomposition method. Test your program for the following equations:

$$2x_1 + 3x_2 - x_3 = 6$$
$$x_1 + 8x_2 - 3x_3 = 7$$
$$-3x_1 + 4x_2 - 4x_3 = -6$$

5. Write a program to solve a system of linear equations by Gauss elimination method. Test your program for the following equations

$$2x_1 + 3x_2 - x_3 = 6$$

$$x_1 + 8x_2 - 3x_3 = 7$$

$$-3x_1 + 4x_2 - 4x_3 = -6$$

- 6. Write a program to solve a system of tri-diagonal equations.
- 7. (a) Write a program to find the following integration by Gauss-Legendre quadrature (6-point) formula.

$$\int_{0}^{2} (1 + e^{-x} \sin 4x) \, dx.$$

(b) Write a program to solve the equation

$$\frac{dy}{dx} = 3x^2 + y$$
, $y(0) = 4$

 $0.1 \le x \le 0.5$ by taking h = 0.1.

8. Write a program to solve the equation by Runge-Kutta (2nd and 4th order) methods

$$5\frac{dy}{dx} = x^2 + y^2$$
, $y(0) = 1$,

find y in the interval $0 \le x \le 0.4$, taking h = 0.1.

9. Write a program to solve the following pair of first order first degree ODEs by 4th order Runge-Kutta method.

$$\frac{dy}{dx} = y + 2z, \frac{dz}{dx} = 3y + 2z$$

with y(0) = 6, z(0) = 4 for x = 0.1, 0.2.

10. Write a program to solve the following ODE by Milne predictor-corrector methods for x = 0.4, 0.5, 0.6.

$$\frac{dy}{dx} = x^3 + y^2$$
, $y(0) = 1$.

11. Write a program to solve a second order PDE by finite difference method.

12. Write a program to find the largest eigenvalue of a square matrix by power method. Using your program find the eigenvalues of the following matrix:

$$\begin{bmatrix} 2 & 5 & 2 & 1 \\ 2 & 0 & 2 & -1 \\ 1 & 5 & 7 & 0 \\ 4 & 1 & 3 & 1 \end{bmatrix}.$$

13. Write a program to find the correlation coefficient for a bivariate sample. Test your program for the following data:

X	1-23	2-34	3-45	4-67	4-90	5-12	5-78	6-01
Y	1-2345	1-5678	2:4567	3-4567	3-9087	2.9876	2-1098	1-209

14. Write a program to find the multiple correlation coefficient for the sample (x_i, y_i, z_i) , i = 1, 2, ..., n. Test your program for the following data:

X	1	2	3	4	4.5	5	5.5	6
Y	2-2345	2-5678	3-4567	4-4567	4-9087	3-9876	3-1098	2-209
Z	3-45	4.56	6.90	7-12	8-45	6.90	5:23	2:34

15. Write a program to find the regression lines for a bivariate sample. Test your program for the following data:

X	0-23	1-24	2:45	3-67	3.90	4-12	4-78	5-01
Y	1-235	1-678	2-567	3-456	3-087	2.976	2-198	1-209

16. Write a program to fit a linear curve for a bivariate sample. Test your program for the following data:

X	1.25	2.25	3.25	4.25	4.50	5.00	5.25	5.50
Y	1.23	1.78	2.47	3.43	3.90	2.96	2-18	1.20

17. Write a program to fit a quadratic curve for a bivariate sample. Test your program for the following data:

	X	-1.23	-2.34	1.45	2-67	3.90	4.12	4.78	5.01
I	Y	-1.345	1.678	1-467	3.567	3.987	2.986	2.108	1.209

18. Write a program to find two partial correlation coefficient for the sample (x_i, y_i, z_i) , i = 1, 2, ..., n. Test your program for the following data:

X	1	2	3	4	5	6	7	8
Y	2.3	3.4	4.5	6.7	6.9	7.1	7.5	8-1
Z	3-45	4.56	6.90	7.12	8.45	6.90	5.23	2.34