M.Sc. 3rd Semester Examination - 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Dynamical Meteorology-I/Operational Research Modelling-I)

PAPER -- MTM-306

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

(Dynamical Meteorology-I)

Answer Q. No. 1 and any four from the rest

1. Answer any two questions:

- 2×2
- (a) Define equivalent potential temperature.
- (b) Find the relation between mixing ratio and specific humidity.
- (c) What is the planetary vorticity?

2.	(a)	Define potential temperature. Show that it is invariant in adiabatic motion for an air parcel in the atmosphere.	3
	(b)	Derive the saturated adiabatic lapse rate of moist air and hence show that it is less than dry adiabatic lapse rate.	6
3.	(a)	Derive the area equivalence of temphigram and discuss its important features.	7
,	(b)	Explain geo-dynamical paradox.	2
4.	(a)	Derive the equation of motion of an air parcel in the atmosphere in spherical co-ordinate system.	7
	(b)	What is relative humidity?	2
5.	(a)	Obtain the atmospheric energy equation and interpret each term.	7
	(b)	What do you mean by entropy and isentropic process?	2
6.	Define circulation and find the rate of circulation of an air parcel in the atmosphere. Interpret each term.		
7.	(a)	Derive the effect of ascent and descent of an air parcel on lapse rate in terms of changes in pressure.	6

- (b) Explain the convergence and divergence in the atmosphere.
- 8. (a) Explain the weather forecasting. Derive the formula to predict the potential temperature due to advection using finite difference. 2+5
 - (b) At t = 0, $\theta_{32} = 10$ °C. At t = 15 min, $\theta_{22} = 11$ °C, $\theta_{32} = 10 \cdot 1$ °C, $\theta_{42} = 9$ °C, $u_{22} = u_{32} = 5$ m/s. Numerically forecast the potential temperature θ_{32} at t = 30 min, assuming $\Delta x = 50$ km.

[Internal Assessment = 10 Marks]

(Operational Research Modelling-I)

Answer Q. No. 1 and any four from the rest

1. Answer any four questions:

 2×4

3

- (a) What do you mean by network analysis? What is its advantage?
- (b) State Belman's principle of optimality.
- (c) Write a brief note on Monte Carlo simulation.

- (d) State mortality theorem related to replacement of items.
- (e) Give a real example for each of the following queueing system
 - (i) $M/M/1 : \infty/FCFS/\infty$
 - (ii) M/M/1: N/FCFS/∞.
- (f) What do you mean by Economic order quantity.
- 2. Use dynamic programming method to solve the following problem:

Minimize
$$z = \sum_{j=1}^{n} f_j(y_j)$$

Subject to the constraints

$$\sum_{j=1}^{n} a_j y_j \ge b, a_j \text{ and } b \text{ are real numbers, } a_j \ge 0,$$

$$y_j \ge 0, b > 0, j = 1, 3..., n.$$

3. A small project is composed of seven activities whose time estimates (in weeks) are listed in the following table:

Activity	Optimistic time	Most likely time	Pessimistic time
1-2	1	1	7
1-3.	1	4	7
1-4	2	2	6
2-5	1	1	2
3-5	2	5	10
4-6	2	5	8
5-6	3	6	12

- (i) Draw the project network.
- (ii) Find the expected duration and variance of each activity.
- (iii) Calculate the earliest and latest occurrence time for earth event and the expected project length.
- (iv) What is the probability that the project will be computed at least 4 weeks earlier than expected?
- (v) If the project due time is 19 weeks, what is the probability of meeting the due date?

- 4. Describe a suitable method to generate a set of random numbers. Describe Monte Carlo simulation to find the value of π . 5 + 3
- 5. Find the optimum order level which minimizes the total expected cost under the following assumptions:
 - (i) t is the constant interval between order.
 - (ii) Q is the stock (in continuous units) at the beginning.
 - (iii) r is the estimated random instantaneous demand of a continuous rate.
 - (iv) Rs C_1 and Rs C_2 are the holding and shortage costs per items per t time period.
 - (v) No set-up cost.
 - (vi) Lead time is negligible.
- 6. Derive the differential-difference equations for M/M/1: N/FCFS/∞ queueing system in steady state.

At time zero, all the items in a system are new. Each item has a probability p of failing immediately before the end of first month of life and probability q = p - 1 of failing immediately before the end of second month.

8

If all items are replaced as they fail, show that the expected number of failures f(x) at the end of x month is given by

$$f(x) = \frac{N}{1+a} \left[1 - (-q)^{x+1} \right]$$

where N is the number of items in the system.

If the cost per item of individual replacement policy is Rs. C_1 and the cost per item of group replacement policy is Rs. C_2 . Find the condition under which group replacement policy at the end of first month is most profitable over individual replacement.

7. Find the optimum order quantity for the following information:

Quantity	Unit price (Rs.)
0 < Q < 200	6.00
$200 \le Q < 1000$	5.70
$1000 \le Q$	5.40

The monthly demand is 600 units, the storage cost is 20% of unit cost and the cost of ordering is Rs. 10 per order.

[Internal Assessment = 10 Marks]

8

8