M.Sc. 3rd Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Dynamical Oceanology - I/Advanced Optimization and Operation Research)

PAPER-MTM-305

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

(Dynamical Oceanology - I)

Answer any five questions

1. Establish Gibb's relation of thermodynamics in the form

$$Td\eta = d \in +pdv - \sum_{j=1}^{n} \mu_{j} dm_{j}$$

where the symbols have their usual meaning. Deduce Gibb's-Duhem relation.

2.	Establish necessary condition of thermodynamic equilibrium of a finite volume of sea-water in macro-	
	scopic motion under stationary conservative external	
	forces.	8
3.	State Boussinesq approximation and under this approximation write down the field equations. Hence	
	deduce the basic equation in spherical coordinate for	
-	the average fields.	8
4.	What is Brunt-Vaisäla frequency? What role does it	
	play in a stratified medium? Find out the expression within homogeneous layers of ocean where tempe-	
	rature and salinity very little with depth.	8
5.	Supposing the sea-water to be viscous compressible	
	heat-conducting fluid, derive the equation of conser-	
	vation of energy.	8
6.	Derive Fridman's equation for diffusion of absolute	
	vorticity in a viscous flow in terms of motion relative to	
	the earth. Define potential vorticity of a fluid particle.	
	Deduce Ertel's formula for the evaluation of potential	
	vorticity $5 \pm 1 \pm$	⊦ 2

7. Show that the principle of conservation of mass is expressed by the pair of equation

$$\frac{D\rho}{Dt} = +\rho \operatorname{div} \vec{q} = 0$$

$$\rho \frac{Ds}{Dt} = -\operatorname{div} \vec{I}_{s}$$

in usual notations, assuming sea-water to be a two-component mixture of salt and pure water.

- 8. Write down the equation for small amplitude wave motion in the ocean and hence deduce energy conservation equation.
- Show that the problem of free oscillation of the ocean reduces to be determination of eigen values of two distinct eigen value problem.

[Internal Assessment: 10 Marks]

PG/IIIS/MTM-305/12

Turn Over

8

8

(Advanced Optimization and Operation Research)

Answer Q. No. 1 and any two from the rest

1. Answer any one question:

 8×1

(a) Solve the following IPP by using Gomory's cutting plane method

Maximize
$$Z = -4x_1 + 5x_2$$

subject to $-3x_1 + x_2 \le 6$
 $2x_1 + 4x_2 \le 12$
 $x_1, x_2 \ge 0$ and integers.

- (b) Let X_{Br} be a negative basic variable in a dual simplex table and all net evaluations $Z_j C_j$ be non-negative and the primal LPP is of maximization. If $y_{rj} > 0$ for all non-basic variables x_j , show that there does not exist any feasible solution to the primal LPP.
- 2. (a) Using Kuhn-Tucker conditions

Maximize
$$f(x_1, x_2, x_3) = 13 + 24x_2 - 16x_2^2 - 4x_3^2$$

subject to $x_1 + 2x_2 \le 0$
 $x_1 + 3x_2 \le 2$

(b) Maximize
$$f(x) = \begin{cases} 2\sqrt{x}, & x \le 1 \\ 3-x, & x > 1 \end{cases}$$

in the interval [0, 5] by Fibonacci method taking six experiments.

3. (a) Solve by revised simplex method

Maximize
$$Z = 2x_1 - 3x_2$$

subject to $4x_1 + x_2 \le 8$
 $x_1 + 4x_2 \le 8$
 $x_1, x_2 \ge 0$.

(b) Discuss the effect of discrete change in the requirement vector b to the LPP

Maximize
$$Z = CX$$

subject to $AX = b$, $X \ge 0$

where $C, X^T \in \mathbb{R}^n$, $b^T \in \mathbb{R}^m$ and A is an $m \times n$ matrix.

4. (a) Using Steepest Descent Method

Minimize
$$f(x_1, x_2) = x_1^2 + x_2^2 + 2gx_1 + 2fx_2 + c$$

starting from the point (α, β) .

8

(b) Solve the following GPP graphically

Minimize
$$Z = P_1(d_1^+ + d_2^+) + P_2(30d_3^- + 40d_4^-) + P_3d_5^-$$

subject to constraints

$$2x_{1} + 4x_{2} + d_{1}^{-} - d_{1}^{+} = 80$$

$$3x_{1} + 3x_{2} + d_{2}^{-} - d_{2}^{+} = 80$$

$$x_{1} + d_{3}^{-} - d_{3}^{+} = 10$$

$$x_{2} + d_{4}^{-} - d_{4}^{+} = 10$$

$$30x_{1} + 40x_{2} + d_{5}^{-} - d_{5}^{+} = 1200$$

$$x_{1}, x_{2}, d_{1}^{-}, d_{1}^{+} \ge 0, i = 1, 2, 3, 4, 5.$$

[Internal Assessment: 10 Marks]