M.Sc. 2nd Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Functional Analysis)

PAPER - MTM-205

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and 2 and any four from Q.No.3 to 8

The figures in the right hand margin indicate marks

1. Answer any two questions:

- 2×2
- (a) What do you mean by totally bounded subset of a metric space?
- (b) Define Banach space.
- (c) Is the set $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$ compact in \mathbb{R}^3 ?

2. Answer any one:

- (a) What do you understand by equivalence of norms?

 Show that any two norms on IR" are equivalent.
- (b) Let X be a compact metric space. Let C(X) be the set of all real valued continuous function on X and is endowed with sup norm metric. Show that a subset $B \subseteq C(X)$ is compact iff B is closed, bounded and equicontinuous.
- 3. (a) What do you mean by a contraction mapping of a metric space (X, d)?
 - (b) Show that every contraction mapping on a complete metric space has a unique fixed point.
 2 + 5
- 4. (a) What do you mean by bounded linear operator?
 - (b) Let X and Y be normed linear spaces over \mathbb{R} and $T: X \rightarrow Y$ be a linear operator. Show that T is continuous if and only if T is bounded. 2+5

8

5. (a) Consider the Banach space $(C[0,1], \|\cdot\|_{\infty})$. Assume that the function $k: [0,1] \times [0,1] \to \mathbb{R}$ is continuous. Define $T: C[0,1] \to C[0,1]$ by

$$(T_x)(t) = \int_0^1 k(t,\tau)x(\tau)d\tau, \ x \in C[0,1]$$

Is T a linear operator?

- (b) Let X and Y be normed linear spaces over the same field F and $T: X \rightarrow Y$ be a continuous linear operator. Show that the null space N(T) is closed.
- 6. (a) Define dual space of a normed linear space.
 - (b) Let $f: \mathbb{R}^3 \to \mathbb{R}$ be given by $f(\widetilde{x}) = x_1 + x_2 + x_3 \text{ when } \widetilde{x} = (x_1, x_2, x_3) \in \mathbb{R}^3.$

Show that f is a bounded linear functional. Also, find the distance of the origin from the hyperplane $x_1 + x_2 + x_3 = 1$.

(c) Define Hilbert space.

1 + 4 + 2

(a) Let X be an inner product space and C (≠ \$\phi\$) be a convex subset of X which is complete in the metric induced by the inner product on X.
 Show that for every x ∈ X, there exists a unique y₀ ∈ C such that

$$\inf_{y \in C} \|x - y\| = \|x - y_0\|$$

- (b) If in an inner product space $\langle x, u \rangle = \langle x, v \rangle$ for all x in the space, show that u = v. 5 + 2
- 8. Let X be a Banach space and Y be a normed linear space over the same field $F(|R \text{ or } \mathbb{C})$. Show that a set B of bounded linear operators from X to Y is uniformly bounded if and only if it is pointwise bounded.

[Internal Assessment - 10 Marks]