M.Sc. 2nd Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Abstract Algebra/Linear Algebra)

PAPER - MTM-203

Full Marks: 50

Time: 2 hours

The figures in the right hand margin indicate marks

GROUP - A

(Abstract Algebra)

[Marks : 25]

Answer Q.No.1 and any two questions from the rest

1. Answer any *two* questions: 2×2

- (a) Define quotient group G with one example. 2
- (b) What do you mean by principal ideal domain? 2

	(c)	When an integral domain R is called unique factorisation domain?	2
2.	(a)	State and prove Sylow's 1st theorem for a finite group G .	5
	(b)	If F is a field, then prove that $F[x]$ is an Euclidean domain.	3
3.	(a)	State and prove Cauchy's theorem for a finite group G .	5
	(b)	Let R be a commutative ring with 1. Show that an ideal M is a maximal ideal iff R/M is a field.	3
4.	(a)	Let R be a principal ideal domain. Then, prove that every $a \in R$ which is not a unit can be expressed as a product of irreducible elements.	3
	(b)	State and prove 1st Isomorphism theorem of a ring R .	5

[Internal Assessment - 5 Marks]

GROUP - B

(Linear Algebra)

[Marks: 25]

Answer Q.No.5 and any two questions from the rest

5. Answer any two questions:

 2×2

- (a) Define the following: Sublattice, Semilattice.
- (b) Justify with reason whether the following statement is true or false:
 "Let T be a linear operator on a vector space V over a field such that T has n distinct eigen values where n = dim (v). Then the degree of the minimal polynomial of T equals n."
- (c) Let $T: U \rightarrow V$ be a subjective linear mapping and dim U = 6, dim V = 3. Find dim ker T.
- **6.** (a) State and prove Sylvester law on linear transformation.
 - (b) A lattice L is distributive iff

$$(a \lor b) \land (b \lor c) \land (c \lor a) =$$

$$(a \land b) \lor (b \land c) \lor (c \land a) \lor a, b, c \in L.$$

- 7. (a) Let V and W be vector spaces over a field F. Prove that a linear mapping $T:V\to W$ is invertible if and only if T is one to-one and onto.
 - (b) The matrix of a linear mapping $T: R^3 \rightarrow R^2$ relative to the ordered bases ((0,1,1), (1,0,1), (1,1,0)) of R^3 and ((1,0), (1,1)) of R^2 is $\begin{pmatrix} 1 & 2 & 4 \\ 2 & 1 & 0 \end{pmatrix}$. Find the matrix of T relative to the ordered bases ((1,1,0), (1,0,1), (0,1,1)) of R^3 and ((1,1), (0,1)) of R^2 .
- 8. (a) Find the minimal polynomial of the following matrix where α , β , γ are arbitary scalars.

$$A = \begin{bmatrix} 1 & \alpha & \beta \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{bmatrix}$$

(b) A linear mapping $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ maps the vectors (0,1,1), (1,0,1) and (1,1,0) to (2,1,1), (1,2,1) and (1,1,2) respectively. Examine whether ϕ is an isomorphism or not.

[Internal Assessment - 5 Marks]