M.Sc. 2nd Semester Examination, 2012

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER - MTM-202

(Numerical Analysis)

Full Marks: 50

Time: 2 hours

Answer Q. No. 1 and any two from the rest

The figures in the right hand margin indicate marks

1. Answer any four questions:

 2×4

- (a) Distinguish between implicit and explicit methods for solving an ODE using numerical method.
- (b) Prove that:

$$\mu \delta f(x) = \frac{\Delta + \nabla}{2} f(x),$$

where the symbols have their usual meanings.

(c) Is power method be used for finding least eigenvalue (in magnitude) of a matrix? Explain.

(d) Find the weights w_1, w_2, w_3 so that the relation

$$\int_{-1}^{1} f(x)dx = w_1 f(-\sqrt{0.6}) + w_2 f(0) + w_3 f(\sqrt{0.6})$$

is exact for the functions $f(x) = 1, x, x^2$.

- (e) Show that the Chebyshev polynomials $T_n(x)$ is a polynomial in x of degree n. Also show that $T_n(x)$ even or odd according as n is even or odd.
- (f) How can the improper integral

$$\int_0^1 \frac{dx}{x^2}$$

be integrated using numerical method?

2. (a) Describe Seidal method for solving the non-linear system of equations f(x, y, z) = 0, g(x, y, z) = 0 and h(x, y, z) = 0 starting from an initial guess (x_0, y_0, z_0) . Use this method for solving the following equations

$$x = \frac{8x - 4x^2 + y^2 + 1}{8}$$
 and

$$4y = 2x - x^2 + 4y - y^2 + 3$$

starting with $(x_0, y_0) = (1.1, 2.0)$, correct upto four decimal places.

- (b) Describe Birge-Vieta method for finding all roots of a polynomial equation. (2+6)+8
- 3. (a) Describe finite difference method for solving the following boundary value problem:

$$y'' + p(x) y' + q(x)y = r(x), a < x < b$$

with boundary conditions $y(a) = \gamma_1$ and $y(b) = \gamma_2$.

- (b) Describe Jacobi's method for finding all eigenvalues and eigenvectors of a real symmetric matrix. 8 + 8
- 4. (a) Describe LU-decomposition method for solving a system of linear equations. What are the merits and demerits of this method?
 - (b) Deduce 4-point Gauss-Chebyshev quadrature formula. Use this method for finding the value of

$$\int_{1}^{2} (x^{3} + \log x) dx. \qquad 8 + (5+3)$$

[Internal Assessment: 10 Marks]