M.Sc 4th Semester Examination, 2011

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER -- MA - 2205

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

(Operational Research Modelling -II)

[*Marks*:25]

Time: 1 hour

Answer Q.No.1 and any two from the rest

1. Answer any two questions:

- 2 x 2
- (a) Define encoding with examples in Information Theory.
- (b) How do you estimate reliability of a machine?

- (c) What do you mean by dynamic slack time per operations?
- 2. (a) Derive Shannon-Fano encoding procedure with examples to obtain a uniquely decodable code. 5
 - (b) Principal assumptions made on sequencing problem.
- 3. (a) Prove that reliability function for random failures is an exponential distribution.
 - (b) Derive Johnson's algorithm for processing n jobs through three machines in a sequence. 5
- 4. (a) Find the stationary path x = x(t) for the functional $J = \int_{0}^{1} \left[1 + \left(\frac{d^2 x}{dt^2} \right)^2 \right] dt$.
 - (b) State Pontryagin's minimum principal.
 - (c) What do you mean by transversality condition for unconstraint problem?

[Internal Assessment: 5 Marks]

3

2

1

(Dynamical Meteorology -II)

[Marks:25]

Time: 1 hour

Answer Q.No.1 and any two from the rest

(a) What is cyclogenesis and what are the criteria for it?

1. Answer any one question:

- (b) What is dynamic and kinemetic boundary conditions for a front?
- 2. (a) Explain the pressure distribution near the fronts. 3
 - (b) Derive the Margules formula for the slope of the front?
- 3. (a) What is storm surge? How does it occurs and derive the surge? 2+2
 - (b) Derive the expression of amplitude for the stationary planetory waves.
 - (c) For wind blowing 16.2 m/s over a 1 km high mountain range at 45° N, find the wavelength and amplitude of the planetory wave. Assume the troposphere depth is 10 km.

2

2 x 1

4. Derive the general equations of horizontal motion including the effect of frictional forces resulting from turbulent air motion according to the Prandtl theory.

[Internal Assessment: 5 Marks]