M.Sc 2nd Semester Examination, 2011

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER -- MTM - 203

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

GROUP-A

(Abstract Algebra)

[Marks: 25]

Answer Q.No.1 and any two questions from the rest

- 1. Answer any two questions: 2x2
 - (a) State Cayley's theorem for finite group G. 2
 - (b) Define conjugate classes for a group G with two examples.

(c)	Define	prime	ideal	in	a	ring	R	with	two	
	examples.									2

- (a) Define normal subgroup. Show that a Kernal of
 a group homomorphism is always a normal
 subgroup.
 - (b) State and prove first isomorphism theorem for a group G.
- (a) Show that a group G be a direct product of subgroup H and K iff (i) every x ∈ G can be uniqually expressed as x = hk, h∈ H, k∈ K.
 (ii) hk = kh, h∈ H, k∈ K.
 - (b) Let R be the field of real numbers. Then show that the only isomorphism of R onto R is the identity mapping I_R .
- 4. (a) Define simple ring with an example. Show that any field is a simple ring. 1+3
 - (b) Let R be a finite integral domain. Then prove that R is a field.

[Internal Assessment: 5 Marks]

(3)

GROUP-B

(Linear Algebra)

[Marks : 25]

Answer Q.No.5 and any two from the rest

The symbols have their usual meanings

5. Answer any two questions:

- 2 x 2
- (a) A linear transformation $T: E^n \to E^1$ is non-null i.e., $T(x) \neq \emptyset$, $\forall x \in E^n$, where E^n is the n-dimensional Euclidean space. Find the dimension of the null space of T.
- (b) Let T be a linear mapping on a vector space V such that $T^2 = 0$. Find the relationship between ker T and R(T).
- (c) Define complete lattice with an example. Also give an example of a lattice which is not complete.
- 6. (a) Is there a linear transformation $T: R^3 \to R^2$ such that T(1, 0, 3) = (1, 1) and T(-2, 0, -6) = (2, 1)? Justify your answer.

(b) Prove that for any lattice, the distributive inequalities hold.

$$A = \begin{bmatrix} 3 & 0 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}, B = \begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix},$$

$$C = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

Find the minimal polynomial of

$$\left[\begin{array}{ccc} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{array}\right].$$

3 + 2 + 3

- 7. (a) Give the definition of lattice with respect to poset and also give the definition of lattice with respect to algebra. Show that the two definitions are equivalente.
 - (b) Let $T: V \rightarrow W$ be a linear transformation and dim V = n. Then prove that the following are equivalent.
 - (i) T is injective

(ii) Rank of T = n

(iii)
$$\beta = \{v_1, v_2, ..., v_n\}$$
 is a basis of $V \Longrightarrow T(\beta) = \{T(v_1), T(v_2), ..., T(v_n)\}$ is a basis of Im T, i.e., dim $V = \dim T$.

- 8. (a) Let V and W be vector spaces, and let $T: V \to W$ be linear. Then prove that T is one-to-one iff $N(T) = \{0\}$.
 - (b) For the following linear transformations T, determine whether T is invertible and justify your answer.

 $T: M_{2\times 2}(R) \rightarrow P_2(R)$ defined by

$$T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + 2bx + (c+d)x^{2}.$$

(c) Let F be a field and let V be the set of all polynomials in x of degree (n-1) or less over F. Define a mapping T: V→ V and T(f) = f'. Find the matrix of T with respect to the bases {1, x, x², ..., xⁿ⁻¹} 3+2+3

[Internal Assessment: 5 Marks]