M.Sc. 2nd Semester Examination, 2010

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-MA-1203

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

GROUP - A

(Abstract Algebra)

. [Marks : 25]

1. Answer any two questions:

 2×2

- (a) Define external direct product of the groups $G_1, G_2, ... G_n$.
- (b) State Cauchy's theorem for finite groups.

(c) If a group G has only one p-Sylow group H, then H is normal subgroup in G.

2. Answer any two questions:

 $.8 \times 2$

- (a) (i) Define Conjugacy relation in a group G. Prove that two elements x, y of a group G give rise to the same conjugate of an element $a \in G$ if and only if they belong to the same right coset of the normalizer of a in G.
 - (ii) Define ideal of a ring R. Prove that a commutative ring with unity is without proper ideal, if it is a field.
- (b) (i) Define Euclidean domain. Let D be a Euclidean domain. Then prove that any two elements a and b in D have greatest common divisor d which can be expressed in the form $d = \lambda a + \mu b$ for λ , $\mu \in D$.
 - (ii) Define automorphism of a group G. Prove that the set of all automorphisms of a group G themselves forms a group.

- (c) (i) Define solvable group with examples.
 - (ii) Let R be a commutative ring with unity and H be an ideal of R. Prove that R/H is a field if and only if H is maximal. 3+5

[Internal Assessment: 5 Marks]

GROUP - B

(Linear Algebra)

[Marks: 25]

Answer Q. No. 4 and any two questions from the rest

4. Answer any two questions:

 2×2

(a) Define the following:

Null space and Range of a linear mapping.

- (b) What do you mean by annihilate? Define monic polynomial.
- (c) Define Poset with an example.

- 5. (a) State and prove dimension theorem associated with linear transformation.
 - (b) Define median inequality for any lattice L and then prove it.
 - (c) Find the minimal polynomial of the following real matrix:

$$\begin{bmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b \end{bmatrix} \qquad 4+2+2$$

- 6. (a) Let p(t) be a minimal polynomial of a linear operator T on a finite dimensional vector space.
 - (i) For any polynomial g(t), if $g(T) = T_0$, then prove that p(t) divides g(t) and in particular, p(t) divides the characteristic polynomial of T.

- (ii) Also prove that the minimal polynomial of T is unique.
- (b) Let $T: P_3[0, 1] \rightarrow P_2[0, 1]$ be defined by (Tp)(x) = p''(x) + p'(x). Then find the matrix represented by T with respect to the bases $\{1, x, x^2, x^3\}$ and $\{1, x, x^2\}$ of $P_3[0, 1]$ and $P_2[0, 1]$ respectively.
- (c) Suppose that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is linear, T(1,0) = (1,4) and T(1,1) = (2,5). What is T[2,3]? Is T one-to-one? 3+3+2
- 7. (a) Let V and W be vector spaces over a field F.
 Prove that a linear mapping T: V → W is invertible if and only if T is one-to-one and onto.
 - (b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by T(x, y, z) = (x + y, y + z, z + x), then, find an orthonormal basis for the range of T.

(6)

(c) Prove that every chain is a lattice. Examine that the poset $D_{12} = \{2, 3, 4, 6\}$ under divisibility 12 forms a lattice or not? 4+2+2

[Internal Assessment: 5 Marks]