Total Pages-5 PG/IS/A.MATH/MA - 1105/09

M.Sc 1st Semester Examination, 2009

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

(Classical Mechanics)

PAPER -- MA - 1105

Full Marks: 50

Time: 2 hours

Answer Q.No.1 and any two questions from the rest

The figures in the right-hand margin indicate marks

1. Answer any four questions:

2 x 4

- (a) What do you mean by inertial and non-inertial frames. Give examples of these frames.
- (b) Define holonomic constraints with example.
- (c) What is Coriolis force? What is the cause of this force?

- (d) Find the expression for kinetic energy when a rigid body is rotating about a fixed point.
- (e) State Hamilton principle.
- (f) Deduce Hamilton's equations in terms of Poisson brackets.
- (a) Deduce Lagrange's equation of motion for a conservative and unconnected holonomic system.
 - (b) If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange's equations, show by direct substitution that

$$L' = L + \frac{dF}{dt}(q_1, q_2, \dots, q_n, t)$$

also satisfies Lagrange's equations where F is any arbitrary, but differentiable function of its arguments.

(c) Set up a Lagrangian in spherical polar coordinates for two-body problem under central force.

8

3. (a) A body moves about a point 0 under no force, the principal moments of inertia at 0 being 3 A, 5A and 6A. Initially, the angular velocity has components $\omega_1 = n$, $\omega_2 = 0$, $\omega_3 = n$ about the corresponding principal axes. Show that at any time t

$$\omega_2 = \frac{3n}{\sqrt{5}} \tanh \left(\frac{nt}{\sqrt{5}} \right)$$

and that the body ultimately rotates about the mean axis.

(b) Let $Q_j = Q_j(q_j, p_j, t)$ and $P_j = P_j(q_j, p_j, t)$ be the Canonical transformation and $G_1 = G_1(q_j, Q_j, t)$ be a generating function. Show that

$$p_j = \frac{\partial G_1}{\partial q_j}, P_j = -\frac{\partial G_1}{\partial Q_j}$$
 and $\bar{H} = H + \frac{\partial G_1}{\partial t}$

where H and H represent respectively Hamiltonians in old and new coordinates systems.

4

8

(c) Prove that the transformation

$$Q = \log \left(\frac{1}{q} \sin p\right), \ P = q \cot p$$

is Canonical.

4

4. (a) Prove that

$$J = \int_{x_{1}}^{x_{1}} F(y_{1}, y_{2}, \dots, y_{n}, y_{1}', y_{2}', \dots, y_{n}', x) dx$$

will be stationary only if

$$\frac{d}{dx}\left(\frac{\partial F}{\partial y_i'}\right) - \frac{\partial F}{\partial y_j} = 0, \ j = 1, 2, ..., \ n$$

where
$$y_j' = \frac{\partial y_j}{\partial x}$$
, y_1 , y_2 ,..., y_n are

functions of x only.

8

(b) Show that in relativistic mechanics $E = mc^2$. 5

(c) Calculate the mean life-time of a particle moving with speed 2.67×10^{10} cm/sec whose proper life-time is 2.8×10^{-7} sec.

[Internal Assessment — 10 Marks]