PG/H/AMATH/VI/07

2007

APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

PAPER-VI

Full Marks : 50

Time : 2 hours

Answer all questions

The figures in the right -hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers whenever necessary

1. Answer any two questions :
5×2
(a) Draw a block diagram of a 4-bit Ripple-Carry adder and implement it using four full adders. Also dra tiv a block diagram of 16 -bit adder using four 4-bit adders.
(b) What is the role of decorders? Explain 3-to-8decorder with block diagram.
(c) Write short notes (any two
(i) PRAM
(ii) Cache memory
(iv) Register
(iv) Multiplexer.
2. Answer any three questions:
(a) Write an algorithm to sort a set of random data using merge sort technique. What is the time complexity of your algorithm?
(b) Write an algorithm to evaluate a postfix expression.
(c) Write an algorithm to find the shortest distance between two specified vertices on a graph, using Dijkstra algorithm.
(d) Define binary tree. Construct a. binary tree to store the following infix expression :

$$
\mathrm{A} *(\mathrm{~B}+\mathrm{C}) *((\mathrm{D}+\mathrm{E}) *(\mathrm{~F}-\mathrm{G})+\mathrm{H})
$$

From the binary tree find the postfix form of this expression. (Post-order traversal may be used).
(e) Write an algorithm to create a linked list containing n numbers and find maximum among them.

3)

3. Answer any one question : 10
(a) What services are provided by the internet? Explain the following terms in connection with data flow. Simplex, half-duplex and full- duplex.
(b) What are LAN and WAN ? What are their goals? Explain network protocols ?
4. Answer any three questions : 5×3
(a) Explain memory management technique without swapping or paging.
(b) What are the rules for naming a file? Which types of files are used in an operating system?
(c) Explain round robin scheduling. Most round robin scheduling use a fixed size quantum. Give an argument in favour of a small quantum.
(d) A mini computer uses the buddy system for memory management. Initially, it has one block of 256 K at address 0 . After successive requests for $5 \mathrm{~K}, 25 \mathrm{~K}$, $35 K$ and $20 K$ come in, how many blocks are left and what are their sizes and addresses ?
(e) What do you mean by multiprogramming? How memory is organized ina multiprogramming system ?
