## M.Sc. 4th Semester Examination, 2013

## APPLIED MATHEMATICS WITH OCEANOLOGY AND COMPUTER PROGRAMMING

( Operational Research Modelling - II/OM)

PAPER-MTM-405

Full Marks: 50

Time: 2 hours

The figures in the right-hand margin indicate marks

(Operational Research Modelling-II)

[*Marks*: 25]

Time: 1 hour

Answer Q. No. 1 and two from the rest

1. Answer any two questions:

 $2 \times 2$ 

- (a) Define reliability of an item. Find a suitable expression to find the reliability of an item.
- (b) Define 'Sequencing' and discuss the principal assumptions in sequencing problems.

(Turn Over)

- (c) Explain how to measure information provided by two events, dependent or independent.
- 2. (a) Describe a method to process n jobs through 3 machines in minimum amount of time.
  - (b) Determine the optimal sequence of jobs that minimizes the total elapsed time based on the following information (Processing time on machines in given in hours and passing is not allowed).

|                 | Jobs |   |     |    |   |    |     |
|-----------------|------|---|-----|----|---|----|-----|
|                 | I    | П | III | IV | V | VI | VII |
| Machine $A_1$ : | 3    | 8 | 7   | 4  | 9 | 8  | 7   |
| Machine $A_2$ : | 4    | 3 | 2   | 5  | 1 | 4  | 3   |
| Machine $A_3$ : | 6    | 7 | 5   | 11 | 5 | 6  | 12  |

- 3. (a) Define joint and conditional entropies. Prove that  $H(X, Y) \le H(X) + H(Y)$ , with equality iff X and Y are independent.
  - (b) Considering the source  $S = \{s_1, s_2, s_3\}$ with  $p(s_1) = \frac{1}{2}$  and  $p\{s_2\} = p\{s_3\} = \frac{1}{4}$ , find  $H(S^2)$ .

PG/IVS/MTM-405/13

(Continued)

- 4. (a) Describe the Euler's equation for extremizing a functional of a single variable and deduce the other forms in which it can be expressed.
  - (b) An electrochemical system is characterised by the differential equation

$$\frac{dx_1}{dt} = -x_1 + u, \ \frac{dx_2}{dt} = x_1$$

where u is the control variable chosen so as to minimize the cost functional

$$\int_0^\infty (x_2^2 + 16u^2/3) dt.$$

Show that if the state variables satisfy  $x_1(0) = a$ ,  $x_1(\infty) = 0$ ,  $x_2(0) = b$ ,  $x_2(\infty) = 0$ , then the optimum choice of u is

$$u(t) = -0.366 x_1(t) - 0.433 x_2(t).$$
 4

[Internal Assessment: 5 Marks]

( Turn Over )

PG/IVS/MTM-405/13

## (Dynamical Meteorology - II)

[Marks: 25]

Time: 1 hour

## Answer Q. No. 1 and any two from the rest

1. Answer any one question:

 $2 \times 1$ 

- (a) What do you mean by global circulation?
- (b) Show that in a geostropic wind field, an ideal front is necessarily stationary.
- 2. Derive the general equation of horizontal motion of air in the atmosphere including the effect of frictional forces resulting from turbulent air motion according to the Prandtl theory.
- 3. (a) Derive the relation between pressure difference at the top and bottom of a hurricane. 2
  - (b) Show that the tangential velocity of a hurricane varies with the altitude and hence prove that it has a warm core.

PG/IVS/MTM-405/13

(Continued)

5

(c) Suppose at a radius of 40 km, tangential velocity decreases from 15 m/s at the surface to 10 m/s at 10 km altitude. Find the radial temperature gradient at a latitude where Coriolis parameter is 0.00005/s and assume 2

$$\frac{g}{T} = 0.0333 \,\mathrm{m/s^2/K}$$

- 4. (a) Derive the meridional temperature gradient due to global circulation and also find meridional temperature and temperature gradient at 45°N latitude at sea level.
  - (b) What is Rossby wave? Find the variation of Coriolis parameter to create Rossby wave. 3

[Internal Assessment: 5 Marks]