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Chapter 1

General Introduction

1.1 Inventory Control System in Operations Research

Operations Research (OR) was introduced during the Second World-War. Basically, it is the
collection of modern methods on the problems arising in the management of large systems of
men, machines, materials and money related to industry, business and defence. During this
war, the military management in England called upon a team of scientist to study the strategic
and tactical problems related to air and land defence of the country with very limited military
resources, it was necessary to decide upon the most effective utilization of them, e.g., the
efficient ocean transport, effective bombing, etc. As the team was dealing with research on
(military) operations, the work of this team of scientists was named as ‘Operational Research’
in England.

After the end of war, the success of military teams attracted the ‘Industrial managers’,
who were seeking solutions to their complex executive-type problems. In this field, the first
mathematical technique called the Simplex Method of linear programming was developed in
1947 by American mathematician, George B. Dantzig (Dantzig (1963). Since then, new
techniques and applications have been developed through the efforts and cooperations of
interested individuals in academic institutions and industries both. According to Churchman
et al. (1957), OR is defined as the application of scientific methods, techniques and tools to
decision making problems (DMP) involving the operations of systems so as to provide these
in the control of the operations with optimum solutions to the problem.

Today, the impact of OR can be felt in many areas. Apart from military and business
applications, the OR activities include transportation system, library, hospital, city planning,
financial institution, etc. For example, in real life, it is observed that a small retailer knows
roughly the demand of his/her customer in a month or a week and accordingly places order
on the wholesaler to meet the demand of his/her customer. But, this is not the case with a
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CHAPTER 1. GENERAL INTRODUCTION

manager of a big departmental store or a big retailer, because in such cases the stocking
depends on several factors, such as demand, time of ordering, time lag between the order and
actual receipt, deterioration, amelioration, time value of money, inflation, trade credit period
etc. and the impreciseness of these factors. So, the problem for managers/retailers is to have a
compromise between over-stocking and under-stocking. The study of such type of problem is
known by the term ‘Inventory Control’.

Inventory control is concerned with the flow of materials from supplier to production and the
subsequent flow of products through distribution centers to the customers. It is responsible
for the planning, acquisition, storage, movement and control of materials and final products.
It attempts to get the right goods at the right price at the right time to maintain desired service
level at minimum cost.

1.2 Basic Concepts and Terminologies
The production inventory systems depend on several parameters such as objectives, objective
functions, constraints, demand, production, replenishment, resources, various type of costs,
shortages, deterioration, defectiveness, trade credit period, inflation etc. Though detailed
descriptions on these parameters are available in the literature on inventory Control problems
(cf., Hadley and Whitin [87], Naddor [158], Tersine [206], Silver and Peterson [194], etc.), a
short overview has been followed.

Objectives
An objective is something which is to be pursued to its fullest extent. An objective generally

indicates the direction desired. For example, in the problem of making development plans of
a developing country, the ‘objectives’ of the government may be to maximize the national
welfare, to minimize the dependence on foreign aid, the unemployment rate to be minimized,
to minimize the complexity etc.

Constraints
Constraints in inventory system deal with various restrictions such as storage space

limitations, number of replenishment, etc. Constraints may also be imposed on the amount of
investment i.e., budget constraints, resources and finance, the amount of inventory held,
average inventory expenditure, etc. These constraints can also be fuzzy in nature i.e., data for
constraints, goals for the objectives, resources, etc. may be imprecise and vague. Beside there
may be some probabilistic, possibility or necessity type constraints too in inventory system.

Inventory
In broad sense, inventory is defined as an idle resource of an enterprize / company /
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manufacturing firm. It can be defined as a stock of physical goods, commodities or other
economic resources which are used to meet the customer’s demand or requirement of
production. The inventories or stock of goods are classified into the following forms.

(A) Direct Inventories: The items which play a direct role in the manufacturing and become
an integral part of finished goods are included in the category of direct inventories. These may
be further classified into following four main groups:

(i) Raw materials inventory: This type of inventory consists of the purchased items or
extracted materials that are transformed into components or products. This is provided
(i) for economical bulk purchasing, (ii) to enable production rate changes, (iii) to provide
production buffer against delays transportation and (iv) for seasonal fluctuations.

(ii) Work-in-process inventory (WIP): This consists of any item that is in some stage of
completion in the manufacturing process. This is provided for (i) to enable economical
lot production, (ii) to cater to the variety of products, (iii) for replacements of wastage
and (iv) to maintain uniform production even if amount of sales may vary.

(iii) Finished goods inventory: This consists of completed products that will be delivered to
customers. This is provided (i) for maintaining off-self delivery, (ii) to allow stabilization
of the production level and (iii) for sales promotion.

(iv) Components inventory: This type consists of parts or sub-assemblies used in building
the final product.

(B) Indirect Inventories: Indirect inventories include those items which are necessarily
required for manufacturing but do not become the components of finished production, like :
oil, grease, petrol, lubricants, maintenance materials, office materials, etc. This is also known
as maintenance, repair and operational (MRO) inventory.

Demand
Demand is one of the most important factor in production inventory systems. It usually

depends upon the decisions of retailer/customer outside the organization which has the
inventory problem. When the demand size is the same from period to period, we say that it is
constant. Otherwise, it is variable. In reality, demand depends on several factors such as
follows:

• constant,
• depend on time,
• depend on inventory level/displayed stock-level,
• depended on the selling price of an item,
• depend on the discount of selling price of an item,
• depend on the advertisement,
• depend on the warranty period of an item, etc.
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Sometimes when demand size is not known, it is possible to ascertain its probability
distribution, in this case it is termed probabilistic demand. In some cases, demand may be
represented by vague, imprecise and uncertain data. This type of demand is termed as fuzzy
demand.

Production
Production systems are characterized by resources and the products. These resources are

deigned to manufacture the products in response to market demand.

Imperfect Production
In real world manufacturing system, it is seen that every produced item may not be 100%

perfect due to different factors involved in the system such as machine, ray-materials, labour
etc. In any production system, it is seen that initially the production process is in an in-control
state, because every factors in the system are fresh and the items produced perfect quality
items. Generally, increasing production-run-time increases the probability of components of
machine failure and impatience of labor staff, and thus accelerates the deterioration of the
quality of the product. However, the production process starts in an in-control state by
producing perfect items, and then it may become out-of-control state by producing mixture of
perfect and imperfect item due to deterioration of machinery system as well as other factors.
The rate of imperfectness may be constant or variable and also considered as crisp, stochastic
or fuzzy in nature.

Inspection/Screening Process
In any imperfect production system, there is necessary to inspect each item after production

to check whether the item is perfect or not. After inspection, the manufacturer meets the
demand of retailers/customers.

Inspection Error
In real situation, the inspection process also may not be 100% perfect and error-free due to

machine error and human factor. After inspection there may exist some possibility that a
perfect item is falsely treated as an imperfect item and an imperfect item may be falsely
considered as a perfect item which are known as type-I error and type-II error respectively.

Rework Policy
In real-life imperfect production systems, a portion of imperfect quality items may be

reworked by replacing parts for assemblage of new products or the entire (upgraded) product
can be sold again. The rework option plays an important role in eliminating waste and
affecting the cost of manufacturing.

Discount Policy
In order to introduce larger purchases, a manufacturer often offers a reduced price if amounts
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greater than some minimum amount are ordered. This means the price per unit is lower if a
large order is placed. Normally, two types of discount are considered: (i) All Unit Discount
(AUD) and (ii) Incremental Quantity Discount (IQD).

Warranty Policy
In practice, the manufacturer and retailer usually offer a warranty for all selling items for a

specific warranty period due to increasing the selling rate and reliability of product. Warranty
period of a product is a duration in which a purchased product provides satisfactory
performance to the customer. If any purchased product failed to work within its warranty
period, then the servicing center replaces it with a new item or repair the product by replacing
owing one or more parts. Due to this reason, a manufacturer considers warranty cost if there
exists free-warranty on selling items in the warranty period.

Learning Effect
Reduction in labour time or cost or defective units, as a result of workers’ proficiency in

performing a repetitive task due to the gain in previous work experience, is well known as the
‘Learning effect’. Its reverse effect is known as Forgetting effect.

Supply Chain Model (SCM)
A supply chain model (SCM) is a network of supplier(s), producer, distributor(s) and

customers which synchronizes a series of inter-related business process in order to have:
(i) Optimal procurement of raw materials from nature;
(ii) Smooth transportation of raw-materials into warehouse;
(iii) Production of goods in the production center and Distribution of finished goods to
retailer for sale to customers.

Green Supply Chain (GSC)
Green Supply Chain (GSC) tries to reduce the undesirable environmental impacts of supply

chain processes within the participating organizations and the whole supply chain as well.
But during recent years, SC managers tend more to consider environmental aspects in their
decision making process. Green supply chain (GSC) is not just about considering
environment aspect in SC decision making processes, but also about productivity and making
more profit. Srivastava [197] defined GSCM as integrating environmental thinking into
supply-chain management, including product design, material sourcing and selection,
manufacturing processes, delivery of the final product to the consumers as well as end-of-life
management of the product after its useful life. GSCM has emerged from two origins. First,
environmental managers started to use life cycle assessment (LCA) approach for assessing
products environmental impacts. In addition to usual product design and manufacturing
processes, this approach considers many logistical activities such as material handling,
packaging, distribution and by production to reduce disposal.
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Two Warehouse
In a busy market place like super market, corporation market, municipality market etc. the

storage space of a showroom is limited. When an attractive price discount for bulk purchase
is available or the cost of procuring goods is higher than the inventory related other costs or
there are some problems in frequent procurement’s or the demand of items is very high or the
bulk transport facility is available etc. then management decides to purchase a huge quantity
of items at a time. All these units cannot be stored in the existing storage house at the market
place (showroom) due to limited capacity. Then for storing the excess units, one (sometimes
more than one) additional warehouse (called Secondary Warehouse (SW)) is hired on a rental
basis. These SW may be located near the showroom or a little away from it. The products are
first stored in showroom and then the excess amounts are stored in SW. The actual service to
the customer is offered at Showroom only. The units of SW are transferred to showroom in a
continuous/bulk release pattern to meet up the demand at showroom until the stocks in SW
are emptied and lastly the units at showroom are released.

Inventory Cost
Inventory costs are the costs related to storing and maintaining its inventory over a certain

period of time. Different types of cost related to inventory are calculated such as production
cost, purchase cost, screening/ inspection cost, rework cost, setup cost, holding cost, idle cost,
advertisement cost, warranty cost, shortage or stock-out cost, disposal cost, etc.

Production Cost
It is the unit production price to produce the item at the production center. Unit production

cost is also may be depend upon the production, labour, maintenance when production is
done in large quantities as it results in reduction of production cost per unit.

Purchase Cost
It is the unit purchase price to obtain the item from an external source. Also, when quantity

discounts are allowed for bulk orders, unit price is reduced.

Screening/Inspection Cost
It is a cost for separate imperfect (defective items) and perfect item from produced item.

Rework Cost
A cost for reworking of defective items to make the products as new as the perfect in a

manufacturing system. This cost to reduce the consumption of fresh raw materials, to reduce
energy usage and to reduce air pollution in production inventory system.

Advertisement Cost
The advertisement cost is the cost associated with advertisement of an item in popular media
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like News paper, Magazine, TV, Radio, etc. and through the sales representative to increase
the sale of that item.

Warranty Cost
The warranty cost is the cost associated with warranty policy of an item.

Idle Cost
It is the cost per unit time due to idle period of each supplier, manufacturer and retailers in

SCM model. In this thesis, constant or imprecise idle cost is considered.

Setup Cost
It is the cost associated with the expense of issuing a purchase order to an out-side supplier

or setting up machines before internal production. These costs also include clerical and
administrative costs, telephone charges, telegram, transportation costs, loading and unloading
costs, watch and ward costs, etc.

Holding Cost
It is the cost associated with the storage of the inventory until its use or sale. It is directly

proportional to the quantity in inventory and the time for which the stocks are held. This cost
generally includes the costs such as rent for storage space, interest on the money locked-up,
insurance, taxes, handling, etc.

Shortage Cost
It is the penalty incurred when the stock proves inadequate to meet the demand of the

customers. This cost parameter does not depend upon the source of replenishment of stock
but upon the amount of inventory not supplied to the customer.

Disposal Cost
When an amount of some units of an item remains excess at the end of inventory cycle and if

this amount is sold at a lower price in the next cycle to derive some advantages like clearing
the stock, winding up the business etc. the revenue earned through such a process is called the
disposal cost.

Time/Planning Horizon
The time period over which the inventory level will be controlled is called the time horizon.

It may be finite or infinite depending upon the nature of the inventory system of the
commodity.

Inflation
Inflation is a persistent increase in the level of consumer prices or a persistent decline in the

9
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purchasing power of money, caused by an increase in available currency and credit beyond
the proportion of available goods and services. It is the rate at which the general level of
prices for goods and services is rising, and subsequently, purchasing power is falling. As
inflation rises, every dollar will buy a smaller percentage of a good.

Time Value of Money
The basic principle that money can earn interest, so something that is worth 1 today will be

worth more in the future if invested. This is also referred to as future value. For example,
today, invested for one year at 5% return, would be worth 1.05 in one year. The time value of
money (TVM) or the present discounted value is one of the basic concepts of finance.

1.3 Different Environments

The parameters, like inventory cost ( viz., unit production cost, holding cost, set-up cost,
shortage cost, transportation cost, advertisement cost, etc.), demand, available resources, etc.
involved in the inventory system may be deterministic (crisp/precise) or some of these may be
non-deterministic (i.e., stochastic or imprecise or both stochastic and imprecise). Depending
on the nature of such parameters, the environment in which inventory models are developed
can be classified as follows:

Crisp Environment: When all the system parameters and the resources, etc. are
deterministic and precisely defined, the environment is known as crisp environment.

Stochastic Environment: In this environment, it may happen that the demand or any factor
of a commodity in the society is uncertain, not precisely known, but some past data about it is
available. From the available records, the probability distribution of demand or any other
factor of the commodity can be determined and with that distribution the inventory control
problem can be analyzed and solved.

Fuzzy Environment: In this system, some parameters and /or resources are fuzzy in nature.
For example, when management launches a new product then they have no knowledge about
demand and the other factors related to the product. Then management needs to collect the
demand and the others information from experts. If the expert’s opinion is imprecise then
demand or other factors related to the expert opinion to be taken as a fuzzy and the
corresponding environment is known as fuzzy environment.

Fuzzy-Stochastic Environment: It is an environment, which is the combination of both
stochastic and fuzzy environments. Here, some parameters are fuzzy and some others are
random. Some constraints / resources may be imprecise.
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1.4. HISTORICAL LITERATURE REVIEWS ON IMPERFECT PRODUCTION
INVENTORY SYSTEM IN DIFFERENT ENVIRONMENT

1.4 Historical Literature Reviews on Imperfect Production

Inventory System in Different Environment
In developing the models, researchers have adopted many of the usual assumptions in
imperfect production inventory, viz. (i) finite/infinite planning horizon, (ii) constant/varying
production rate, (iii) constant/varying defective rate, screening rate and reworked rate, (iv)
constant/varying demand rate, (v) allowing shortage or without shortage, (vi) constant/known
distribution production time, (viii) single/multi-item production inventory system, (ix)
single/multi-retailer, (x) inventory problems with delay in payment, etc. The available models
can be grouped in the following ways:

(i) Imperfect Production Inventory Models in Crisp Environment

(ii) Imperfect Production Inventory Models in Fuzzy Environment

(iii) Imperfect Production Inventory Models in Stochastic Environment

(iv) Imperfect Production Inventory Models in Fuzzy Stochastic Environment

1.4.1 Historical Literature Reviews on Imperfect Production Inventory

Models in Crisp Environment
In this environment, many parameters in imperfect production inventory system such as
demand, production, production run time, inventory costs etc. are crisp nature. The earliest
analysis of an inventory system was developed by Ford Harris [89] of Westinghouse
Corporation, USA, in 1915. He derived the classical lot size formula. The same formula was
also developed independently by R. H. Wilson [225], after few years and it has been named
as Harris-Wilson model or Wilson’s model. Since then, the above mentioned model has been
modified and extended by several researchers changing the assumptions with the objective to
make it more and more realistic. Later full length books devoted to the mathematical
properties of inventory systems were published by Hadley and Whitin [87], Naddor [158],
Tersine [206], Silver and Paterson [194] and others. The literature survey has been made
separately on imperfect production, screening process, advertisement and time dependent
demand and production cost in crisp environment which are discussed below.

Models on Imperfect Production:
In the existing literature of Economic Production Quantity (EPQ) models, most of the works
are based on imperfect units. Lin et al. [138] formulated an integrated production inventory
models with imperfect production process. Hsu and Hsu [95] developed an integrated
vendor-buyer model with defective items which are treated as a single batch and returned to
the vendor after a 100% screening process. For inventory problems, many studies considered
the items produced as perfect in their models. However, imperfect items are produced due to
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non-ideal production processes. Wee et al. [219] have investigated the effect of imperfect
items on the EOQ model. Taleizadeh et al. [204] presented an EPQ model with rework
process for a single stage production with one machine.

Inventory Models with Screening Process:
Now from the literature survey on imperfect production inventory models, it is seen that there
exist two classes of the models on the basis of inspection methods to sort out the defective
units from the perfect one. In one class of research, it has been seen that over the period of
time the produced items deteriorate in manufacturing system. In this field, the different
researchers (Lee and Rosenblatt [181], Lee and Park [131], Kim et al. [119], Jaber et
al. [101, 102], Lin et al. [138]) examined an inspection method on the produced items based
on deteriorating production process. Sana [185, 186] extended the EOQ model with
assumptions that a known proportion of defective units was included in delivering lots and
that the fixed and variable inspection costs were incurred in finding and removing these units.
In this field, there are also many research papers in which different inspection methods had
been used by Hsu and Hsu [94], Cheng [32], Salameh and Jaber [184], Chiu [35], Tripathy
and Pattnaik [208], Zhang and Gerchak [241] used in EOQ/EPQ model.

Models on Advertisement and Time Dependent Demand:
In Harris and Wilson [225] lot-size model, demand was assumed as constant, but, in reality, it
depends on several factors like time, initial/ on-hand displayed stock-level, selling price of an
item, advertisement etc. Silver and Meal [193] published a lot size model taking time varying
demand. After that, the research on the models with time dependent demand rate have been
gradually studied by several researchers such as Donaldson [59], Goswami and
Choudhuri [76], Lin et al. [138], Wang and Chen [210], Zhou et al. [243] and others.
According to the market research, it is observed that time-to-time advertisement of an item
also changes its demand. For this reason, Cho [41] developed an optimal production and
advertising policies in crisp environment. In this area, Bhunia and Maiti [11] and others
developed different types of inventory or production models considering different real life
situations.

Models with Different Types of Production Cost:
In many research articles, production cost is assumed to be constant in EPQ models. But in
reality, it depends on the many factors such as raw materials, labours engaged, wear and tear
of machineries and rate of production. Khouja and Mehrez [114] assumed a unit production
cost involving all these costs. After that, several authors (cf. Khouja [117], Chakraborty and
Giri [17]) have implemented this in their EPQ models. Roy et al. [182], Das and Maiti [48]
used this type of production cost in terms of volume flexibility. So, unit production cost varies
directly with the products quality.
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INVENTORY SYSTEM IN DIFFERENT ENVIRONMENT

1.4.2 Historical Literature Reviews on Imperfect Production Inventory

Models in Stochastic Environment

In this environment, many parameters in imperfect production inventory system such as
demand, production, production run time, inventory costs etc. are random in nature and
specified by probability distributions. The literature survey has been made separately on
imperfect production, various type of demand, two warehouse, inflation, carbon-emission in
stochastic environment which are discussed below.

Models on Imperfect Production:
In the literature, few Economic Production Lot-size (EPL) models are available for imperfect
units in stochastic environment. Rosenblatt and Lee [181] studied the effects of an imperfect
production process on the optimal production run time by assuming that time to
out-of-control state is exponentially distributed. Hayek and Salameh [97] derived an optimal
operating policy for the finite production model under the effect of reworking of imperfect
quality items. They assumed that all defective units are repairable and allowed back-orders.
Chiu [35] extended the work of Hayek and Salameh [97] and examined an EPQ model with
defective items reworking the repairable units immediately. Sana [187] presented an EPL
model with random imperfect production process and defective units were repaired
immediately when they were produced. Tripathy and Pattnaik [208] obtained the optimal
reliability for an EPL model connecting process reliability with imperfect production system.
Here, some imperfect products were reworked and others were sold at a reduced price.
Krishnamoorthi and Panayappan [124] studied an EPQ model that incorporated imperfect
production quality, not screening out proportion of defects and thereby passing them on to
customers and resulting in sales returns. Recently, Wang and Sheu [212] investigated a
problem with production preventive maintenance, inspection and inventory for an imperfect
production process. Annadurai and Uthayakumar [6] formulated an EPQ model with
imperfect production process and stochastic demand. Yao et al. [234] considered a
three-stage supply chain co-ordination model under imperfect production process with
fuzzy-random demand. Taleizadeh et al. [202] revisited the EPQ model with rework process
at a single stage manufacturing system with planned back-orders. The production system was
assumed to be imperfect having random defective rates.

Models with Stock Dependent Demand:
It has been acknowledged that the displayed inventory has an effect on sales for many retail
products-especially for style marchandise (Datta and Pal [52], Levin et al. [132]). This means
that the demand rates of these items may be dependent on displayed stock level. Such type of
demand in different forms was considered by Das et al. [49], Ray and Chaudhuri [173], Roy
et al. [182], Yang et al. [232] and others. But, these propositions lead the
retailer/manufacturer of the items of glass, ceramic, china clay etc. to a conflicting situation.
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Models with Selling Price Dependent Demand:
It is observed that, the demand rate of an item is influenced by the selling price of an item, as,
whenever the selling price of an item increases, the demand for that decreases and vice- verse.
Generally, this type of demand is seen for different finished goods. Several authors like Guria
et al. [85], Panda and Maiti [163], Goyal and Gunasekaran [77], Bhunia and Maiti [11], Abad
and Jaggi [2], Karimi-Nasab et al. [109] have investigated this type of inventory models.

Models with Discount Dependent Demand:
In present situation, quantity discount is of growing interest due to its practical importance in
purchasing and control of an item. Normally, one derives the better marginal cost of
purchase/production availing the opportunities of cost savings through bulk
purchase/production. Now-a-days, in the third world countries, with the introduction of open
market system and advent of multi-nationals, there is a stiff competition amongst the
companies to capture the maximum possible market. In the literature of discounted inventory
problems, Chung and Lin [43] considered inventory replenishment models for deteriorating
items in account of time discounting. Abad [1] determined an optimal policy for selling price
and lot size when suppliers offer all unit quantity discount. Chakraborty and Martin [18]
allowed discount price policies for inventory subject to declining demand. Weng [223]
developed a channel coordination model with quantity discounts.

Models with Two Warehouse Facilities:
Inventory models with two warehouse facilities, one is existing storage maintained by the
own management named as own warehouse (OW) and another is hired on rental basis named
as rented warehouse (RW), have been discussed by Hartely [90], Sarma [189], Dave [53],
Pakkala and Achary [161], Bhunia and Maiti [11], Benkherouf [10], Kar et al. [111], Dey et
al. [57] and others.

Models with Inflation and Time Value of Money:
The initial attempt to analyze the effect of inflation and the time value of money on inventory
control systems was made by Buzacott [12] in 1975. He dealt with an EOQ model with
inflation subject to different types of pricing policies. Later on, Chandra and Bahner [23]
showed the effects of inflation and the time-value of money on some inventory systems.
Several authors then extended these works to make the more realistic inventory models under
inflation and the time-value of money. Among these works, one can refer the work of
Chen [31], Yang [231], Dey et al. [57] and others.

Models under Various Carbon Emissions Policies:
In reality, the green house effect and global warming have gained much attention due to strong
and more frequent extreme change of climate. In every developing countries, there is a scope
and regulation for measuring and maintaining such carbon-emission. Benjaafar et al. [9] first
presented a model that illustrated how carbon emission can be incorporated to a decision-
making problem. Dye and Yang [70] studied a deteriorating inventory system under various
carbon emissions policies, like carbon taxes, carbon subsides etc.
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1.4.3 Historical Literature Reviews on Imperfect Production Inventory

Models in Fuzzy Environments

In this environment, one or more parameters in imperfect production inventory system such
as demand, production, production run time, inventory costs etc. are fuzzy in nature.

In the world, reality is less or more uncertain, vague and ambiguous. In 1923, the philosopher
Bertrand Russell first quoted: “All traditional logic habitually assumes that precise symbols
are being employed”. It is therefore not applicable to this terrestrial life but only to an
imagined celestial existence. “All languages are vague” and “vagueness is also a matter of
degree”. An important step towards dealing with vagueness was made by the philosopher
Black Max (1937), who introduced the concept of vague set. He first introduced the concept
of “Fuzzy Set Theory” in a complete mathematical form. It is known that the real business
world is full of uncertainties in non-stochastic sense, which leads to estimation of different
inventory parameters as fuzzy numbers. Zadeh [239] first introduced a new concept ‘Fuzzy
Set Theory’ to accommodate the uncertainty in non-stochastic sense.

Introduction to fuzzy set theory and basic ideas of fuzziness was described by
Zimmermann [244]. Bellman and Zadeh [8] first introduced fuzzy set theory in decision
making process. After that, Zimmermann [244], Zadeh [240], Dubois and Prade [61, 64], Li
et al. [133] developed fuzzy models for single-period inventory problem. Hsieh [93], Xu and
Zhou [228], Liu and Liu [142] applied fuzzy programming technique to single and multiple
objective decision making problem. After that extensive research work have been done in this
area. The literature survey has been made separately on fuzzy imperfect production inventory,
fuzzy demand, fuzzy credit period, fuzzy technique in fuzzy environment which are discussed
below.

Fuzzy Production Inventory Models:
The uncertain nature of demands, production inventory costs, damageable amounts, etc.
results the imprecise rate of production. For this reason, imprecise production inventory
model is vary much visible in imprecise decision making problem. Lee and Yao [128]
developed an economic production quantity (EPQ) model with fuzzy demand quantity and
fuzzy production quantity. After that, Chang et al. [24], Lin and Yao [137], Hsieh [93]
considered fuzzy economic production for production inventory. Recently, Hazari et al. [98]
proposed an advertisement policy and reliability dependent imperfect production inventory
control problem in bi-fuzzy environment.

Models with Fuzzy/Fuzzy Rough Demand:
In inventory control problem, the assumption or consideration of market demand i.e., decay
rate of the item is the fundamental issue of the system. In modern age, this rate of demand
fluctuates day by day due to many reasons. In this context, inventory model with fuzzy
demand was considered by Lee and Yao [128]. After that, Kao and Hsu [107], Dutta et
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al. [68] developed a single-period inventory model with fuzzy demand. In 2009, Taleizadeh et
al. [201] constructed a joint-replenishment inventory control problem with fuzzy rough
demand.

Models with Fuzzy Technique:
In spite of different parameters a production inventory system may be imprecise for some
other phenomenons. Some times, the nature of fuzziness may be allowable for an imprecise
constrains or in many events. Thus, a production inventory system may yield fuzzy
differential equations or different inventory costs are expressions of fuzzy integral.
Seikkla [192], Chalco-Cano and Roman-Flores [19] solved fuzzy differential equation
problem. Wu [226] gives an approach of fuzzy Riemann integral and its numerical
integration. As a fuzzy constraint represents a fuzzy event, it should be satisfied with some
predefined necessity by Dubois and Prade [62], according to company’s requirements. As
like stochastic environment, for the solution of this type of problems Liu and Iwamura [140]
proposed a ‘here and now’ approach, i.e., the chance constraint programming approach in
which a minimum probability level for satisfying each of the constraint is specified. Similarly,
possibilistic constraints also may be defined by Zadeh [240], Dubois and Prade [61] and
others. Das et. al. [48] proposed the necessity / possibility / credibility technique for solving
fuzzy decision making problem for triangular or trapezoidal fuzzy numbers only. In 2002,
Liu and Liu [142] calculated the expected value of fuzzy variable for different fuzzy expected
value models. Due to imprecise parameters, the objective function (i.e., profit function)
becomes fuzzy in nature. Since optimization of a fuzzy objective is not well defined, one can
optimize the optimistic/pessimistic returns of the objectives with some degree of
possibility/necessity according to requirement as proposed by Liu and Iwamura [140].

Models with Fuzzy Credit Period:
In the present competitive business world a permissible delay in payment which is termed
as trade credit period in paying for purchasing cost, is very common business practice. It
influences the demand of order and reduces the holding cost. Singh et al. [195] developed a
two warehouse inventory model in crisp and fuzzy environments respectively with permissible
delay in payment. Recently, Das et al. [51] proposed an integrated production inventory model
under interactive fuzzy credit period for deteriorating item with several markets.

1.4.4 Historical Literature Reviews on Imperfect Production Inventory

Models in Fuzzy-Stochastic Environment

In this environment, the parameter(s) involved in imperfect production inventory system such
as demand, production, production run time, inventory costs etc. are fuzzy-random in nature
and specified by imprecise probability distributions.

Introduction of fuzzy random variables and its applications is not much old.
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Kwakernaak [126] first introduced fuzzy random variables. After that, several researchers
Liu [141] and others developed linear and non-linear programming methods in fuzzy
stochastic environment with fuzzy stochastic or fuzzy and stochastic data. Petrovic et
al. [165] considered the news boy problem with fuzzy demand and fuzzy inventory costs.
They considered two fuzzy models one with (i) imprecisely described discrete demand and
other with (ii) imprecisely estimated unit holding and unit shortage costs. Yao et al. [233]
described a single period inventory management in fuzzy stochastic environment.

Recently, researchers have focused on the situations in which inventory parameters are random
as well as imprecise. Models developed in such situations are known as fuzzy stochastic
inventory models. In such mixed environment, very few models have been developed. Panda
and Maiti [163] constructed a multi item fuzzy stochastic inventory model in which reliability
resources are assumed to be random and available storage space are considered as imprecise
in nature. Roy et al. [182] formulated an inventory model for a deteriorating item under fuzzy
inflation and time discounting over a random planning horizon, which extend for a EPQ model
with random planning horizon by Jana et al. [105]. Das and Maiti [50] developed production
inventory model by considering one constraint in fuzzy environment and the other in random
environment.

1.5 Motivation and Objective of the Thesis

Recently, it is seen that, with the increased competitions in the global business, the
manufacturing companies are forced to work closely in partnership with their suppliers,
retailers and manufacturers. In supply chain management, the establishment of a long-term
cooperative relationship between vendor/ manufacturer and buyer as an integrated Supply
Chain Model (SCM) is beneficial for two parties with regard to costs/profits to get the
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In any manufacturing system, the production of defective units is a natural
phenomenon occurring from the different difficulties such as raw material, labor
experience, machine component, production rate etc. which are arise in a long-run
production process. So, it is necessary to inspect each item after production to check
whether the item is perfect or notbefore selling. In the literature, there is a large number of
articles on the imperfect production inventory models. But very few researchers have
developed the imperfect production inventory models by considering the reworking of
defective units and re-manufacturing of returned items. Since in a competitive business
world, advertisement, price-discount and warranty period etc. are important factors in
creating a market demand in the society, it isessential to study to control inventory in
the imperfect production inventory system. Moreover many business people use
showrooms to attract the customer by display of stock of the units in the showroom to
influence the demand. Therefore, one objective of our research works is to
analyze the effect of the reworking of defective items in the imperfect production
inventory model with various demand rate.
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tensionless stable sources of supply and demand as well as smooth running of business to
gain optimum profit from each other. For that reason, the coordination in the supply chain is
very important; otherwise, each stage of the supply chain acts independently without
considering the impacts of the remaining stages in the supply chain and lack of coordination
results in less profit than what could be achieved through coordination. So, in our research
works, one of the objectives is to co-ordinate the members of supply chain on imperfect
production inventory models in different environment.

Traditional inventory models generally hypothesize that a retailer pays his/her supplier at
the time of purchase. But in real world, it is observed that a supplier often offers a retailer a
delayed payment period known as the trade credit period to settle the account. Offering such
a credit period, the supplier entices the buyer to increase the size of their order and hence
reduce on-hand stock level. From the retailer’s view-point, during the credit period he/she can
sell the items and continue to accumulate the sales revenue and earn interest from it before
payment to be made. Hence, the trade credit has an important role for the decision on the rate
of supply and indirectly on the order quantity. During the past few years, many articles
dealing with various type of inventory models under trade credit have appeared in various
research journals. So in an integrated inventory system, the offer of a credit period plays an
important role to achieve the optimum profits. Therefore, another objective of our research
works is to analyze the effect of the credit period(s) in the supply chain model.

Many researchers have worked on imperfect production inventory model with the
considerations of various types of demand rate. In the present time, the advertisement has an
important role in increasing the demand of a commodity. In the same time, from the market
survey it is also observed that for the coming of other new brands of the same product, there
is a declination of demand rate. In such circumstances, a manufacturer wants to produce the
optimum amount of item per unit time to get the maximum profit from his/her business where
he/she has capability to collect sufficient raw materials, labours, machines and other related
resources to produce the item. Henceforth, the production rate should be considered to be a
variable. In this case, the defective rate of the produced items must be dependent on the
production rate. Due to the existence of defective production, the manufacturer decides to sell
the items of the perfect quality after sorting the inventory. So during the production period,
the screening process has been carried out simultaneously. These concepts have motivated us
to develop an imperfect production inventory model with production rate dependent defective
rate and advertisement dependent demand which is discussed in Chapter 3. Also in this
chapter, the depreciation rate in demand function has been considered in which the screening
rate is less than or equal to the production rate, but greater than or equal to the demand rate.

From the literature survey, it is seen that traditional inventory models generally
hypothesize that the imperfect units are disposed. But in real world, these units are reworked
and transformed into a good ones. Moreover, the time horizon of commonly used EPQ model
are either infinite or finite. But in the reality, there may occur an uncertainty in the time
horizon. Again the demand of the goods is not dependent on exactly one parameter in the
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production inventory system. Basically there are different parameters on which demand may
vary. This sense motivated us to develop a model “An EPQ model with promotional demand
in random planning horizon: population varying genetic algorithm approach” in Chapter 4,
where the demand of the items has three basic parts such as (i) minimum requirement of the
goods, (ii) demand enhancement due to lower selling price and (iii) demand increased
through the motivation of the customer by advertisement.

Most of research articles (cf. Kim [118], Goyal and Cardenas-Barron [78] and others) on
the EPQ models with imperfect production process considered the inspection process for
searching the defective items in which the inspection process has been as error free. But in
reality, this assumption is not true in business world. Practically, the inspection process is not
error free due to different types of factors related to machine and human in the system. In
practice, the manufacturer usually offers a warranty for all selling items for a specific
warranty period with a view to increasing the selling rate and reliability of the product. Now
it is seen that if any purchased product fails to work properly within its warranty period, then
the servicing center replaces it with a new item or repairs the product by replacing one or
more parts. Therefore, the retailers as well as users are motivated by the displays,
advertisements, selling price discount and warranty period to procure the products such as
mobiles, computers etc. This phenomena has inspired and motivated us to formulate and
analyze the model “A deteriorating manufacturing system considering inspection errors with
discount and warranty period dependent demand” by considering warranty period dependent
warranty cost which is illustrated in Chapter 5.

Again, in a production system, it is seen that initially the production process is in an
in-control state, because all factors associated with the system are fresh. But due to
continuous running of the system these factors gradually lose their perfectness and thus
reliability of the production process decreases. So, after some time of production, the
production process may shift from the in-control state to out-control state. If the production
rate increases, the occurrence of out-control state comes very first and hence it produces more
non conforming items than earlier. So in such situations a development cost is required to
control the occurrence of out-control state. Already many researchers (cf. Rosenblatt and
Lee [181], Hayek and Salameh [97] and others) have worked on imperfectness of a product.
Keeping the above sense in mind, we are motivated to formulate a model in Chapter 6 where
reliability of the production system is continuously maintained by imposing time dependent
development cost to reduce the imperfectness of the product during production. Also we
assumed here that defective rate depends upon the production rate and the time length of
out-control state.

It is observed that a large pile of goods in showroom in a super market will lead the
customer to buy more and generate higher demand. But due to limited space facility of
showroom, sometimes one or more warehouse(s) is hired on rental basis nearer the
showroom. There is a good number of research papers (cf. Bhunia and Maiti [11] ) published
by several researchers on this ware house facility. In 2008, Dey et al. [57] considered a two
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ware house problem with lead time and inflation in wholesaler-retailer or
manufacturer-retailer problem two storage inventory problem. This influences us to formulate
a three layer supply chain model with two warehouse facility. In the recent age, Liu &
Sai [139], Chen [33] and others extended the ideas of fuzzy set as fuzzy rough set. All these
help us to form a “Three-layer supply chain in an imperfect production inventory model with
two storage facilities under fuzzy rough environment” which is discussed in Chapter 7.

Normally, the rate of defectiveness is not a constant due to many factors. So it should be
taken as uncertain quantity. Also in practical business world, sometimes it is seen that the
demand of a retailer changes due to various factors according to his/her business policy. So in
nature, it is vague and imprecise. These situation have motivated us to develop a model “A
fuzzy imperfect production inventory model based on fuzzy differential and fuzzy integral
method” in Chapter 8 where we consider demand of the product, defective rate and the time
at which the production system shifts from in-control to out-control state are as fuzzy.

A classical logistic system gives a forward flow, i.e., the material and related information
flow until the final products are delivered to the customer. But reverse logistic manages
backward process, i.e., the used and reusable parts are returned from the customers to the
producer. Environmental consciousness forces companies to initiate such product recovery
systems with their disposal such as metal, glass, paper etc. In this way natural resources can
be saved for the future generations. These concepts have motivated us to develop, the joint
decision-making problem for the two plant production and reproduction inventory model with
reworking of defective units over a finite planning horizon. Also our object maximized the
expected total profit and minimized expected GHG emission in the imperfect production
inventory model Chapter 9.

In business world, there are many parameters or components which are not fixed in
reality. This situation of uncertainty has motivated us to form an imperfect production
inventory model in fuzzy-random environment. Also the concept of learning from our daily
mistakes expertises us to introduce the concept of learning effect on the imperfect production
model to reduce the rate of defective units including a extra cost for this expertise, which is
shown in the model “Multi-item EPQ model with learning effect on imperfect production
over fuzzy-random planning horizon” in Chapter 10.

In the supply chain, there exists at least one process (production, repairing etc), through
which the environment becomes polluted. Therefore, in the context of global business
management, an extra cost should be introduced for the emission of carbon to keep the
environment fresh. In spite of this carbon emission in a production, trade credit has an
intrinsic connection with the demand in supply chain management. These lacunas of supply
chain motivated us to form a model entitled “Two layers supply chain imperfect production
inventory model with fuzzy credit period, imperfectness depend on time and production rate”
in Chapter 11.
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1.6 Organization of the Thesis
In the proposed thesis, some real-life Imperfect Production Inventory problems in crisp,
stochastic, fuzzy and fuzzy stochastic environments are considered and analyzed. The
proposed thesis has been divided into seven parts and twelve chapters as follows:

Part I: General Introduction, Basic Concepts and Solution Methodologies
• Chapter 1: General Introduction
• Chapter 2: Basic Concept and Solution Methodology

Part II: Studies on Imperfect Production Inventory System in Crisp Environment
• Chapter 3: Imperfect production inventory model with production rate dependent

defective rate and advertisement dependent demand

Part III: Studies on Imperfect Production Inventory Systems in Stochastic Environment
• Chapter 4: An EPQ model with promotional demand in random planning horizon:

population varying genetic algorithm approach

• Chapter 5: A deteriorating manufacturing system considering inspection errors with
discount and warranty period dependent demand

• Chapter 6: Two layers supply chain in an imperfect production inventory model with
two storage facilities under reliability consideration

Part IV: Studies on Imperfect Production Inventory Systems in Fuzzy Environment
• Chapter 7: Three-layer supply chain in an imperfect production inventory model with

two storage facilities under fuzzy rough environment

• Chapter 8: A fuzzy imperfect production inventory model based on fuzzy differential
and fuzzy integral method

• Chapter 9: GA approach for controlling GHG emission from industrial waste in two
plant production and reproduction inventory model with interval valued fuzzy pollution
parameters

Part V: Studies on Imperfect Production Inventory System in Fuzzy Stochastic Envi-
ronment

• Chapter 10: Multi-item EPQ model with learning effect on imperfect production over
fuzzy-random planning horizon

• Chapter 11: Two layers supply chain imperfect production inventory model with fuzzy
credit period, time and production rate dependent imperfectness

Part VI: Summary and Extension of the Thesis
• Chapter 12: Summary and Future Research Work

Part VII: Appendices, Bibliography and Index
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Part I
(General Introduction, Basic Concepts and Solution Methodologies)

The Part I is divided into two chapters - Chapter 1 and Chapter 2.

Chapter 1: General Introduction
This chapter contains an introduction giving an overview of the preliminary studies along
with historical reviews on integrated production inventory control system with reworked of
imperfect product in crisp, fuzzy and stochastic environments.

Chapter 2: Basic Concepts and Solution Methodologies
In this chapter, Generalized Reduced Gradient (GRG) technique, Genetic Algorithm (GA),
Population Varying Genetic Algorithm (PVGA), Multi-Objective Genetic
Algorithm(MOGA), Fuzzy Simulation Based Genetic Algorithm (FSGA), Possibility/
Necessity/ Credibility representation, Solution of Fuzzy Differential Equation (FDE) and
Fuzzy Programming Technique(FPT) have been studied which are used to solve and develop
the models described in the thesis.

Part II
(Studies on Imperfect Production Inventory System in Crisp Environment)

The Part II contains Chapter 3, in which an imperfect production inventory model is derived,
solved and discussed in crisp environment.

Chapter 3: Imperfect production inventory model with production rate
dependent defective rate and advertisement dependent demand
In this chapter, an economic production quantity (EPQ) model with imperfect production
system and advertisement dependent demand has been presented in crisp environment. The
advertisement rate has been assumed to be a function of time which has been increased with
respect to time at a decreasing rate i.e., it grows exponentially with respect to time but rate of
growth gradually decreases. Here, the rate of producing defective has been followed to be a
function of production rate. Also, the produced units have been inspected in order to screen
the defective but the screening rate is less than or equal to the production rate and greater than
the demand rate. For the developed EPQ model, the total profit has been maximized to obtain
the optimum production rate and production run time in the system. Here, an algorithm has
been developed for finding the optimal profit of the imperfect production inventory model.
Finally, different numerical examples have been considered to illustrate the feasibility of the
model taking different special cases in the system and then some sensitivity analysis have
been carried out to get the impact of some parameters on the objective function of the model.
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Part III
(Studies on Imperfect Production Inventory System in Stochastic Environment)

The Part III contains Chapter 4, 5, & 6, in which different imperfect production inventory
models have been derived in stochastic environment and solved then.

Chapter 4: An EPQ model with promotional demand in random
planning horizon: population varying genetic algorithm approach
One of the Economic Production Quantity (EPQ) problems that have been of interest to
researchers is the production with reworking of the imperfect items including waste most
disposal form and vending the units. In this chapter, an imperfect production inventory model
is developed over a finite random planning horizon (which is assumed to follow the
exponential distribution with known parameters) with the assumption that the decay rate of
the items is satisfied from three different points of view: (i) minimum demands of the
customer’s requirement, (ii) demands to be enhanced for lower selling price and (iii) demands
of the customers who are motivated by the advertisement. The model has been illustrated
with a numerical example, whose parametric inputs are estimated from market survey. Here
the model is optimized by using a population varying genetic algorithm.

Chapter 5: A deteriorating manufacturing system considering inspection
errors with discount and warranty period dependent demand
This chapter deals with selling price-discount and warranty period dependent demand in an
imperfect production inventory model under the consideration of inspection errors and time
dependent development cost. Normally, due to long-run, a production process deteriorates
with time and here we assume that the process shifts from in-control to out-of-control state at
any random time. A time dependent development cost has been constructed to increase the
reliability of the production system i.e., to decrease the deterioration of the system during the
production run. As a result, the less amount of items are rejected. Here, two types of
inspection errors such as Type-I error and Type-II error, have been considered during the
period of product inspection process. In Type-I error, an inspector may choose falsely a
defective item as non-defective and in Type-II error an inspector may choose falsely a
non-defective item as defective. Due to these phenomena, the inspection process would
consist of the following costs: cost of inspection, cost of inspection errors. The purpose of
this chapter is to investigate the effects of time dependent development cost on the defective
items, selling price-discount and warranty policy on the market demand and finally optimize
the expected average profit under consideration of such inspection costs in infinite time
horizon. Some numerical examples along with graphical illustrations and sensitivity analysis
are provided to test the feasibility of the model.

Chapter 6: Two layers supply chain in an imperfect production inventory
model with two storage facilities under reliability consideration
This chapter focuses on an imperfect production inventory model considering production
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system reliability as well as development cost to improve the system reliability and reworking
of imperfect items in the environment of two layer supply chain management. Here we
consider, the production system may be shifted from “in-control” state to an “out-of-control”
after a time which is a random variable and distributed exponentially with mean 1

λ
, where λ is

the system reliability depending on the production rate. A development cost is incurred to
improve the reliability of the production system. The rate of defectiveness of the imperfect
quality items (which produce in the “out-of-control” state) is also assumed as random and
depends upon the production rate and time length of the “out-of-control” state. A portion of
the imperfect quality items is transformed into perfect quality items after some necessary
rework. Another portion of imperfect quality items, termed as ‘less perfect quality items’, is
sold at a reduced price to the retailer and the portion which cannot be either transformed to
the perfect quality items or sold at a reduce price, is being rejected. For such rejection of
some items, a disposal cost per unit of rejected items is incurred to minimize the
environmental pollution. Here, a retailer purchases both perfect and imperfect quality items
from manufacturer to sale the items to the customers through his/her respective showrooms of
finite capacities. A secondary warehouse of infinite capacity is hired by the retailer on rental
basis to store the excess quantity of perfect quality items. Finally, average profit of the
integrated model has been maximized by optimizing the production rate as well as defective
rate of the production system and some numerical examples have been given to illustrate the
feasibility of the model.

Part IV
(Studies on Imperfect Production Inventory System in Fuzzy Environment)

The Part IV contains Chapter 7, 8, & 9, in which different imperfect production inventory

models have been developed in fuzzy environment and then optimized.

Chapter 7: Three-layer supply chain in an imperfect production
inventory model with two storage facilities under fuzzy rough
environment
This chapter focuses on an imperfect production inventory model considering product
reliability and reworking of imperfect items in three layers supply chain under fuzzy rough
environment. In the model, the supplier receives the raw materials, all are not of perfect
quality, in a lot and delivers the items of superior quality to the manufacturer and the inferior
quality items are sold at a reduced price in a single batch by the end of the cent percent
screening process. Manufacturer produces a mixture of perfect and imperfect quality items.
A portion of the imperfect items is transformed into perfect quality items after rework.
Another portion of imperfect items, termed as ’less perfect quality items’, is sold at a reduced
price to the retailer and the portion which can not be either transformed to the perfect quality
items or sold at a reduce price, is being rejected. Here retailer purchases both the perfect and
imperfect quality items from the manufacturer to sale the items to the customers through
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his/her respective showrooms of finite capacities. A secondary warehouse of infinite capacity
is hired by the retailer on rental basis to store the excess quantity of perfect quality items.
This model considers the impact of business strategies such as optimal order size of raw
materials, production rate and unit production cost in different sectors in a collaborating
marketing system that can be used in the industry like textile, footwear, electronics goods etc.
An analytical method has been used to optimize the production rate and raw material order
size for maximization of the average profit of the integrated model. Finally, a numerical
example is given to illustrate the model.

Chapter 8: A fuzzy imperfect production inventory model based on fuzzy
differential and fuzzy integral method

This chapter considers a fuzzy economic production quantity (FEPQ) model with interactive
fuzzy demands. At the beginning of a production process, the system is assumed to be in a
controlled state i.e., under this stage only perfect items are produced. But after some time to
be considered as fuzzy here, the manufacturing production process shift to an ‘out-control’
state i.e., during this stage the system produces both of perfect and imperfect items
simultaneously. Here the defective rate of production system has been considered also as
fuzzy. Here the screening process of produced items has been considered during production
period. Finally some numerical examples have been illustrated to study the practical
feasibility of the production inventory model along with sensitivity analysis of some
parameters.

Chapter 9: GA approach for controlling GHG emission from industrial
waste in two plant production and reproduction inventory model with
interval valued fuzzy pollution parameters

This chapter investigates an imperfect production − reproduction inventory model for two
types of quality items (item-I and item-II) produce in two different plants (plant-I and
plant-II) in the same premises under single management system over a known-finite time
horizon with consideration of environment pollution control through industrial waste
management. Both the production plant-I and plant-II produces mixture of perfect and
defective units. Some of the defective units are rework and non-reworkable defective units are
continuously transferred to the raw material processing unit. Used units are collected from
the customers and deposited in the raw material processing unit as raw materials for plant II.
Treatment of industrial waste from both the plants and raw material processing unit is
considered to protect the environment from water pollution and Green House Gas (GHG)
emission as industrial waste is become a serious environmental issue. Two conflicting
objectives are integrally considered of which one is maximization of the total profit out of
two plants and other is minimization of Green House Gas (GHG) emission from industrial
waste over the finite time horizon .

25



CHAPTER 1. GENERAL INTRODUCTION

Part V
(Studies on Imperfect Production Inventory System in Fuzzy-Stochastic Environment)

The Part II contains Chapter 10 & 11, in which a imperfect production inventory model have
been developed, solved and discussed in fuzzy-stochastic environment.

Chapter 10: Multi-item EPQ model with learning effect on imperfect
production over fuzzy-random planning horizon

Uncertainty is certain in the world of uncertainty. This study revisits an economic production
quantity (EPQ) model with shortages for stock-dependent demand of the items with
reworking and disposing of the imperfect ones over a random planning horizon under the
joint effect of inflation and time value of money, where the expected time length is imprecise
in nature. Transmission of learning effect has been incorporated to reduce the defective
production. The total expected profit over the random planning horizon is maximized subject
to the imprecise space constraint. The possibility, necessity and credibility measures have
been introduced to defuzzify the model. The simulation-based genetic algorithm is used to
make decision for the above EPQ model in different measures of uncertainty. The model is
illustrated through an example. Sensitivity analysis shows the impacts of different parameters
on the objective function in the model.

Chapter 11: Two layers supply chain imperfect production inventory
model with fuzzy credit period, time and production rate dependent
imperfectness

This chapter focused on an integrated production inventory model with rework of the
imperfect units and stock dependent demands of the customer from several retailers. There is
an opportunity to build model to measure the amount of carbon emissions during the time of
production and the corresponding rate of carbon emission parameters are random which
follows Beta distribution. Here, the rate of imperfectness is assumed to be a function of time
and production rate. One portion of produces imperfect units is transformed into perfect
quality items after some necessary rework. In this chapter, a manufacturer-retailer-customer
chain system is developed in which the retailer gets an upstream trade credit period (M̃ ) from
the manufacturer and retailers offers a down stream trade credit period (Ni) to customers to
stimulate demand as well as sales and reduce inventory. We employ the sequential
optimization structure of the extensive problem under different scenarios of trade-credit
periods. The model has been developed as a profit maximization problem with respect to the
manufacturer and retailers. The production time and expected profit has been optimized using
develop algorithm and non-linear optimization technique Generalized Reduced Gradient
method (LINGO). Finally, several numerical examples and sensitivity analysis are provided
to illustrate the utilization of our model.
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Part VI
(Summary and Extension of the Thesis)

Chapter 12: Summary and future research work

At the end, a summary of the thesis, its limitation and the scope of future research work have
been given.

Part VII
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Chapter 2

Basic Concepts and Solution

Methodologies

2.1 Basic Concepts of Crisp Set Theory

Crisp Set: By crisp one means dichotomous, that is, yes or no type rather than more-or-less
type. In conventional dual logic, for instance, a statement can be either true or false- and
nothing in between. In set theory, an element can either belongs to a set or not and in
optimization, a solution is either feasible or not. A classical set, X , is defined by crisp
boundaries, i.e., there is no uncertainty in the prescription of the elements of the set.
Normally, it is defined as a well defined collection of distinct elements or objects, x ∈ X ,
where X may be countable or uncountable.

Convex Set: A subset S ⊂ <n is said to be convex, if for any two points x1, x2 in S, the line
segment joining the points x1 and x2 is also contained in S. In other words, a subset S ⊂ <n
is convex, if and only if x1, x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S for 0 ≤ λ ≤ 1.

Convex Combination: Given a set of vectors {x1, x2, · · · , xn}, a linear combination
x = λ1x1 + λ2x2 + · · · + λnxn is called a convex combination of the given vectors, if

λ1, λ2, · · · , λn ≥ 0 and
n∑
i=1

λi = 1.

Convex Function: A function f : S → < is said to be convex, if for any x1, x2 ∈ S and
0 ≤ λ ≤ 1, it implies that f{(1− λ)x1 + λx2} ≤ (1− λ)f(x1) + λf(x2).

Concave Function: A function f : S → < is said to be convex, if for any x1, x2 ∈ S and
0 ≤ λ ≤ 1, it implies that f{(1− λ)x1 + λx2} ≥ (1− λ)f(x1) + λf(x2).
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2.2 Basic Concepts of Probability Distribution
Random Variable: Let S be a sample space of of some given random experiment E. It has
been observed that the outcomes (i.e., sample points of S) are not always numbers. We may
however assign a real numbers to each sample point according to some definite rule. Such an
assignment gives us a “function defined on the sample space S”. This function is called a
random variable (or stochastic variable).

Probability Space: Mathematically, an order tuple (S,Ω, P ) is said to be Probability Space if
• S is a non-empty set of outcomes of a random experiment E.
• Ω is a set of all events i.e., subsets of S, which is a σ-field, i.e., it satisfies the following

properties:
(i) ∅ ∈ Ω
(ii) A ∈ Ω⇒ Ac ∈ Ω, where Ac is the complement of A in Ω.

(iii) A1, A2, ... ∈ Ω⇒ A =
∞⋃
i=1

(Ai ∈ Ω).

• P is a probability function for the events, i.e., P : Ω→ [0, 1].

Discrete Probability Distribution: A random variable which assumes a finite number or
countably infinite number of values is called a discrete random variable.
Let X be a discrete random variable which can assume the values x1, x2, x3, ..... (arranged in
an increasing order of magnitude) with probabilities p1, p2, p3, ..... respectively. The
specification of the set of values xi together with their probabilities pi (i=1, 2, 3, ....) defines
the discrete probability distribution of X .

• Properties: (i) P (xi) = pi, 0 ≤ pi ≤ 1, ∀xi ∈ S(i = 1, 2, 3, ...),

(ii)
∞∑
i=1

pi = 1.

Continuous Probability Distribution: A random variable which assumes an uncountable
infinite number of values, it is called a continuous random variable.
If X is a continuous random variable, the number of possible values which can assume is
uncountable infinite and hence the probability function cannot be defined in the same manner
as for a discrete random variable. In this case, we define a function f(x) = P (−∞ < X ≤ x),
which satisfies two conditions

(i)f(x) ≥ 0 and (ii)

∫ ∞
−∞

f(x)dx = 1

The function f(x) is called probability density function (p.d.f.) or simply density function of
the continuous random variable X .
In any physical problem, one chooses a particular type of probability distribution depending
on (i) the nature of the problem, (ii) the underlying assumptions associated with the
distribution of the parameters, (iii) the shape of the graph between the probability density
function f(x) (or distribution function F (x)) and x obtained after plotting the available data
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and (iv) the convenience and simplicity afforded by the distribution. Some continuous
probability distributions are presented here. In this thesis, Uniform distribution, Exponential
distribution and Beta distribution have been used for stochastic and fuzzy stochastic models.

2.2.1 Some Probability Distributions

Uniform Distribution or Rectangular Distribution: A continuous random variable X , is
said to have a uniform distribution, if its probability density function f(x) (cf. Figure 2.1) is
given by

f(x) =

{ 1

b− a
, a < x < b

0, elsewhere

where a and b are two parameters of the distribution.

Figure 2.1: Probability density function of uniform distribution

Exponential Distribution: A continuous random variable X , is said to have an exponential
distribution, if its probability density function f(x) (cf. Figure 2.2) is of the form:

f(x) =

{
λe−λx, 0 ≤ x <∞
0, elsewhere

Here λ(> 0) is the parameter of the distribution.
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Figure 2.2: Probability density function of exponential distribution

Beta Distribution: A continuous random variable X , is said to have a beta distribution, if its
probability density function f(x) (cf. Figure 2.3) is given by

f(x) =

{
xl−1(1−x)m−1

β(l,m)
, 0 ≤ x < 1

0, elsewhere

where,

β(l,m) =
Γ(l)Γ(m)

Γ(l +m)
=

∫ 1

0

xl−1(1− x)m−1dx

l and m being two positive parameters of the distribution.

Figure 2.3: Cumulative and Probability density function of beta distribution of first kind

32



2.2. BASIC CONCEPTS OF PROBABILITY DISTRIBUTION

2.2.2 Some Statistical Terms and Tests
Statistical Hypothesis: Any statement or assertion about a statistical population or the values
of its parameters is called a statistical hypothesis. There are two types of hypothesis - simple
and composite.

Test of Hypothesis or Test of Significance: A test of hypothesis is a procedure which specifies
a set of “rules for decision” whether to ‘accept’ or ‘reject’ the hypothesis under consideration
(i.e., null hypothesis).

Null Hypothesis: A statistical hypothesis which is set up (i.e., assumed) and whose validity
is tested for possible rejection on the basis of sample observations is called a null hypothesis.
It is denoted by H0 and tested against alternatives. Test of hypothesis deals with rejection or
acceptance of null hypothesis only.

Alternative Hypothesis: A statistical hypothesis which differs from the null hypothesis is
called an alternative hypothesis and is denoted by H1. The alternative hypothesis is not tested,
but its acceptance (rejection) depends on the rejection (acceptance) of the null hypothesis.
The choice of an appropriate critical region depends on the type of alternative hypothesis, viz.
whether both-sided, one-sided (right/left) or specified alternative.

Test Statistic: A function of sample observations (i.e., statistic) whose computed value
determines the final decision regarding acceptance or rejection of H0, is called a test statistic.
The appropriate test statistic has to be chosen very carefully and a knowledge of its sampling
distribution under H0 (i.e., when the null hypothesis is true) is essential in framing the
decision rules. If the value of the test statistic falls in the critical region, the null hypothesis is
rejected.

Critical Region: The set of values of the test statistic which lead to rejection of the null
hypothesis is called critical region of the test. The probability with which a true null hypothesis
is rejected by the test is often referred to as “size” of the critical region. Geometrically, a
sample x1, x2, ....., xn of size n is looked upon as just a point x, called sample point, within
the region of all possible samples, called the sample space. The critical region is then defined
as a subset of those sample points which lead to rejection of the null hypothesis.

Level of Significance: The maximum probability with which a true null hypothesis is
rejected is known as level of significance of the test, and is denoted by α. In framing decision
rules, the level of significance is arbitrarily chosen in advance depending on the consequence
of statistical decision. Customarily, 5% or 1% level of significance is taken, although other
levels such as 2% or 1

2
% is also used. The level of significance α is used to indicate the upper

limit of the size of critical region.

Fisher’s ‘t’ Test for Comparison of Two Means (s.d.’s unknown): Consider
two independent random samples of sizes n1 and n2 from two normal populations with means
µ1 and µ2 respectively. It is required to test the hypothesis that the means are equal. The null
hypothesis is

H0 : µ1 = µ2
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If the standard deviations of two population are assumed to be equal, then an “unbiased”
estimator of the common variance is given by

s2 =
n1S1

2 + n2S1
2

n1 + n2 − 2

where S1 and S2 are the sample standard deviations.
If this is substituted for σ1

2 and σ2
2 in formula (2.1), the statistic is

t =
x1 − x2

s.
√

1
n1

+ 1
n2

follows Fisher’s t distribution with degrees of freedom (n1 + n2 − 2).
Confidence limits for (µ1 − µ2) are

95% confidence limits: (x1 − x2)± t.025 × s
√

1
n1

+ 1
n2

99% confidence limits: (x1 − x2)± t.005 × s
√

1
n1

+ 1
n2

ANOVA Test for Comparison of Means: Like so many of our inference
procedures, ANOVA has some assumptions which should be in place in order to make the
results of calculations completely trustworthy. They include:

(i) Subjects are chosen via a simple random sample.

(ii) Within each group/population, the response variable is normally distributed.

(iii) While the population means may be different from one group to the next, the population
standard deviation is the same for all groups.

The statistical test ANOVA is used to test under the following hypothesis:

• H0: The (population) means of all groups under consideration are equal.

• H1: The (population) means are not all equal.

Following notations are needed to be described for one way ANOVA

k = the number of groups/populations/values of the explanatory levels of treatment.
ni = the sample size taken from group i.
n = the (total) sample, irrespective of groups =

∑k
i=1 ni.

xij = the jth response sampled from the ith group/population.
xi = the sample mean of responses from the ith group = 1

ni

∑ni
j=1 xij .

si = the sample standard deviation from the ith group = 1
ni−1

∑ni
j=1(xij − x)2.

x = the mean of all responses, irrespective of groups = 1
n

∑
ij xij .
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Splitting the Total Variability into Parts
Viewed as one sample (rather than k samples from the individual groups/populations), one
might measure the total amount of variability among observations by summing the squares of
the differences between each xij and x:

SST (stands for sum of squares total) =
k∑
i=1

ni∑
j=1

(xij − x)2.

This variability can be explicit into two sources:
(i) Variability between group means (specifically, variation around the overall mean x̄)

SSG =
k∑
i=1

ni(xi − x)2

(ii) Variability within groups means (specifically, variation of observations about their group
mean x̄i)

SSE =
k∑
i=1

ni∑
j=1

(xij − xi)2 =
k∑
i=1

(ni − 1)si
2

Therefore it is clear that,

SST = SSG + SSE

Evaluation of F statistics
It is a measure of the variability between groups divided by a measure of the variability within
groups.
The detail computation of F statistic is shown in the following ANOVA Table 2.1

Table 2.1: ANOVA Table
Source SS df MS F

Model/Group SSG k-1 MSG=SSG
k−1

F = MSG
MSE

Residual/Error SSE n-k MSE=SSE
n−k

Total SST n-1

Conclusion
If the computed value of F statistic is greater than the theoretical F value with (k − 1, n− k)
degree of freedom for an assigned level of significance α i.e., calculated F value falls in
critical region for that level of significance, then the null hypothesis (H0) is rejected with level
of significance α. Otherwise it is accepted with level of significance α.
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2.3 Basic Concept of Fuzzy Sets
The fuzzy set theory was developed to define and solve the complex system with sources of
uncertainty or imprecision which are non-statistical in nature. Fuzzy set theory is a theory of
graded concept (a matter of degree) but different from a theory of chance or probability. The
term “FUZZY”was proposed by Prof. L, A. Zadeh in 1962 (cf. Zadeh [239]). A short
delineation of the fuzzy set theory is given below. For developing the mathematical
formulation of the model, some definitions related to fuzzy set are presented here.

Fuzzy Set: A fuzzy set is a class of objects in which there is no sharp boundary between
those objects that belong to the class and those that do not. If X is a collection of objects
denoted by x, then a fuzzy set S̃ in X is a set of ordered pairs:

S̃ =
{

(x, µS̃(x))|x ∈ X
}

where µS̃(x) is called the membership function of x in S̃ which maps X to the membership
space M which is considered as the closed interval [0,1].

Note: When M consists of only two points 0 and 1, Ã becomes a non-fuzzy set (or Crisp set)
and µÃ(x) reduces to the characteristic function of the non-fuzzy set (or crisp set). The range
of the membership function is a subset of the non-negative real numbers whose supremum is
finite.

Example 2.1. S̃= “real numbers considerably larger than 6”

S̃ =
{

(x, µS̃(x))|x ∈ X)
}

where

µS̃(x) =

 0 ; whenx ≤ 6

(1 + (x− 6)−2)−1 ; whenx > 6

Fuzzy Function: Let X and Y be the universes and P̃ (Y ) be the set of all fuzzy sets in Y
(power set), φ̃ : X → P̃ (Y ) is a mapping. Then φ̃ is a fuzzy function iff

µφ̃(x)(y) = µR̃(x, y), ∀(x, y) ∈ X ′ × Y
where µR̃(x, y) is the membership function of the fuzzy relation.

Example 2.2. Let X be the set of all workers of a plant, φ̃ the daily output and y the number

of processed work pieces. A fuzzy function could then be ϕ̃(x) = y.

Fuzzy Number: A fuzzy number is a special class of a fuzzy sets. A fuzzy number M̃ is a
convex normalized fuzzy set M̃ of the real line < such that
(i) It exists one ξ0 ∈ R with µM̃(ξ0) = 1 (ξ0 is called the mean value of M̃ ).
(ii) µM̃(ξ) is piece wise continuous.
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Example 2.3. The fuzzy set, ‘approximately 9’ = {(6, .6), (7, .8), (8, .9), (9, 1), (11, . 1)} is

a fuzzy number. But {(7, . 8), (8, 1), (9, .5), (10, 1), (11, .7)} is not a fuzzy number because

µ(8) = 1, µ(8) = .5 and µ(10) = 1.

2.3.1 Different Types of Fuzzy Numbers

Triangular Fuzzy Number (TFN): A TFN M̃ = (M0 −∆1,M0,M0 + ∆2) (cf. Figure 2.4),
where 0 < ∆1 < M0 and 0 < ∆2; ∆1, ∆2 are determined by the decision makers. Now, the
membership function of M̃ is µM̃(x) defined as follows:

µM̃(x) =


x−M0+∆1

∆1
forM0 −∆1 ≤ x ≤M0

M0+∆2−x
∆2

forM0 ≤ x ≤M0 + ∆2

0 otherwise

Figure 2.4: Membership function of Triangular fuzzy number (TFN)

• If ML
α and MR

α are left and right α-cut of M̃ = (M0 −∆1,M0,M0 + ∆2) respectively then
ML

α = (M0 −∆1) + α∆1 and MR
α = (M0 + ∆2)− α∆2.

Trapezoidal Fuzzy Number (TrFN): A TrFN (cf. Figure 2.5) M̃ = (M0−∆1,M0−∆2,M0 +
∆3,M0 + ∆4), where 0 < ∆2 < ∆1 < M0 and 0 < ∆3 < ∆4; ∆1, ∆2,∆3, ∆4 are determined
by the decision makers. Now, the membership function of M̃ is µM̃(x) defined as follows:

µÃ(x) =


x−M0+∆1

∆1−∆2
forM0 −∆1 ≤ x ≤M0 −∆2

1 forM0 −∆2 ≤ x ≤M0 + ∆3
M0+∆4−x

∆4−∆3
forM0 + ∆3 ≤ x ≤M0 + ∆4

0 otherwise
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Figure 2.5: Membership function of Trapezoidal fuzzy number (TrFN)

• If ML
α and MR

α are left and right α-cut of M̃ = (M0 −∆1,M0 −∆2,M0 + ∆3,M0 + ∆4)
respectively then ML

α = (M0 −∆1) + α(∆1 −∆2) and MR
α = (M0 + ∆4)− α(∆4 −∆3).

Parabolic Fuzzy Number (PFN): A PFN M̃ = (M0 − ∆1,M0,M0 + ∆2) (cf. Figure 2.6),
where 0 < ∆1 < M0 and 0 < ∆2; ∆1, ∆2 are determined by the decision makers. Now, the
membership function of M̃ is µM̃(x) defined as follows:

µÃ(x) =


1− (M0−x

∆1
)2 forM0 −∆1 ≤ x ≤M0

1− (x−M0

∆2
)2 forM0 ≤ x ≤M0 + ∆2

0 otherwise

Figure 2.6: Membership function of Parabolic fuzzy number (PFN)

• If ML
α and MR

α are left and right α-cut of M̃ = (M0 −∆1,M0,M0 + ∆2) respectively then
ML

α = M0 −
√
α∆1 and MR

α = M0 +
√
α∆2.

General Fuzzy Number (GFN): A GFN M̃ = (M0−∆1,M0−∆2,M0 + ∆3,M0 + ∆4) (cf.
Figure 2.7), where 0 < ∆2 < ∆1 < M0 and 0 < ∆3 < ∆4; ∆1, ∆2,∆3, ∆4 are determined by
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the decision makers. Now, the membership function of M̃ is µM̃(x) defined as follows:

µÃ(x) =


(x−M0+∆1

∆1−∆2
)2 forM0 −∆1 ≤ x ≤M0 −∆2

1 forM0 −∆2 ≤ x ≤M0 + ∆3

(M0+∆4−x
∆4−∆3

)2 forM0 + ∆3 ≤ x ≤M0 + ∆4

0 otherwise

Figure 2.7: Membership function of a General fuzzy number (GFN)

• If ML
α and MR

α are left and right α-cut of M̃ = (M0 −∆1,M0 −∆2,M0 + ∆3,M0 + ∆4)
respectively then ML

α = (M0−∆1) +
√
α(∆1−∆2) and MR

α = (M0 + ∆4)−
√
α(∆4−∆3).

Proposition 2.1. Let ã be a fuzzy number. Then

(i) ã is called non negative fuzzy number if ξã(x) = 0, ∀x < 0.

(ii) ã is called non-positive fuzzy number if ξã(x) = 0, ∀x > 0.

(iii) ã is called positive fuzzy number if ξã(x) = 0, ∀x ≤ 0.

(iv) ã is called negative fuzzy number if ξã(x) = 0, ∀x ≥ 0.

Proposition 2.2. (Mizumoto and Tanaka [153]). Let ã and b̃ be two fuzzy numbers. Then

(i) ã⊕ b̃, ã	 b̃ and ã⊗ b̃ are also fuzzy numbers.

(ii) b̃ is a positive or negative fuzzy number then ã� b̃ is also fuzzy numbers.

Proposition 2.3. Let ã and b̃ be two closed fuzzy numbers. Then

(i) ã⊕ b̃, ã	 b̃ and ã⊗ b̃ are also closed fuzzy numbers.

(ii) b̃ is a positive or negative fuzzy number then ã� b̃ is also closed fuzzy numbers.

α-cut set: α-cut of a fuzzy number S̃ in < is denoted by S̃[α] and is defined as,

S̃[α] =
{
x ∈ </µS̃(x) ≥ α

}
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Let F (X) be the space of all compact and convex fuzzy sets on X . If f : <n → <n is a
continuous function, then f : F (<n) → F (<n) is well defined function and its α-cut f̃(u)[α]
is given by Roman-Flores et al. [180].

f̃(u)[α] = f̃([u]α),∀α ∈ [0, 1],∀u ∈ F (<n) (2.1)

where f(A) = {f(a)/a ∈ A}.

Proposition 2.4. (i) If ã and b̃ be two closed fuzzy numbers. Then

(ã⊕ b̃)α = [aLα + bLα, a
R
α + bRα ] and (ã	 b̃)α = [aLα − bRα , aRα − bLα]

(ii) If ã and b̃ be two closed fuzzy numbers then

(ã⊗ b̃)α = [min{aLαbLα, aLαbRα , aRαbLα, aRαbRα},max{aLαbLα, aLαbRα , aRαbLα, aRαbRα}].

(iii) If ã and b̃ be two non-negative closed fuzzy numbers then (ã⊗ b̃)α = [aLαb
L
α, a

R
αb

R
α}].

Note: ãα �int b̃α is well-defined when b̃α does not contain zero.

2.3.2 Interval-valued Fuzzy Numbers
In order to consider the fuzzy fault tree analysis based on level (λ, ρ) interval-valued fuzzy
numbers, we provide following definitions:

λ-Triangular Fuzzy Number: A fuzzy number Ã = (a, b, c) is called the level λ-triangular
fuzzy number if its membership function is

µÃ(x) =


λ (x−a)

(b−a)
, a ≤ x ≤ b

λ
(c− x)

(c− b)
, b ≤ x ≤ c

0, otherwise

where 0 < a < b < c, 0 < λ ≤ 1 and the level λ-triangular fuzzy number denoted by
Ã = (a, b, c;λ).

Note: The level λ-triangular fuzzy number is known as triangular fuzzy number when λ = 1
and denoted by Ã = (a, b, c).

Interval: An interval I in R has two components [IL, IR] and defined as
I = {x ∈ R | IL ≤ x ≤ IR}. Mean of I are denoted by m(I) and defined as
m(I) = 1

2
(IL + IR). Also half width of I are denoted by w(I) and defined as

w(I) = 1
2
(IR − IL). Clearly α-cut of a fuzzy number with continuous membership function

can be treated as an interval.
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Interval-valued Fuzzy Set: An interval-valued fuzzy set Ã is denoted by Ã = [ÃL, ÃU ] and
defined as

Ã =
{

(x, [µÃL(x), µÃU (x)
}
, ∀x

where 0 ≤ µÃL(x) ≤ µÃU (x) ≤ 1 and µÃL(x), µÃU (x) ∈ [0, 1].
Let ÃL = (a, b, c;λ), ÃU = (e, b, h; ρ), then the interval-valued fuzzy set is expressed as

Ã = [(a, b, c;λ), (e, b, h; ρ)]

where 0 < λ ≤ ρ ≤ 1 and e < a < b < c < h.
The interval-valued fuzzy set Ã indicates that, when the membership grade of X belongs to
the interval [ÃL, ÃU ], where ÃL(x) is the smallest grade and ÃL(x) is the largest grade.
Let ÃL = (a, b, c;λ) and ÃU = (e, b, h; ρ), then

µÃL(x) =


λ (x−a)

(b−a)
, a ≤ x ≤ b

λ
(c− x)

(c− b)
, b ≤ x ≤ c

0, otherwise

where a < b < c.

µÃL(x) =


λ (x−e)

(b−e) , a ≤ x ≤ b

λ
(h− x)

(h− b)
, b ≤ x ≤ h

0, otherwise

where e < b < h.
Arithmetic Operations of Interval-valued Fuzzy Numbers: Assume that there are two
level λ & ρ-triangular fuzzy numbers are respectively Ã = (a, b, c;λ) and B̃ = (p, q, r; ρ),
where where 0 < λ ≤ 1, 0 < ρ ≤ 1 and a < b < c, p < q < r. Let
Ã=[ÃL, ÃU ]=[(a1, b1, c1;λ), (a2, b1, c2; ρ)] and B̃=[B̃L, B̃U ] = [(p1, q1, r1;λ), (p2, q1, r2; ρ)]

Then arithmetic operations between the level Ã and B̃ fuzzy numbers, we can get the
following:
(i) Interval-valued fuzzy numbers Addition ⊕: Ã⊕ B̃ = [ÃL ⊕ B̃L, ÃU ⊕ B̃U ]

(ii) Interval-valued fuzzy numbers Subtraction 	: Ã	 B̃ = [ÃL 	 B̃L, ÃU 	 B̃U ]

(iii) Interval-valued fuzzy numbers Multiplication ⊗: Ã⊗ B̃ = [ÃL ⊗ B̃L, ÃU ⊗ B̃U ]

(iv)KÃ = [KÃL, KÃU ] =


[(Ka1, Kb1, Kc1;λ), (Ka2, Kb1, Kc2; ρ)], K > 0
[(Kc1, Kb1, Ka1;λ), (Kc2, Kb1, Ka2; ρ)], K < 0
[(0, 0, 0;λ), (0, 0, 0; ρ)], K = 0,

2.3.3 Possibility / Necessity / Credibility Measurements

Degree of uncertainty: This interpretation was proposed by Zadeh [240] when he introduced
the possibility theory and developed his theory of approximate reasoning (Zadeh [240]).
µF (u) is then the degree of possibility that a parameter x has value u, given that all that is
known about it, is that x is F . Then the values encompasses by the support of the membership
functions are mutually exclusive, and the membership degrees rank these values in terms of
their respective plausibility. Set functions called possibility and necessity measures can be
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derived so as to rank-order events in terms of unsurprising-ness and acceptance respectively.

Possibility Measure: Let < represents the set of real numbers and Ã and B̃ be two fuzzy
numbers with membership functions µÃ and µB̃ respectively. Then taking degree of
uncertainty as the semantics of fuzzy number, according to Zadeh [240], Dubois and
Prade [62], Liu and Iwamura [140]:

Pos (Ã ? B̃) = sup{min(µÃ(x), µB̃(y)), x, y ∈ <, x ? y} (2.2)

where the abbreviation Pos represent possibility and ? is any one of the relations>,<,=,≤,≥.
Analogously if B̃ is a crisp number, say b, then

Pos (Ã ? b) = sup{µÃ(x), x ∈ R, x ? b} (2.3)

Necessity Measure: Necessity measure of an event Ã?B̃ is a dual of possibility measure. The
grade of necessity of an event is the grade of impossibility of the opposite event and is defined
as:

Nes (Ã ? B̃) = 1− Pos (Ã ? B̃) (2.4)

where the abbreviation Nes represents necessity measure and Ã ? B̃ represents complement
of the event Ã ? B̃.

Lemma 2.1. For two triangular fuzzy numbers (TFN) ã = (a1, a2, a3) and b̃ = (b1, b2, b3)

Pos (ã ≥ b̃) > ε iff a3−b1
b2−b1+a3−a2 > ε (a2 < b2, a3 > b1).

Proof. Let us consider, Pos(ã ≥ b̃) > ε.

If ã = (a1, a2, a3) and b̃ = (b1, b2, b3) be two TFNs then

Figure 2.8: Measures of the event (ã ≥ b̃)
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Pos (ã ≥ b̃) =


1, fora2 ≥ b2

ζ2 = a3−b1
b2−b1+a3−a2 , fora2 < b2, a3 > b1

0, fora3 ≤ b1

Hence, Pos (ã ≥ b̃) > ε iff ζ2 = a3−b1
b2−b1+a3−a2 > ε, (a2 < b2, a3 > b1), which is depicted in

Figure 2.8.

Note: Pos (a ≥ b̃) > ε iff ζ2 = a−b1
b2−b1 > ε, (b1 < a < b2).

Therefore, it is clear that the event −∞ < b < a1 is not acceptable ( impossible event ) with
respect to the fuzzy event ã ≤ b as ã < b implies the value of b > least value of ã. On the other
hand the event b > a2 is certain case of the fuzzy event ã ≤ b. Hence we consider the case
a1 ≤ b ≤ a2, which gives Pos (ã ≤ b) = b−a1

a2−a1 . Therefore, Pos(ã ≤ b) > ε⇒ b−a1
a2−a1 > ε.

Lemma 2.2. For two triangular fuzzy numbers (TFN) ã = (a1, a2, a3) and b̃ = (b1, b2, b3)

Nes (ã > b̃) > η iff b3−a1
a2−a1+b3−b2 < 1− η (a2 > b2, b3 > a1).

Proof. Let, we have Nes (ã > b̃) > η.

From Lemma 2.1, it is clear that

Pos (ã ≤ b̃) =


1, fora2 ≤ b2

ζ = b3−a1
a2−a1+b3−b2 , fora2 > b2, b3 > a1

0, fora1 ≥ b3

(2.5)

Hence, Nes (ã > b̃) > η⇒ (1-Pos(ã ≤ b̃)) > η

Therefore, Nes (ã > b̃) > η iff ζ = b3−a1
a2−a1+b3−b2 < 1 − η, (a2 > b2, b3 > a1), which is

depicted in Figure 2.9.

Figure 2.9: Measures of Necessity of the event (ã ≤ b̃)
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Note: Nes (b < ã) > η iff b−a1
a2−a1 < 1− η (a1 < b < a2).

Properties of Possibility and Necessity Measures: The possibility and necessity measures
have the following properties
i) Min(Nes(ã ∗ b̃ ), Nes(ã ∗ b̃))=0.
ii) Pos(ã ∗ b̃) ≥ Nes(ã ∗ b̃).
iii) Nes(ã ∗ b̃) > 0⇒ Pos (ã ∗ b̃)=1.
iv) Pos(ã ∗ b̃) < 1⇒ Nes(ã ∗ b̃)=0.

If the attitude of the DM is toward optimistic, equation (2.3) is the measure of best case and
in pessimistic sense equation (2.4) gives the measure of worst case of that event.

Credibility Measure: The credibility measure of a fuzzy event Ã is defined by

Cr(Ã) =
1

2
[Pos(Ã) +Nec(Ã)] for anyÃ ∈ 2R (2.6)

Properties of credibility measure: The credibility measures have the following properties
i) Cr(φ) = 0 and Cr(R) = 1,
ii) Cr(A) ≤ Cr(B) when ever A,B ∈ 2< and A ⊂ B
iii) Cr(A) = 1− Cr(AC) for any A ∈ 2<.
Thus, Cr is also a fuzzy measure defined on (<, 2<). Here, based on the credibility measure
the following form can be defined as

Cr(A) = [ ρPos(A) + (1− ρ)Nec(A) ] (2.7)

for any A ∈ 2< and 0 < ρ < 1. It also satisfies the above conditions.

Figure 2.10: Weighted fill rate of possibility, necessity and credibility

Let Ã = ( a1, a2, a3 ) ) is a triangular fuzzy number and r is a crisp number. Using Liu and
Liu [142], we define possibility measure and necessity measure as following.

Pos(Ã ≥ r) =


1, r ≤ a2
a3 − r
a3 − a2

, a2 ≤ r ≤ a3

0, r ≥ a3

Nec(Ã ≥ r) =


1, r ≤ a1
a2 − r
a2 − a1

, a1 ≤ r ≤ a2

0, r ≥ a2
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Using equation (2.7), the credibility measure for TFN can be defined as

Cr(Ã ≥ r) =



1, r ≤ a1

a2 − ρa1

a2 − a1

− (1− ρ)r

a2 − a1

, a1 ≤ r ≤ a2

ρ(a3 − r)
a3 − a2

, a2 ≤ r ≤ a3

0, r ≥ a3

(2.8)

Cr(Ã ≤ r) =



0, r ≤ a1

ρ
r − a1

a2 − a1

, a1 ≤ r ≤ a2

a3 − ρa2 − (1− ρ)r

a3 − a2

, a2 ≤ r ≤ a3

1, r ≥ a3

(2.9)

2.3.4 Expected Value of a Fuzzy Variable
Based on the credibility measure, Liu and Liu [142] presented the expected value operator of
a fuzzy variable as follows.
Expected Value of a Fuzzy Variable: Let X be a normalized fuzzy variable, the expected
value of the fuzzy variable X is defined by

E[X] =

∞∫
0

Cr(X ≥ r)dr −
0∫

−∞

Cr(X ≤ r)dr (2.10)

Also, the expected value operation has been proved to be linear for bounded fuzzy variables,
i.e., for any two bounded fuzzy variables X and Y, we have E[ aX + bY ] = aE[X] + bE[Y ]
for any real numbers a and b.

Lemma 2.3. The expected value of triangular fuzzy variableÃ = (a1, a2, a3) is defined as

E[Ã] =
1

2
[(1− ρ)a1 + a2 + ρa3] (2.11)

Proof. Using (2.8) and (2.9), from the definition of expected value of fuzzy variable Ã (equa-

tion 2.10) is defined as follows,

E(Ã) =
∞∫
0

Cr(Ã ≥ r)dr −
0∫
−∞

Cr(Ã ≤ r)dr

=
a1∫
0

Cr(Ã ≥ r)dr +
a2∫
a1

Cr(Ã ≥ r)dr +
a3∫
a2

Cr(Ã ≥ r)dr + 0

=
a1∫
0

dr +
a2∫
a1

[ a2−ρa1
a2−a1 −

(1−ρ)r
a2−a1 ]dr +

a3∫
a2

[ ρa3
a3−a2 −

ρr
a3−a2 ]dr

= 1
2
[ a1(1− ρ) + a2 + ρa3 ]
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2.3.5 Fuzzy Extension Principle
Fuzzy Extension Principle: If Ã, B̃ ∈ < and C̃ = f(Ã, B̃) where f : <×< → < be a binary
operation then according to fuzzy extension principle (Zadeh [240], Dubois and Prade [61]),
membership function µC̃ of C̃ is given by

µC̃(z) = sup {min (µÃ(x), µB̃(y)), x, y ∈ <, andz = f(x, y), ∀z ∈ <} (2.12)

for any A ∈ 2< and 0 < ρ < 1, where ρ is the degree of pessimism. It also satisfies the above
conditions.

Zadeh’s Extension Principle: One of the basic concepts of fuzzy set theory which is used to
generalize crisp mathematical concepts to fuzzy sets is the extension principle. Let X and Y
be two universes and f : X −→ Y be a crisp function. The extension principle tells us how to
induce a mapping f : P(X) −→ P(Y), where P(X) and P(Y) are the power sets of X and Y
respectively. Following Zadeh [240], we define the fuzzy extension principle as follows:

We have the mapping f : X −→ Y, y = f(x) which induce a function f : Ã −→ B̃ such that B̃
= f(Ã)={((y, µB̃(y))|y = f(x), x ∈ X)}, where

µB̃(y) =


sup µÃ(x) if f−1(y) 6= Φ,

x ∈ f−1(y)
0 otherwise

Centroid of the Fuzzy Number: The centroid value of a fuzzy function φM̃ is given by

C[φM̃ ] =

∫∞
−∞ yµφM̃ (y) dy∫∞
−∞ µφM̃ (y) dy

For a triangular fuzzy number (TFN) Ã = (a − ∆1, a, a + ∆2), where 0 < ∆1 < a and
0 < ∆2; ∆1, ∆2 are determined by the decision makers. Then the centroid value, C[Ã] =
a+ 1

3
(∆1 + ∆2).

2.3.6 Fuzzy Differential Equation and Integration

Seikkla Derivative: The derivative of X̃(t) followed by Seikkla, written SDX̃(t), was
defined in Seikkla [192]. This definition was as follows: if [X ′1(t, α), X ′2(t, α)] are the α-cuts
of a fuzzy number for each t ∈ I , then SDX̃(t) exists and SDX̃(t)[X ′1(t, α), X ′2(t, α)].

Fuzzy Differential Equation: Chalco-Cano and Roman-Flores [19] Consider the fuzzy
differential equation

X̃ ′(t) = φ̃(t, X̃(t)), X̃(0) = X̃0 (2.13)
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where f : [0, T ] × F (U) → F (<n) is obtained by Zadeh’s extension principle (2.12) from
a continuous function φ : [0, T ] × U → <n where U ∈ <n. As g is continuous so φ is
continuous [180] and by equation (2.1) we have

[φ(t,X)]α = g(t, [X]α)
where g(t, A) = {g(t, a)/a ∈ A}.
Consider the deterministic differential equation (DDE), associated with FDE (2.13)

x′(t) = g(t, x(t)), x(0) = x0 (2.14)

where x′(t) is the derivative (crisp) of a function x : [0, T ]→ <n.

Then according to Chalco-Cano and Roman-Flores [19], a fuzzy solution for equation (2.13)
can be derived from equation (2.14) as below
• Solve DDE (2.14) and let x(t, x0) be its solution.
• Use Zadeh [240] extension principle (2.12), to x(t, x0) in relation to the parameter x0 and
obtain the extension X̃(t) = x̃(t, X̃0), for each fixed t , which is a fuzzy solution of problem
(2.13) provided the conditions of following theorem holds.

Theorem 2.1. [19] Let U be an open set in <n and X0[α] ⊂ U . Suppose that g is continuous,

and that for each c ⊂ U there exists a unique solution x(., c) of the deterministic problem

(2.14) and that x(t, .) is continuous on U for each t ∈ [0, T ] fixed. Then, there exists a unique

fuzzy solution X̃(t) = x̃(t,X0) of the FDE (2.13).

Proposition 2.5. [227] Let < be a set of all fuzzy numbers, <cl be a set of all closed fuzzy

numbers and <b be a set of all bounded fuzzy numbers. We say that

(i) f̃(x) fuzzy-valued function if f̃ : X → <;

(ii) f̃(x) closed-fuzzy-valued function if f̃ : X → <cl;

(iii) f̃(x) bounded-fuzzy-valued function if f̃ : X → <b.

The Fuzzy Riemann Integral: We discuss two kinds of fuzzy Riemann integrals [227]. One
is based on the crisp interval and the other one is considered on the fuzzy interval. We call
them as fuzzy Riemann integral of type-I and type-II, respectively.

The Fuzzy Riemann Integral of Type-I: Let f̃(x) be a closed- and bounded-fuzzy-valued
function on [a, b]. Suppose that

∫ b
a
fLα (x) dx and

∫ b
a
fRα (x) dx are Riemann-integrable on [a,

b] ∀α. Let
Aα =

[ ∫ b
a
fLα (x) dx,

∫ b
a
fRα (x) dx
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Then we say that f̃(x) is a fuzzy Riemann-integrable on [a, b] with type-I, denoted as
f̃(x) ∈ <<1 on [a, b], and the membership function of

∫ b
a
f̃(x) dx is defined by, for r ∈ A0,

ξ∫ b
a f̃(x) dx

(r) = sup
0≤α≤1

αlAα(r).

Proposition 2.6. Let f̃(x) be a closed- and bounded-fuzzy-valued function on [a, b]. If f̃(x) ∈

<<1 on [a, b] then fuzzy Riemann-integral
∫ b
a
f̃(x) dx is closed fuzzy number. Furthermore,

the α−cut set of
∫ b
a
f̃(x) dx is

[ ∫ b
a
f̃(x) dx

]
α

= [
∫ b
a
fLα (x) dx,

∫ b
a
fRα (x) dx].

Proposition 2.7. If f̃(x) be a closed- and bounded-fuzzy-valued function on [a, b] and fLα (x)

and fRα (x) are continuous on [a, b] ∀α then
[ ∫ b

a
f̃(x) dx

]
α

= [
∫ b
a
fLα (x) dx,

∫ b
a
fRα (x) dx].

Proposition 2.8. [227] If f̃(x) and g̃(x) be a closed- and bounded-fuzzy-valued function on

[a, b] and f̃(x), g̃(x) ∈ <<1 on [a, b] then f̃(x)⊕ g̃(x) ∈ <<1 on [a, b]. Moreover, we have∫ b
a
(f̃(x)⊕ g̃(x)) dx =

∫ b
a
f̃(x) dx⊕

∫ b
a
g̃(x) dx .

The Fuzzy Riemann Integral of Type-II: In order to define the fuzzy Riemann integral of
type-II, we need to consider the “length” between ã and b̃ for b̃ � ã (b̃ � ã means b̃ � ã and
bLα � aRα for all α). Now (b̃ 	 ã)Lα = bLα − aRα and (b̃ 	 ã)Rα = bRα − aLα (by Proposition 8.3).
We shall consider the interval [aRα , b

L
α] for the lower bound case and the interval [aLα, b

R
α ] for the

upper bound case. Then we have the following definition.

Proposition 2.9. [227] Let f̃(x̃) be a bounded- and closed-fuzzy-valued function defined on

the closed fuzzy real number system (<R/ ∼)R and f̃(x) be induced by f̃(x̃).

Suppose that b̃ � ã.
(i) If f̃(x) is non-negative and fLα (x) and fRα (x) are Riemann integrable on [aRα , b

L
α] and

[aLα, b
R
α ], respectively, for all α then we let

Aα =


[∫ bLα

aRα
fLα (x) dx,

∫ bRα
aLα
fRα (x) dx

]
if bLα > aRα[

0,
∫ bRα
aLα
fRα (x) dx

]
if bLα ≤ aRα

(ii) If f̃(x) is non-positive and fLα (x) and fRα (x) are Riemann integrable on [aLα, b
R
α ], and

[aRα , b
L
α] respectively, for all α then we let

Aα =


[∫ bRα

aLα
fLα (x) dx,

∫ bLα
aRα
fRα (x) dx

]
if bLα > aRα[ ∫ bRα

aLα
fRα (x) dx

]
if bLα ≤ aRα
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Under the above conditions, we say that f̃(x̃) is fuzzy Riemann-integrable on the fuzzy
interval [ã, b̃] with type-II, denoted as f̃(x̃) ∈ <RII on [ã, b̃], and the membership function of∫ b̃
ã
f̃(x̃) dx̃ is defined by,

ξ∫ b̃
ã f̃(x̃) dx

(r) = sup
0≤α≤1

αlAα(r), for r ∈ A0

Proposition 2.10. [227] (i) Let [a, b] and [c, d] be closed intervals. We say that [a, b] �int
[c, d] if and only if a ≥ c and b ≥ d.

(ii) Let ã and b̃ be closed fuzzy numbers. We say that ã ≥ b̃ if and only if ãα ≥int b̃α for all α.

(iii) Let ã and b̃ be two fuzzy numbers. We say that ã is equal to b̃, denoted as ã = b̃ if and only

if ãα = b̃α for all α.

Proposition 2.11. [227] Let ã and b̂ be two closed fuzzy numbers. Suppose that b̃ � ã. Then

we only have two cases.

(a) aRα ≥ bLα,∀α ∈ [0, 1].

(b) ∃α0 ∈ [0, 1] such that aRα ≥ bLα for 0 ≤ α ≤ α0 and aRα ≤ bLα for 1 ≥ α > α0.

2.3.7 Fuzzy-Rough Set
In this section, we discuss some basic concepts, theorems and lemmas on fuzzy rough theory
by Xu and Zhou [228].

Lower and Upper Approximation: In Xu and Zhou [228] proposed some definitions and
discussed some important properties of fuzzy rough variable. Let U be a universe, and X be a
set representing a concept. Then its lower and upper approximation is defined by

X = {x ∈ U |R(x) ⊂ X} and X =
⋃
x∈X R(x) respectively.

Figure 2.11: Rough Set

Rough Set: The collection of all sets having the same lower and upper approximations is
called a rough set, denoted by (X,X).The figure of the rough set is depicted in Figure 2.11.

49



CHAPTER 2. BASIC CONCEPTS AND SOLUTION METHODOLOGIES

Example 2.4. Let ξ focus on the continuous set in the one dimension real space R. There

are still some vague sets which cannot be directly fixed and need to be described by the rough

approximation. Let, set R be the universe, a similarity relation is defined as a ˜̄ b if and only

if |a − b| ≤ 10. Let us defined for the set [20, 50], its lower approximation [20,50] = [30,40]

and its upper approximation [20, 50] = [10, 60]. Then the upper and lower approximation of

the set [20,50] make up a rough set ([30, 40], [10, 60]) which is the collection of all sets having

the same lower approximation [30, 40] and upper approximation [10,60].

Fuzzy Rough Variable: A fuzzy rough variable ξ is a fuzzy variable with uncertain parameter
ρ ∈ X , where X is approximated by (X,X) according to the similarity relation R, namely,
X ⊆ X ⊆ X .
For convenience, we usually denote ρ ` (X,X)R expressing that ρ is in some set A which is
approximated by (X,X) according to the similarity relation R, namely, X ⊆ A ⊆ X .

Example 2.5. Let’s consider the LR fuzzy variable ξ with the following membership function,

µξ(x) =


L

(
ρ− x
α

)
if ρ− α < x < ρ

1 if x = ρ

L

(
x− ρ
β

)
if ρ < x < ρ+ β

Where L(x) = 1− x and ρ ` ([1, 2], [0, 3]) then ξ is a fuzzy rough variable.

Theorem 2.2. If fuzzy rough variables ˜̄cij are defined as ˜̄cij(λ) = (cij1, cij2, cij3, cij4) with

cijt ` ([cijt2, cijt3], [cijt1, cijt4]), for i = 1, 2, . . . ,m, j = 1, 2, . . . , n, t = 1, 2, 3, 4, x =

(x1, x2, . . . , xm), 0 ≤ cijt1 ≤ cijt2 < cijt3 ≤ cijt4.

then E[˜̄cT1 x],E[˜̄cT2 x],. . . ,E[˜̄cTnx] is respectively equivalent to

1

16

n∑
j=1

4∑
t=1

4∑
k=1

c1jtkxj,
1

16

n∑
j=1

4∑
t=1

4∑
k=1

c2jtkxj, ....,
1

16

n∑
j=1

4∑
t=1

4∑
k=1

cnjtkxj.

Proof. The proof of the theorem is in reference Xu and Zhou [228].

Theorem 2.3. If fuzzy rough variables ˜̄arj,
˜̄br defined as follows,

˜̄arj(λ) = (arj1, arj2, arj3, arj4) with arjt ` ([arjt2, arjt3], [arjt1, arjt4]),
˜̄br(λ) = (br1, br2, br3, br4) with brt ` ([brt2, brjt3], [brt1, brt4]), for r = 1, 2, ..., p,

j = 1, 2, ..., n, t = 1, 2, 3, 4, 0 ≤ art1 ≤ art2 < art3 ≤ art4, 0 ≤ brt1 ≤ brt2 < brt3 ≤ brt4.
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Then E[˜̄aTrjx] ≤ E[˜̄brj], r = 1, 2, ..., p is equivalent to

1

16

n∑
j=1

4∑
t=1

4∑
k=1

arjtkxj ≤
1

16

4∑
t=1

4∑
k=1

brtk, r = 1, 2, ..., p

Proof. The proof of the theorem is in reference Xu and Zhou [228].

Lemma 2.4. Assume that ξ and η are the introduction of variables with finite expected values.

Then for any real numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Proof. The proof of the Lemma is in reference Xu and Zhou [228].

Single-objective Fu Ro Model: Let us consider the following single-objective decision mak-
ing model with fuzzy rough coefficients

Max {f(x, ξ)}

s.t

{
gr(x, ξ) ≤ 0, r = 1, 2, ..., p
x ∈ X

(2.15)

where x is a n-dimensional decision vector, ξ = (ξ1, ξ2, ξ3, ..., ξn) is a Fu-Ro vector, f(x, ξ) is
objective function. Because of the existence of Fu-Ro vector ξ, problem (3) is not
well-defined. That is, the meaning of maximizing f(x, ξ) is not clear and constraints
gr(x, ξ) ≤ 0, r = 1, 2, ..., p do not define a deterministic feasible set.

Equivalent Crisp model for Single Objective Problem with Fu Ro Parameters: For the
single-objective model with Fu-Ro parameters, we cannot deal with it directly, we should use
some tools to make it have mathematical meaning, we then can solve it. In this subsection,
we employ the expected value operator to transform the fuzzy rough model into Fu-Ro EVM
i.e., crisp model. Based on the definition of the expected value of fuzzy rough events f(x, ξ),
gr(x, ξ) and Theorems 1, 2 the Fu-Ro EVM is proposed as follows,

Max E[f(x, ξ)]

s.t

{
E[gr(x, ξ)] ≤ 0, r = 1, 2, ..., p
x ∈ X

(2.16)

where x is n-dimensional decision vector and ξ is n-dimensional fuzzy rough variable.

2.4 Optimization Techniques

2.4.1 Fuzzy Programming Technique (FPT)
To solve a multi-objective programming problem by a Fuzzy Programming Technique(FPT),
the first step is to assign, for each objective f1(x), f2(x), f3(x), ....., fk(x), (k ≥ 2), two values
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Uj and Lj which are upper and lower bounds of the j-th objective for j=1, 2, ....., k. Here, Lj =
aspired level of achievement, Uj = higher acceptable level of achievement for minimization
and Lj = higher acceptable level of achievement, Uj = aspired level of achievement for
maximization. The steps of the fuzzy programming technique are as follows:

Step-1: Solve the multi-objective programming problem as a single objective problem using,
only one objective at a time and ignoring the other.

Step-2: From the results of step-1, determine the corresponding values for every objective at
each solution derived. According to each solution and value for every objective, pay off
matrix can be formulated as follows:

f ∗1 (x1) f2(x1) .... fk(x
1)

f1(x2) f ∗2 (x2) .... fk(x
2)

.... .... .... ....
f1(xk) f2(xk) .... f ∗k (xk)


where x1, x2, ...., xk are the ideal solution of the objectives f1(x), f2(x), f3(x), .....,
fk(x) respectively.

Step-3: From the step-2, find the desired goal Lj and worst tolerable value Uj of fj(x), j=1, 2,
...., k as follows:

Uj = max(fj(x
1), fj(x

2), ..., fj(x
(j−1)), f ∗j (xj), fj(x

(j+1)), ..., fj(x
k))

Lj = min(fj(x
1), fj(x

2), ..., fj(x
(j−1)), f ∗j (xj), fj(x

(j+1)), ..., fj(x
k))

Let, Tfj = Uj − Lj be the tolerances for the fuzzy constraints.

Step-4: The membership functions (MFs) of these objectives may be linear and/ or non-linear.
Suppose, µj(fj(x)) be the membership function corresponding to the j-th (j=1, 2, ...., k)
objective function of f1(x), f2(x), f3(x), ....., fk(x). Using Zimmermann [245]
method, the multi-objective programming problem reduces to the following nonlinear
single objective problem

Max λ
such that
µj(fj(x)) ≥ λ, (j = 1, 2, ..., k)

φr(x) ≤ br, (r = 1, 2, ...,m)

xi ≥ 0, (i = 1, 2, ..., n)

and x = (x1, x2, ...., xn)T

where λ ∈ [0, 1].
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2.4.2 Generalized Reduced Gradient (GRG) Technique
The GRG technique is a method for solving SONLP problems for handling equality as well
as inequality constraints. Consider the SONLP problem as

Find x = (x1, x2, ...xn)T

which maximizes f(x)
subject to x ∈ X

where X =

x :
gj(x) ≤ 0, j = 1, 2, ....,m
hr(x) = 0, r = 1, 2, ...., p
xi ≥ 0, i = 1, 2, ...., n




(2.17)

By adding a non-negative slack variable sj (≥ 0), j = 1, 2, ...,m to each of the above
inequality constraints, the problem (2.17) can be stated as

Maximize f(x)
subject to x ∈ X

where X =

x :

x = (x1, x2, ...xn)T

gj(x) + sj = 0, j = 1, 2, ....,m
hr(x) = 0, r = 1, 2, ...., p
xi ≥ 0 i = 1, 2, ...n
sj ≥ 0, j = 1, 2, ...m




(2.18)

where the lower and upper bounds on the slack variables, sj, j = 1, 2, ....,m are taken as a
zero and a large number (infinity) respectively.
Denoting sj by xj+n, gj(x) + sj by ξj , hr(x) by ξm+r, the above problem can be rewritten as,

Maximize f(x)
subject to x ∈ X

where X =

x :
x = (x1, x2, ...xn+m)T

ξj(x) = 0, j = 1, 2, ...m+ p
xi ≥ 0 i = 1, 2, ...n+m



 (2.19)

This GRG technique is based on the idea of elimination of variables using the equality
constraints. Theoretically, (m + p) variables (dependent variables) can be expressed in terms
of remaining (n − p) variables (independent variables). Thus one can divide the (n + m)
decision variables arbitrarily into two sets as

x = (y, z)T

where, y is (n − p) design or independent variables and z is (m + p) state or dependent
variables and

y = (y1, y2, ...., yn−p)
T

z = (z1, z2, ...., zm+p)
T
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Here, the decision variables are completely independent and the state variables are dependent
on the design variables used to satisfy the constraints ξj(x) = 0, (j = 1, 2, ....,m + p).
Consider the first variations of the objective and constraint functions as follows:

df(x) =

n−p∑
i=1

∂f

∂yi
dyi +

m+p∑
i=1

∂f

∂zi
dzi = ∇T

y f dy +∇T
z f dz (2.20)

dξj(x) =

n−p∑
i=1

∂ξj
∂yi

dyi +

m+p∑
i=1

∂ξj
∂zi

dzi

or dξ = C dy +Ddz (2.21)

where ∇T
y f =

(
∂f

∂y1

,
∂f

∂y2

, ....,
∂f

∂yn−p

)
and ∇T

z f =

(
∂f

∂z1

,
∂f

∂z2

, ....,
∂f

∂zm+p

)

C =



∂ξ1

∂y1

... ... ...
∂ξ1

∂yn−p

∂ξ2

∂y1

... ... ...
∂ξ2

∂yn−p
... ... ... ... ... ... ...
... ... ... ... ... ... ...
∂ξm+p

∂y1

... ... ...
∂ξl+m
∂yn−p


, D =



∂ξ1

∂z1

... ... ...
∂ξ1

∂zm+p

∂ξ2

∂z1

... ... ...
∂ξ2

∂zm+p

... ... ... ... ... ... ...

... ... ... ... ... ... ...
∂ξm+p

∂z1

... ... ...
∂ξm+p

∂zm+p


,

dy = (dy1, dy2, ...., dyn−p)
T

and dz = (dz1, dz2, ...., dzm+p)
T

Assuming that the constraints are originally satisfied at the vector x (ξ(x) = 0), any change
in the vector dx must correspond to dξ = 0 to maintain feasibility at x + dx. Thus, equation
(2.21) can be solved as

Cdy +Ddz = 0

or dz = −D−1Cdy (2.22)

The change in the objective function due to the change in x is given by the equation (2.21),
which can be expressed, using equation (2.22) as

df(x) = (∇T
y f −∇T

z fD
−1C)dy

or
df(x)

dy
= GR (2.23)

where GR = ∇T
y f −∇T

z fD
−1C (2.24)
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is called the generalized reduced gradient. Geometrically, the reduced gradient can be
described as a projection of the original n−dimensional gradient into the (n − m)
dimensional feasible region described by the design variables.

A necessary condition for the existence of minimum of an unconstrained function is that the
components of the gradient vanish. Similarly, a constrained function assumes its minimum
value when the appropriate components of the reduced gradient are zero. In fact, the reduced
gradient GR can be used to generate a search direction S to reduce the value of the constrained
objective function. Similarly, to the gradient∇f that can be used to generate a search direction
S for an unconstrained function. A suitable step length λ is to be chosen to minimize the value
of f(x) along the search direction. For any specific value of λ, the dependent variable vector
z is updated using equation (2.22). Noting that equation (2.21) is based on using a linear
approximation to the original non-linear problem, so the constraints may not be exactly equal
to zero at λ, i.e., dξ 6= 0. Hence, when y is held fixed, in order to have

ξj(x) + dξj(x) = 0, j = 1, 2, ....,m+ p (2.25)

following must be satisfied.

ξ(x) + dξ(x) = 0 (2.26)

Using equation (2.21) for dξ in equation (2.26), following is obtained

dz = D−1(−ξ(x)− Cdy) (2.27)

The value dz given by equation (2.27) is used to update the value of z as

zupdate = zcurrent + dz (2.28)

The constraints evaluated at the updated vector x, and the procedure of finding dz using equa-
tion (2.28) is repeated until dz is sufficiently small.

2.4.3 Single Objective Genetic Algorithm (GA)
There are several non-analytic methods for solving combination decision making problem
like, neural network, simulation algorithm (cf. Kumar et. al. [125], Chan et al. [21]). Use of
GA in complex decision making problem is already well established (cf. Mickelwicz [150],
Roy et al. [182], Chan et al. [20]). GAs are inspired by evolutionary biology. Mainly,
because of the global searching ability and converging criteria, GAs are widely used in
many areas. It consists of a population of artificial agents mimicking the animals’ behavior
in the real world. Each agent follows some simple rules and interacts with the others to share
information to lead the behavior to convergence.

It has unique characteristics compared to other meta-heuristic methods. The following
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advantages have been added in the revised paper (Goldberge [75]).
• GA works with the coding of the parameters, not the parameters themselves.
• It is a population-based solution, not based on a single point.
• Good for noisy environments.
• It uses probabilistic transition rules, not deterministic rules.
• It trades-off between exploration and exploitation.
• Inherently parallel, easily distributed for all variables.
• It is capable of working with any kinds of the objective functions and constraints in linear
and/or non-linear forms within any solution space (discrete or continuous).

General structure of the GA for the optimization problem with out and with constrains are
presented below:

Algorithm 2.1. 1. Set iteration counter T = 0.

2. Initialize probability of crossover pc and probability of mutation pm.

3. Initialize P (T ).

4. Evaluate P (T ).

5. Repeat

a. Select N solutions from P (T ), for mating pool using Roulette-wheel selection

process. Let this set be P (T )1.

b. Select solutions from P (T )1, for crossover depending on pc .

c. Made crossover on selected solutions for crossover to get population P (T )2.

d. Select solutions from P (T )2, for mutation depending on pm.

e. Made mutation on selected solutions for mutation to get population P (T + 1).

f. T ← T + 1.

g. Evaluate P (T ).

6. Until(Termination condition does not hold).

7. Output: Fittest solution (chromosome) of P (T ).

Constraints Handling in GA
The main idea of handling constraints is to design chromosomes carefully by genetic
operators to keep all these within the feasible solution set. To ensure that the chromosomes
(solutions) are feasible, we have to check all new chromosomes (x) generated by genetic
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operators. We suggest that a function is designed for each target optimization problem, the
output value 1 means that the chromosome is feasible, 0 for infeasible. The algorithm for
finding the feasibility of an individual (solution) (x) for the optimization problem is as
follows:

for j = 1 to l do
if(gj(x) ≤ 0)

continue;
else

return 0;
endif

endfor
for k = 1 to m do

if(hk(x) = 0)
continue;

else
return 0;

endif
endfor
return 1

The above genetic algorithm can be depicted pictorially by the following flowchart. The same

Figure 2.12: Flowchart of GA

phenomenon is followed to create a genetic algorithm for an optimization problem. Here, the
potential solutions of a problem are analogous with the chromosomes and chromosome of
better offspring with the better solution of the problem. Crossover and mutation happen
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among a set of potential solutions to get a new set of solutions and it continues until
terminating conditions are encountered. A GA for a particular problem must have the
following six components.

(a) A genetic representation for potential solutions (chromosomes) to the problem.

(b) A way to create an initial population of potential solutions(chromosomes).

(c) A way to evaluate fitness of each solution.

(d) An evolution function that plays the role of environment, rating solutions in term of their
fitness, i.e., selection process for mating pool.

(e) Genetic operators such as crossover and mutation that alter the composition of children.

(f) Values of different parameters such as population size, probability of crossover,
probability of mutation etc that the genetic algorithm uses.

The above GA components are described elaborately in the followings.

Procedures for Different GA Components:
(a) Chromosome Representation: The concept of chromosome is normally used in the GA
to stand for a feasible solution to the problem. A chromosome has the form of a string of
genes that can take on some value from a specified search space. The representation of
chromosome depends on properties and requirements of a problem. Normally, there are two
types of chromosome representation such as (i) the binary vector representation based on bits
and (ii) the real number representation. In this research work, the real number representation
scheme has been used. Here, a ‘K dimensional real vector’, X=(x1, x2, .... xK) is used to
represent a solution, where x1, x2, .... xK represent different decision variables of the
problem.

(b) Initialization: A set of solutions (chromosomes) is called a population. N such solutions
X1, X2, X3, ... XN are randomly generated from search space by random number generator
such that each Xi satisfies the constraints of the problem. This solution set and it is taken as
initial population and is the starting point for a GA to evolve to desired solutions. At this
step, probability of crossover pc and probability of mutation pm are also initialized. These
two parameters are used to select chromosomes from the mating pool for genetic operations
such as crossover and mutation respectively.

(c) Constraint Checking: For constrained optimization problems, at the time of generation
of each individuals Xi of P (1), constraints are checked using a separate subfunction
check constraint(Xi), which returns 1 if Xi satisfies the constraints, otherwise it returns 0. If
check constraint(Xi)=1, Xi is included in P (1) otherwise Xi is again generated and it
continues until constraints are satisfied.

58



2.4. OPTIMIZATION TECHNIQUES

(d) Fitness Value: All chromosomes in the population are evaluated using a fitness function.
This fitness value is a measure of whether the chromosome is suited for the environment
under consideration. Chromosomes with higher fitness will receive larger probabilities of
inheritance in subsequent generations, while chromosomes with low fitness will more likely
be eliminated. The selection of a good and accurate fitness function is thus a key to the
success of solving any problem quickly. In this thesis, value of a objective function due to the
solution Xi, is taken as fitness of Xi. Let it be f(Xi).

(e) Selection Process to Create Mating Pool: Selection in the GA is a scheme used to select
some solutions from the population for mating pool. From this mating pool, the pairs of
individuals in the current generation are selected as parents to reproduce offspring. There
are several selection schemes, such as roulette wheel selection, ranking selection, stochastic
universal sampling selection, local selection, truncation selection, tournament selection, etc.
Here, the Roulette wheel selection process has been used in different cases. This process
consists of the following steps:

(i) Find total fitness of the population F =
N∑
i=1

f(Xi)

(ii) Calculate the probability of selection pri of each solutionXi by the formula pri=f(Xi)/F .

(iii) Calculate the cumulative probability qri for each solution Xi by the formula

qri =
i∑

j=0

prj

(iv) Generate a random number ‘r’ from the range [0,1].
(v) If r < qr1, then select X1 otherwise select Xi (2 ≤ i ≤ N) where qri−1 ≤ r < qri.

(vi) Repeat step (iv) and (v) N times to select N solutions from current population. Clearly
one solution may be selected more than once.

(vii) Let us denote this selected solution set by P 1(T ).

(f) Crossover: The crossover is a key operator in the GA and it is used to exchange the main
characteristics of parent individuals and pass them on the children. It consists of the following
two steps:

(i) Selection for crossover: For each solution of P 1(T ), generate a random number r from
the range [0, 1]. If r < pc then the solution is taken for crossover, where pc is the
probability of crossover.

(ii) Crossover process: Crossover is performed on the selected solutions. For each pair of
coupled solutions Y1 and Y2, a random number c is generated from the range [0, 1]. Then
Y1, Y2 are replaced by their offsprings Y11 and Y21 respectively where,

Y11 = cY1 + (1− c)Y2

Y21 = cY2 + (1− c)Y1

provided that Y11, Y21 satisfy the constraints of the problem.
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(g) Mutation: The mutation operation is needed after the crossover operation to maintain the
population diversity and recover the possible loss of some good characteristics. It also consists
of the following two steps:

(i) Selection for mutation: For each solution of P 1(T ), generate a random number r from
the range [0, 1]. If r < pm, then the solution is taken for mutation, where pm is the
probability of mutation.

(ii) Mutation process: To mutate a solution X = (x1, x2, ..., xK) select a random integer ξ
in the range [1, K]. Then replace xξ by randomly generated value within the boundary
of ξth component of X .

(h) Selection of Offsprings: Maximum population growth in a generation is assumed as forty
percent. So, not all offsprings belong to the parent set for next generation. At first, offspring
set is arranged in descending order in fitness. Then better solutions are selected and entered
into parent set such that the population size does not exceeds Maxsize.
(i) Termination Condition: Algorithm terminates when difference between maximum fitness
(Maxfit) of chromosome, (i.e., fitness of the best solution of the population) and average
fitness (Avgfit) of the population becomes negligible. In other words when fitness of all
chromosomes in P (t) are almost equal. If the algorithm does not terminates (converge) under
above condition then to exit from infinite loop the algorithm will terminate after Maxgen
iterations.
(j) Implementation: With the above function and values the algorithm is implemented using
C-programming language in a personal computer consist of Intel 3.07 GHZ processor, 448
MB RAM and Microsoft Windows XP operating system.
(k) Convergency of the GA: The convergence of GA is very important. Following, Goldberg
[75] the convergence of the method is predict the proportion of optimal population p(t) in the
total population as a function of the number of generations t and the population mean fitness
at generation t is given by f(t) = np(t) and the variance σ2(t) = np(t)(1 − p(t)), here
n = pop size.
The increment in population mean fitness can be computed as:

f(ts)− f(t) =
σ2(t)

f(t)

At the time of optimizing bit counting function f(t + 1) = f(ts), so the increment of the
population average fitness becomes f(t+ 1)− f(t) = σ2(t)

f(t)

Therefore increase of the proportion of the population becomes

n(p(t+ 1)− p(t)) =
np(t)(1− p(t))

np(t)

Approximating the difference equation with the corresponding differential equation we
obtain a simple convergence model expressing the proportion p(t) in function of the number
of generations t

dp(t)

dt
=

1− p(t)
n
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The above differential equation leads to a convergent solution

p(t) = 1− (1− p(0))e−t/n

To calculate the convergence speed we compute the number of population n it takes to let the
proportion p(t) come arbitrarily close to 1 or 1− ε.
we may also compute the generation at which the global optimum is expected to be found with
a given probability. The probability that at least one of the strings in the population consists of
all ones is given by Prob(opt) = 1− [1− pl(t)]n , where l =no of generations.
The convergency rate of the proportion p(t) for different no generation t yields the following
graph for three different popsize:

Figure 2.13: Proportion vs no of generation

2.4.4 Genetic Algorithm with Varying Population (GAVP)
Behaviour and performance of a GA is directly affected by the interaction between the
parameters, i.e., selection process of chromosomes for mating pool, pc, pm, etc. In this
Genetic Algorithm with Varying Population (GAVP) ( cf. Last and Eyal [127] ), a subset of
better children is included with the parent population for next generation and maximum size
of this subset is a percentage of the size of its parent set. To control memory overflow at the
run time of the GAVP, an upper limit of population size is imposed (Maxsize). In most of the
GA, movement from old population to new population takes place only when average fitness
of new population is better than the old one and proved the asymptotic convergence of the
algorithm by Banach fixed point theorem. In this GA with varying population size,
chromosomes are classified into young, middle-age, and old according to their age and
lifetime. Following comparison of fuzzy numbers using possibility theory (cf. Dubois &
Prade, [61]), crossover probability is measured as a function of parents’ age interval (a fuzzy

61



CHAPTER 2. BASIC CONCEPTS AND SOLUTION METHODOLOGIES

rule base on parents’ age limit is also used for this purpose). In this GAVP, a subset of better
children is included with the parent population for next generation and maximum size of this
subset is a percentage of the size of its parent set following entropy measure.

GAVP Procedures:

The GAVP procedure content the following additional and modified components:

• Diversity Preservation: At the time of generation of P(1) diversity is maintained using
entropy originating from information theory. Following steps are used for this purpose.

(i) Probability, prjk, that the value of the i-th gene (variable) of the j-th chromosome
is different from the i-th gene of the k-th chromosome is calculated by using the
formula

prjk = 1− |xji − xki|
Bir −Bil

,

where [Bil, Bir] is the variation domain of the i-th gene.

(ii) Entropy of the i-th gene, Ei(M), i = 1, 2, · · · , n is calculated using the formula

Ei(M) =
M−1∑
j=1

M∑
k=j+1

−prjk ln prjk,

where M is the size of the current population.

(iii) Average entropy of the current population is calculated by the formula

E(M) =
1

n
×

n∑
i=1

Ei(M).

(iv) Incorporating the above three steps a separate sub-function check diversity(Xi) is
developed.

Every time a new chromosome Xi is generated, the entropy between this one and
previously generated individuals is calculated. If this information quantity is higher
than a threshold, ET , fixed at the beginning, Xi is included in the population otherwise
Xi is again generated until diversity exceeds the threshold, ET . This method induces a
good distribution of initial population.

• Determination of fitness and lifetime: Value of the objective function due to the
solution Xi, is taken as fitness of Xi. Let it be Z(Xi). At the time of initialization age
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of each solution is set to zero. Following Michalewicz [150], at the time of birth
life-time of Xi is computed by using the following formula:

lifetime(Xi) =


Minlt+

K(Z(Xi)−Minfit)

Avgfit−Minfit
, ifAvgfit ≥ Z(Xi)

Minlt+Maxlt

2
+
K(Z(Xi)− Avgfit)
Maxfit− Avgfit

, otherwise

where Maxlt and Minlt refers to maximum and minimum allowed lifetime of a
chromosome, K = (Maxlt−Minlt)/2. Maxfit, Avgfit, Minfit represent the best,
average and worst fitness of the current population. According to the age, a
chromosome can belong to any one of age intervals - young, middle-aged or old.

• Crossover: Crossover process consists of two major sub-processes which are discussed
below. For GAVP procedure the probability of crossover is based on the fuzzy rule as
presented in the following Table 2.2.

Table 2.2: Fuzzy rule base for crossover probability

Parent 1
Parent 2

Young Middle-aged Old

Young Low Medium Low

Middle-aged Medium High Medium

Old Low Medium Low

• Reduction process of pm: Let pm(0) is the initial value of pm. The probability of
mutation in T -th generation pm(T ) is calculated by the formula
pm(T ) = pm(0)exp(−T/α1), where α1 is calculated so that the final value of pm is
small enough (10−2 in our case). So α1=Maxgen/log[pm(0)

10−2 ], where Maxgen is the
expected number of generations that the GAVP can run for convergence.

The other components remain unchanged for the GAVP procedure.

2.4.5 Fuzzy Simulation Based Genetic Algorithm (FSGA)
To get the optimal solution of a single objective imprecise model, a fuzzy simulation based
genetic algorithm (FSGA) has been used in this thesis. It contains two different simulation
algorithms, one of them based on the possibility/necessity/credibility measures to satisfy the
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fuzzy constraints. First Algorithm is similar as Algorithm 2.1 and second Algorithm is
described below.

Algorithm 2.2. Algorithm to determine a feasible set of solutions for the maximized Z

obtained from the maximization of f̃(X).

We know that Nes(f̃(x) ≤ Z) ≥ µ⇒ Pos(f̃(x) > Z) ≤ 1 − µ. Now roughly find a point R0

from fuzzy number R̃, which approximately minimizes f̃(x). Let this value be z0 (for

simplicity one can take z0 = 0 also) and ε be a positive number. Set Z = z0 − ε and if

Pos(f̃(x) > Z) ≤ 1 − µ then increase Z with ε. Again check Pos(f̃(x) ≤ Z) ≥ µ and

credibility condition Cr(f̃(x) ≤ Z) ≥ µ⇒ 1
2

{
Pos(f̃(x) ≤ Z) + Nes(f̃(x) ≤ Z)

}
≥ µ. At

this stage decrease value of ε and again try to improve Z. When ε becomes sufficiently small

then we stop and final value of Z is taken as the value of Z. Using this criterion, required

algorithm is developed as below. In the algorithm the variable F0 is used to store initial

assumed value of Z and F is used to store value of Z in each iteration. As like the objective

function f̃(x), the imprecise constraint is also converted to a deterministic constant by same

manner and then use the following steps:

1. Set Z = z0 − ε, F = z0 − ε, tol = 0.0001.

2. Generate R0 uniformly from the 1− α2 cut set of fuzzy number R̃.

3. Set z0 = value of f(x) for R = R0.

4. If z0 < Z.

5. then go to step 11.

6. End If

7. Repeat step-2 to step-6 for N2 times.

8. Set F = Z.

9. Set Z = Z + ε.

10. Go to step-2.

11. If (Z = F0)// In this case optimum value of Z < z0 − ε.

12. Set Z = F0 − ε, F = F − ε, F0 = F0 − ε.
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13. Go to step-2.

14. End If

15. If (ε < to1)

16. go to step-21

17. End If

18. ε = ε/10

19. Z = F + ε

20. Go to step-2.

21. Output F .

22. End algorithm.

So for a feasible value of decision variables, we determine Z using the above algorithms
and to optimize Z we use GA. When such a fuzzy simulation algorithm is used to determine Z
in the algorithm, this GA is named as fuzzy simulation based genetic algorithm (FSGA). This
is used to determine fuzzy objective function values.

2.4.6 Multi-Objective Genetic Algorithm (MOGA)

Multi-objective problem is solved with the Multi-objective Genetic Algorithm (MOGA)
developed for this purpose. The MOGA is illustrated as follows.

We assume that there are M objective functions. In order to cover both minimization and
maximization of objective functions, we use the operator between two solutions and as to
denote that solution is better than solution on a particular objective. Similarly, for a particular
objective implies that solution is worse than solution on this objective. For example, if an
objective function is to be minimized, the operator would mean the < operator, whereas if the
objective function is to be maximized, the operator would mean the > operator. The
following definition covers mixed problems with minimization of some objective functions
and maximization of the rest of them.

Dominating Criteria: A solution X1 is said to dominate the other solution X2, if the
following both conditions (i) and (ii) are true: (i) The solution X1 is no worse than X2 in all
objectives, or for all j = 1, 2, ...,M. (ii) The solution X1 is strictly better than X2 in at least
one objective, or for at least one j = 1, 2, ..,M. If any of the above condition is violated, the
solutions X1 does not dominate the solution X2. If X1 dominates the solution X2, it is also
customary to write any of the following:
i) X2 is dominated by X1, ii) X1 non-dominated by X2, iii) X1 is non-inferior to X2.
It is intuitive that if a solution X1 dominates another solution X2, the solution X1 is better
than X2 in the parlance of multi-objective optimization. Since the concept of domination
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allows a way to compare solutions with multiple objectives, most multi-objective
optimization methods use this domination concept to search for non-dominated solution.

Crowding Distance: Crowding distance of a solution is measured using the following rule.

Step-1: Sort the population set according to every objective function values in ascending order
of magnitude.

Step-2: For each objective function, the boundary solutions are assigned an infinite distance
value. All other intermediate solutions are assigned a distance value equal to the absolute
normalized difference in the function values of two adjacent solutions. This calculation
is continued with other objective functions.

Step-3: The overall crowding distance value is calculated as the sum of the individual distance
values corresponding to each objective.

Each objective function is normalized before calculating the crowding distance. Following
algorithm is used for this purpose.

set k = number of solutions in F
for each k
{

set F [k]distance = 0
}
for each m
{
sort F , in ascending order of magnitude of m-th objective
set F [1]distance = F [m]distance = M where M is a large number

for i = 2 to k − 1
{

F [i+ 1]distance = F [i]distance + (F [i+ 1]m − F [i− 1]m)/(fmaxm − fminm )
}

}
Here, F [i]m refers to the m-th objective function value of F [i]. fmaxm and fminm are the
maximum and minimum values of the m-th objective function.
Non-Dominated Sorting of a Population: In this case, first, for each solution we calculate
two entities: i) domination count np, the number of solutions which dominate the solution p,
and ii) Sp, a set of solutions that the solution p dominates. All solutions in the first
non-dominated front will have their domination count as zero. Now, for each solution p with
np = 0, we visit each member(q) of its set Sp and reduce its domination count by one. In
doing so, if for any member q the domination count becomes zero, we put it in a separate list
Q. These members belong to the second non-dominated front. Now, the above procedure is
continued with each member of Q and the third front is identified. This process continues
until all fronts are identified.
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The other components are same as like single objective genetic algorithm.

Procedure of MOGA: The stepwise discussion of MOGA is as follows:

Step-1: Generate initial population P1 of size N .

Step-2: i← 1 [i represent the number of current generation.]

Step-3: Select solution from Pi for crossover.

Step-4: Made crossover on selected solution to get child set C1.

Step-5: Select solution from Pi for mutation.

Step-6: Made mutation on selected solution to get solution set C2.

Step-7: Set P ′i = Pi
⋃
C1

⋃
C2.

Step-8: Partition P ′i into subsets F1, F2, · · · , Fk, such that each subset contains non-dominated
solutions of P ′i and every solutions of Fi dominates every solu.s of Fi+1 for
i = 1, 2, · · · , k − 1.

Step-9: Select largest possible integer l, so that no of solu.s in the set F1

⋃
F2

⋃
· · ·
⋃
Fl ≤ N.

Step-10: Set Pi+1 = F1

⋃
F2

⋃
· · ·
⋃
Fl.

Step-11: Sort Fl+1 in decreasing order by crowding distance.

Step-12: Set M = number of solutions in Pi+1.

Step-13: Select first N −M solutions from set Fl+1.

Step-14: Insert these solution in solution set Pi+1.

Step-15: Set i← i+ 1.

Step-16: If termination condition does not hold, goto step-3.

Step-17: Output Pi.

Step-18: End.
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Figure 2.14: Flow-chart of MOGA
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Chapter 3

Imperfect production inventory model

with production rate dependent defective

rate and advertisement dependent

demand 1

3.1 Introduction

The origin of the Economic Production Quantity (EPQ) model can be traced back to 1918,
when E.W. Taft made an extension to the Economic Order Quantity (EOQ) model developed
by Harris [89]. The EPQ model is commonly used in the manufacturing sector of the business
world to determine the optimal production quantity which optimizes the objective function in
the system.

There exists a considerable amount of research works such as Cho [41], Goyal and
Gunasekaran [79] in which the items to be produced in a manufacturing system had been
considered as perfect. But, this is not a realistic assumption because, in any manufacturing
system, the production of defective units is a natural phenomenon to occur from the different
difficulties arisen in a long-run production process. Now, the defective items can be treated as
a result of imperfect production. At first in 1986, Rosenblatt and Lee [181] considered such
type of items in a imperfect production system. After that, Salameh and Jaber [184] presented
a modified EPQ model that accounts imperfect quality items. Then Hu [96], Khan et

1This model published in Computers & Industrial Engineering, 104 (2017) 9-22, ELSEVIER.
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al. [113], Krishnamoorthi and Panayappan [124], Tripathy and Pattnaik [208], Sivashankari
and Panayappan [196], Karimi-Nasab et al. (cf. [110], [108]) and others also worked on EPQ
models considering the imperfect production.

Table 3.1: Summary of related literature for EPQ/EOQ models with screening
Author(s) EOQ Inspection Defective rate Screening rate & Demand rate Production

/EPQ rate /Deterioration rate production rate rate

Chakraborty & Giri [17] EPQ Constant Constant Equal Constant Constant

Cheng [32] EPQ Constant Random Equal Constant Constant

Chiu et al. [36] EPQ Constant Random - Constant Constant

Cho [41] EPQ - - - Advertisement Variable

Goyal & Gunasekaram [77] EPQ - Constant - Advertisement Variable

Goyal & Giri [79] EPQ - Time varying - Time varying Time varying

Hazari et al. [98] EPQ Constant Reliability dependent Equal Advertisement Variable

Karimi-Nasab et al. [110] EPQ - Random Equal Constant Variable

Lin et al. [138] EPQ Constant Set up cost Dependent Not Equal Constant -

Lo et al. [144] EOQ - - - Linear trend -

Manna et al. [147] EPQ Constant Constant Equal Stock dependent Variable

Manna et al. [148] EPQ Constant Constant Equal Advertisement and price Demand dependent

Rosenblatt & Lee [181] EPQ Constant Probabilistic Equal Constant

Roy et al. [182] EOQ Constant Uniform Equal Stock dependent

Zhang & Gerchak [241] EOQ Constant Random Equal Constant Constant

Present model EPQ Not constant Production rate Not equal Advertisement and Decision

dependent time dependent variable
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Now from the literature survey on imperfect production inventory models, it is seen that
there exist two classes of the models on the basis of inspection methods to sort out the
defective units from the perfect one. In one class of research, it has been studied that
over time the produced items deteriorate in manufacturing system. In this field, the
different researchers ( Lee and Rosenblatt [130], Lee and Park [131], Kim et al. [119],
Jaber et al. [102], Lin et al. [138], Tai [200], Rahim [171], Rahim and Ben-Daya [170],
Manna et al. [148]) examined an inspection method on the produced items based on
deteriorating production process. Then,Guu and Zhang [86] used an entire lot of inspection
at the end of a process. After that, an inspection of the last k units had been used by Yeh
and Chen [236]. On the other hand, in another class of research the imperfect production
process has been investigated in which the defective units are produced during the
production time due to machinery fault, labour, raw materials etc. In this field, there are
also many research articles in which different inspection methods had been used by Hsu et
al. [95], Cheng [32], Salameh and Jaber [184], Chiu [35],Tripathy et al. [208], Hayek and
Salameh [97], Chiu et al. [36]. Zhang and Gerchak [241]used an inspection of a fraction
of a lot in EOQ model. Recently, Manna et al. [147] havedeveloped a ‘Three-layer supply
chain in an imperfect production inventory model with two storage facilities under fuzzy
rough environment’ with continuous screening process.



3.2. NOTATIONS AND ASSUMPTIONS

In the classical inventory model, Harris [89] considered an EOQ model with constant demand
rate. Later, this model was discussed by Wilson [225]. Silver and Meal [193] extended the
EOQ model for varying demand rate. Then Donaldson [59], Lo et al. [144] derived an
inventory model for linear trend in demand. Other researchers such as Silver and
Peterson [194], Roy et al. [182], Goyal and Giri [79] studied an inventory model with time
varying demand. Karimi-Nasab et al. [109] developed a multi objective distribution-pricing
model for multiperiod price-sensitive demands. In the literature there are many papers on
demand. Recently, in the competitive market on a long run business system, it is seen that the
demand faces a competition and sale is destroyed by depreciation. In such circumstances, the
advertisement policy has a positive effect to the demand rate. The advertisement through IT
by electronic media, print media, etc. improves the communication between customers and
companies and it helps us to give the accurate information flow to the customer about the
product of the companies. So in the present era of information technology (IT), the
advertisement plays an important role to control the demand of the product in the market. For
this reason, Cho [41] developed an optimal production and advertising policies in crisp
environment. Recently, Hazari et al. [98] developed an imperfect production inventory model
in bi-fuzzy environment with the same idea.

This chapter extends the traditional EPQ model by accounting an imperfect production
inventory model with advertisement dependent demand rate in which the advertisement rate is
increasing with time at a decreasing rate to recover the sale which is destroyed by depreciation
and it increases the acceptability of the product in the competition market. Here, the production
rate is considered as a decision variable. This chapter also considers the issue that the imperfect
items are sold as a single batch at the end of 100% screening process at a reduced price.
The screening rate has been considered to be different with the production rate and it has
been varied proportionally to the production rate. In this chapter, a new type of defective
rate has been considered depending upon the production rate. Under these considerations, a
mathematical model has been developed to get the maximum profit from the system. Finally,
some examples have been provided to illustrate the feasibility of the model numerically. The
detailed comparative statement of the proposed model with the existing literature has been
given in Table 3.1.

3.2 Notations and Assumptions

The following notations and assumptions have been used to develop the proposed model:

3.2.1 Notations
q(t) : on hand inventory of produced item (perfect and imperfect quality) in the production

center.
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q1(t) : on hand inventory of perfect quality item after screening the produced item.
q2(t) : on hand inventory of imperfect quality item after screening the produced item.
Q0 : minimum stock level maintained for perfect quality item.
D(t) : demand rate of the market.
x : percentage of screening item in the screening center per unit time.
η : depreciation rate.
v(t) : advertisement rate.
cp : production cost per unit item.
csr : screening cost per unit item.
hc : inventory holding cost per unit time per unit item in production center.
hm : inventory holding cost per unit time per unit item of perfect quality.
h′m : inventory holding cost per unit time per unit item of imperfect quality.
s : selling price per unit for perfect quality item.
s′ : selling price per unit for imperfect quality item.
P : production rate of the manufacturer (P ≥ D(t)).
T : total time-length of the business period.
t1 : duration of production run time.
t2 : duration of screening run time.
θ : defective production rate, i.e., the rate of producing defective units.

3.2.2 Assumptions
(i) It is a single item production inventory model in infinite time horizon.

(ii) Here, it is assumed that the manufacturer has capability to collect sufficient raw
materials, labours, machines and other related resources to produce the item. So, he/she
wants to produce the optimum amount of item per unit time to get the maximum profit
from his/her business. In this sense, here the production rate (P ) has been assumed to
be a variable.

(iii) It is well known that the quality of a product depends on raw material, labour
experience, machine component, production rate etc. Since here the production rate has
been considered as a variable, hence the defective rate of the produced items must be
dependent on the production rate. For this reason, the defective production rate (θ) has
been considered as follows:

θ = θ0 −
θ1

P
(3.1)

where θ0 and θ1 be the positive constants.

(iv) Due to the existence of defective production, there exist some imperfect quality items
in the production center. Hence, the manufacturer decides to sale the perfect quality
item after sorting the items in the inventory. So in this chapter, it is assumed that during
the production period, the screening process has been occurred simultaneously and the
screening rate is less than or equal to production rate but greater than or equal to demand
rate.
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(v) Unit production cost depends on produced-quantity, raw material, wear-tear and
development costs and is of the form, cp(P ) = cr + L

P
+MP ; where cr is raw material

cost, L is labor charge, and M is tool wear and tear cost respectively. This assumption
is based on the fact that cr, the raw material cost is independent of production rate.
Also, L

P
is a per unit cost component that decreases with the increased in production

rate. MP is a per unit cost component that increases with production rate and includes
tool cost and rework cost that might result from increased tool at higher production
rates.

(vi) In this chapter, since the production rate (P ) has been considered as a variable according
to assumption (ii), hence in the manufacturing system there may not be shortages to
avoid the shortage cost in a profit maximization problem in which the demand is time
dependent. In this sense, here shortages are not allowed.

(vii) The initial and ending inventory levels of perfect quality item are not restricted to zero.
i.e., the minimum stock level (Q0) is maintained initially and at ending business period
which is treated as a safety stock.

(viii) Normally, the demand of an item is considered as a constant or variable. When it is
taken as a variable, then it may be a function of time and/or initial stock or on-hand
inventory. In the present time, it is seen that the sale of a product depends upon the
promotion of the product in public life. So the advertisement has an important role
in increasing of the demand of a commodity. In that sense, here we have considered
the advertisement dependent demand function of the perfect quality items. In the same
time, from the market survey it is also observed that for the coming of other brands of
the same product, there is a declination of demand rate. Incorporating this idea, there
is a consideration of depreciation rate η in demand function at time t in 0 < t < T .
Therefore the rate of change of demand of an item satisfies the following differential
equation:

Ḋ(t) = v(t)− ηD(t), with D(0) = D0. (3.2)

where v(t) = v0 − v1e
−v2t, 0 ≤ t ≤ T , where v0, v1 and v2 are known parameters and

0 < η < 1.
Therefore the demand function D(t) is obtained as

D(t) = D0e
−ηt +

v0

η
(1− e−ηt) +

v1

v2 − η
(e−v2t − e−ηt), 0 ≤ t ≤ T (3.3)

which gives the demand rate of the item.

Lemma 3.1. The demand rate D(t) increases with respect to time provided that the parameters

v0, v1, v2, η, and D0 satisfy the relations η > v2 and v0
η
− v1

η−v2 > D0.
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Proof. Now, the demand rate increases with respect to time, if Ḋ(t) > 0, so from equation

(3.2), we have v(t)− ηD(t) > 0 with D(0) = D0. After simplifying, it is obtained that

(v0 − v1e
−v2t)− η

[
D0e

−ηt + v0
η

(1− e−ηt) + v1
v2−η (e−v2t − e−ηt)

]
> 0, [by equation (3.3)]

i.e., v1v2
η−v2 + η

[
v0
η

+ v1
v2−η −D0

]
e(v2−η)t > 0

which is possible when η > v2 and v0
η
− v1

η−v2 > D0 for 0 < t < T .

Now, the proof is complete.

Lemma 3.2. The advertisement rate v(t) = v0 − v1e
−v2t; v0, v1, and v2 > 0 is an increasing

from (v0 − v1) at a decreasing rate.

Proof. Here v(t) = v0−v1e
−v2t and v(0) = (v0−v1) is the constant advertisement rate before

the production start. Since v(0) > 0, so v0 > v1.

Therefore, d
dt
v(t) = v1v2e

−v2t > 0, since v1 and v2 > 0.

i.e., v̇(t) = d
dt
v(t) > 0 which shows that v(t) is an increasing with time.

Also, d
dt
v̇(t) = d2

dt2
v(t) = −v1v

2
2e
−v2t < 0 which shows that v̇(t) is decreasing with time.

i.e., rate of increasing of v(t) is decreasing with time.

Hence v(t) is an increasing from (v0 − v1) at a decreasing rate.

Now, the proof is complete.

Lemma 3.3. The demand rate D(t) is an increasing with time at a decreasing rate.

Proof. Here D(t) = D0e
−ηt + v0

η
(1− e−ηt) + v1

v2−η (e−v2t − e−ηt), [by equation (3.3)]

Ḋ(t) = (v0
η
−D0 − v1

η−v2 )ηe−ηt + v1v2
η−v2 e

−v2t > 0

d
dt
Ḋ(t) = −(v0

η
−D0 − v1

η−v2 )η2e−ηt − v1v22
η−v2 e

−v2t < 0, [By Lemma 3.1]

which shows that Ḋ(t) is decreasing with time.

Again since Ḋ(t) > 0 so D(t) is increasing. Hence D(t) is an increasing and the rate of

increasing is decreasing with time. Now, the proof is complete.

Lemma 3.4. The defective production rate (θ) is an increasing with respect to production rate

P .

Proof. From the assumption (iii) and equation (3.1), the defective production rate (θ) is the

function of production rate (P ) such as θ = θ0 − θ1
P

, where θ0, θ1 are positive constants.
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Differentiating θ with respect to P , we get
dθ
dP

= θ1
P 2 > 0, for all P and θ1 > 0.

Hence the defective rate θ increases with the increase of the production rate P .

Now, the proof is complete.

The change of θ with respect to P is depicted in Figure 3.1.

Figure 3.1: Graphical representation of the production rate vs defective rate

Lemma 3.5. The rate of change of defective production rate of items decreases with the

increase of the production rate P .

Proof. From the assumption (iii) and equation (3.1), the defective production rate (θ) as the

function of production rate (P ) such as θ = θ0 − θ1
P

, where θ0, θ1 are positive constants.

Differentiating θ with respect to P , we gate
dθ
dP

= θ1
P 2 > 0, for all P and d2θ

dP 2 = −2θ1
P 3 < 0, for all P > 0 and θ1 > 0.

Therefore dθ
dP

is monotonic decreasing function of P .

Hence the rate of change of defective production rate of the items decreases with the increase

of the production rate P . Now, the proof is complete.

77



CHAPTER 3. IMPERFECT PRODUCTION INVENTORY MODEL WITH
PRODUCTION RATE DEPENDENT DEFECTIVE RATE AND ADVERTISEMENT

DEPENDENT DEMAND

3.3 Mathematical Formulation of the Proposed Model

It is an imperfect production inventory model involving a manufacturer which produces and
sells the item during the business time period T . The manufacturer produces the items at the
rate of P up to a period t1. Amongst the items there must exist perfect quality items including
some imperfect quality items. Here the screening process has been considered to sortout up to
time t2 at a screening rate (xP ) such that demand of perfect quality item is fulfilled during the
business period at a time T . Since the production rate (P ) is greater than the screening rate
(xP ) then the extra quantity (P −xP ) per unit time will be stocked in screening center up to a
period t2. Also, the rate of stocking the perfect quality item after screening is (1−θ)xP which
must be greater than the customer demand rate D(t). After fulfilling the customer demand
at each instant, the extra quantity (1 − θ)xP − D(t) per unit time will be stocked in perfect
quality item center up to a period T . A stock of perfect quality items,Q0 is maintained initially
and finally during the business period. Here the defective items will be stocked at the rate θxP
up to the screening period t2. At the end of the screening process, defective items are sold
in a single lot at a reduced price s′. The following Figure 3.2 shows the flow of items in the
production system.

Figure 3.2: Schematic representation of the production inventory model

3.3.1 Formulation of Inventory Level of Produced Item

In this production system, production starts at t=0 with production rate(P ) and continues up
to t = t1. The produced products continuously are transferred to the screening cell at the rate
xP .
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Figure 3.3: Pictorial representation of production inventory model

So, the inventory level q(t) in production center is described as follows

dq(t)

dt
=

{
P − xP, 0 ≤ t ≤ t1
−xP, t1 ≤ t ≤ t2

(3.4)

subject to the conditions that q(0) = 0, q(t1) = Q and q(t2) = 0.
Consequently, the solutions of the above differential equations (3.4) are given by

q(t) =

{
(1− x)Pt, 0 ≤ t ≤ t1
xP (t2 − t), t1 ≤ t ≤ t2

(3.5)

Using the condition q(t1) = Q and equation (3.5), it is obtained that

Q = (1− x)Pt1 = xP (t2 − t1)

Thus, we have (1− x)Pt1 = xP (t2 − t1), which implies that t1 is a function of x and t2 as

t1 = xt2 (3.6)

3.3.2 Formulation of Inventory Level of Perfect Quality Item
In this screening system, the screening starts with the commencement of production at the
rate (xP ) and continues up to time t2. Here 100% screening is performed on the produced
products but screening rate (xP ) must always be greater than or equal to the demand rate
(D(t)). The screening cell separates the items in two categories: one is perfect and other is
imperfect. After the screening, the perfect quality items meet the demand with a rate D(t)
during business period. Here, we consider the inventory level q1(t) and the safety stock Q0 of
perfect quality items.
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So, the inventory level q1(t) of perfect quality items in the screening center is described as
follows:

dq1(t)

dt
=

{
(1− θ)xP −D(t), 0 ≤ t ≤ t2
−D(t), t2 ≤ t ≤ T

(3.7)

subject to the conditions that q1(0) = Q0, q1(T ) = Q0.
Consequently, the solutions of the above differential equations (3.7) are given by

q1(t) =



Q0 + (1− θ)xPt−
[
D0

η
(1− e−ηt) + v0

η2
(ηt+ e−ηt − 1)

+ v1
v2−η{

1
v2

(1− e−v2t)− 1
η
(1− e−ηt)}

]
, 0 ≤ t ≤ t2

Q0 −
[
D0

η
(e−ηT − e−ηt) + v0

η2
(η(t− T ) + e−ηt − e−ηT )

+ v1
v2−η{

1
v2

(e−v2T − e−v2t)− 1
η
(e−ηT − e−ηt)}

]
, t2 ≤ t ≤ T

Lemma 3.6. In a manufacturing system, at any time during the screening period (0, t2) the

inventory of the perfect quality items must be greater than the customer demand at that time,

i.e., there does not occur any shortages provided that (1− θ)xPη > v0 and ηQ0 + v1
v2
> D0.

Proof. q1(t) is the inventory of perfect quality items and D(t) is the customer demand at time

t. Now

q1(t)−D(t) = (
1

η
− 1)D(t) + {(1− θ)xP − v0

η
}t+

1

η
(ηQ0 −D0 +

v1

v2

)

According to assumption (viii), we have 0 < η < 1. i.e., 1
η
> 1. i.e., 1

η
− 1 > 0.

Therefore, using the above relation we have q1(t)−D(t) > 0 for all t if (1− θ)xP − v0
η
> 0

and ηQ0 −D0 + v1
v2
> 0. i.e., if (1− θ)xPη > v0 and ηQ0 + v1

v2
> D0.

Now, the proof is complete.

Lemma 3.7. In a manufacturing system, the screening period (t2) must satisfy the following

relation in terms of production rate (P ), production period (t1) and business period (T ).

t2 =
1

(1− θ)xP

[D0 − v0η

η2
(1− e−ηT ) +

v0T

η
+

v1

v2 − η

{ 1

v2

(1− e−v2T )− 1

η
(1− e−ηT )

}]
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Proof. Satisfying the continuity condition of q1(t) at t = t2 a relation is obtained as follows

Q0 + (1− θ)xPt2 −
D0

η
(1− e−ηt2)− v0

η2
(ηt2 + e−ηt2 − 1)− v1

v2 − η

{ 1

v2

(1− e−v2t2)

−1

η
(1− e−ηt2)

}
= Q0 −

[D0

η
(e−ηT − e−ηt2) +

v0

η2
(η(t2 − T ) + e−ηt2 − e−ηT )

+
v1

v2 − η

{ 1

v2

(e−v2T − e−v2t2)− 1

η
(e−ηT − e−ηt2)

}]
i.e., t2 =

1

(1− θ)xP

[D0

η
(1− e−ηT ) +

v0

η2
(ηT + e−ηT − 1) +

v1

v2 − η

{ 1

v2

(1− e−v2T )

−1

η
(1− e−ηT )

}]
. Now, the proof is complete. (3.8)

3.3.3 Formulation of Inventory Level of Imperfect Quality Item
At the end of the screening process, all imperfect quality items are sold as a single lot. So the
inventory level q2(t) of imperfect quality items in the screening center is described as follows:

dq2(t)

dt
= θxP, 0 ≤ t ≤ t2 (3.9)

subject to the conditions that q2(0) = 0 and q2(t2) = 0.
Consequently, the solution of the above differential equation (3.9) is given by

q2(t) = θxPt, 0 ≤ t ≤ t2

3.3.4 The Profit Function of the Proposed Model
Total production cost (PC) in the production system during the cycle (0, T ) is given by

PC = cp

∫ t1

0

P dt = cpPt1

Total screening cost (SC) in the production system during the cycle (0, T ) is given by

SC = csr

∫ t2

0

xP dt = csrxPt2

Total advertizement cost (AC) in the production system during the cycle (0, T ) is given by

AC = ca

∫ T

0

v(t) dt = ca

[
v0T +

v1

v2

(e−v2T − 1)
]
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Total holding cost (HC) in the production system during the cycle (0, T ) is given by

HC = hc

∫ t1

0

q(t) dt+ hm

∫ T

0

q1(t) dt+ h′m

∫ t2

0

q2(t) dt

=
hc
2

{
(1− x)Pt21 + xP (t2 − t1)2

}
+
hm
2

[
Q0T + (1− θ)xP t

2
2

2
− D0

η2
(ηt2 + e−ηt2 − 1)

−v0

η3
(η2 t

2
2

2
− e−ηt2 + 1− ηt2)− v1

v2 − η

{ 1

v2
2

(t2v2 − 1)− 1

η2
(ηt2 − 1)

}
−D0

η2

(
(1 + T − t2)e−ηT − e−ηt2

)
− v0

η3

(
− η2

2
(t2 − T )2 + e−ηt2 − (1 + T − t2)e−ηT

)
− v1

v2 − η

{ 1

v2
2

(1 + v2T − v2t2)e−v2T − 1

η2
(1 + ηT − ηt2)e−ηT

}]
+
h′m
2
θxPt22

Total set up cost in the production system during the cycle (0, T ) =Am
Total revenue (TR) in the production system during the cycle (0, T ) is given by

TR = s

∫ T

0

D(t) dt+ s′θxPt2

= s
[D0η − v0

η2
(1− e−ηT ) +

v0T

η
+

v1

v2 − η

{ 1

v2

(1− e−v2T )− 1

η
(1− e−ηT )

}]
+ s′θxPt2

Total Profit (TP (P, T )) in the production system during the cycle (0, T ) is given by

TP (P, T ) = TR− PC − SC −HC − AC − Am

= s
[D0

η
(1− e−ηT ) +

v0

η2
(ηT + e−ηT − 1) +

v1

v2 − η

{ 1

v2

(1− e−v2T )− 1

η
(1− e−ηT )

}]
+s′θxPt2 − cpPt1 − csrxPt2 −

hc
2

{
(1− x)Pt21 + xP (t2 − t1)2

}
−hm

2

[
Q0t2 + (1− θ)xP t

2
2

2
− D0

η2
(ηt2 + e−ηt2 − 1)− v0

η3
(
η2t22

2
− e−ηt2 + 1− ηt2)

− v1

v2 − η

{ 1

v2
2

(t2v2 + e−v2t2 − 1)− 1

η2
(ηt2 + e−ηt2 − 1)

}
+Q0(T − t2)

−D0

η2

(
(1 + T − t2)e−ηT − e−ηt2

)
− v0

η3

(
− η2

2
(t2 − T )2 + e−ηt2 − (1 + T − t2)e−ηT

)
− v1

v2 − η

{ 1

v2
2

(
(1 + v2T − v2t2)e−v2T − e−v2t2

)
− 1

η2

(
(1 + ηT − ηt2)e−ηT − e−ηt2

)}]
−h

′
m

2
θxPt22 − ca

[
v0T +

v1

v2

(e−v2T − 1)
]
− Am

T
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Average Profit AP (P, T ) in the production system during the cycle (0, T ) is given by

AP (P, T ) =
1

T

[
TP (P, T )

]
=
s

T

[D0

η
(1− e−ηT ) +

v0

η2
(ηT + e−ηT − 1) +

v1

v2 − η

{ 1

v2

(1− e−v2T )− 1

η
(1− e−ηT )

}]
+
x

T

{
s′θ − cp − csr

}
Pt2 −

x

2T

{
(1− x)hc + θh′m

}
Pt22 −

hm
2T

[
Q0T + (1− θ)xP t

2
2

2

− 1

η3
(D0η − v0)

{
ηt2 − 1 + (1 + T − t2)e−ηT

}
− v0

2η
(2t2T − T 2)

− v1

v2 − η

{ 1

v2
2

{v2t2 − 1 + (1 + v2T − v2t2)e−v2T} − 1

η2
{ηt2 − 1

+(1 + ηT − ηt2)e−ηT}
}]
− ca
T

[
v0T +

v1

v2

(e−v2T − 1)
]
− Am

T
(3.10)

Proposition 3.1. Average profit AP (P, T ) is a function of two independent variables P and

T . Now, it is supposed that for some parametric values involved in the system of equations
∂
∂P
{AP (P, T )} = 0 and ∂

∂T
{AP (P, T )} = 0, there exists at least one positive point (P ∗, T ∗)

at which (i) ∂2

∂P 2{AP (P, T )} and ∂2

∂T 2{AP (P, T )} both are negative and (ii) ∂2

∂P 2{AP (P, T )}
∂2

∂T 2{AP (P, T )}-[ ∂2

∂T∂P
{AP (P, T )}]2 > 0 then we obtain the maximum average profit at the

point (P ∗, T ∗).

Here, it is considered that ∂
∂P
{AP (P, T )} = F (P, T ) and ∂

∂T
{AP (P, T )} = G(P, T ), (see

appendix A). Due to complexity of the equations, F (P, T ) = 0 and G(P, T ) = 0, it is
not possible to show the existence of the solution analytically. Now it is supposed that there
exists at least one positive point (P ∗, T ∗) for which F (P ∗, T ∗) = 0 and G(P ∗, T ∗) = 0
for some parametric values involved in the system. Let at (P ∗, T ∗), ∂

∂P
{F (P, T )} = ∆1,

∂
∂T
{G(P, T )} = ∆2 and ∂

∂T
{F (P, T )} = ∆3.

Lemma 3.8. The maximum average profit AP (P ∗, T ∗) exist if ∆1 < 0, ∆2 < 0 and ∆1∆2 >

∆2
3.

Proof. Now, from the optimization calculus, it is known that a function of two variables,

φ(u, v) is maximum at the stationary point (a, b) if ∂2

∂u2
{φ(a, b)}

∂2

∂v2
{φ(a, b)}-[ ∂2

∂u∂v
{φ(a, b)}]2 > 0, ∂2

∂u2
{φ(a, b)} < 0 and ∂2

∂v2
{φ(a, b)} < 0.

Here P = P ∗ and T = T ∗ are the solution of ∂
∂P
{AP (P, T )} = 0 and ∂

∂T
{AP (P, T )} = 0.

Now if ∆1 < 0 then ∂
∂P
{F (P ∗, T ∗)} < 0, since ∂

∂P
{F (P, T )} = ∆1 at (P ∗, T ∗).

i.e., ∂2

∂P 2{AP (P, T )} < 0 at (P ∗, T ∗), since F (P, T ) = ∂
∂P
{AP (P, T )}.
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Again if ∆2 < 0 then ∂
∂T
{G(P ∗, T ∗)} < 0, since ∂

∂T
{G(P, T )} = ∆2 at (P ∗, T ∗).

i.e., ∂2

∂T 2{AP (P, T )} < 0 at (P ∗, T ∗), since G(P, T ) = ∂
∂T
{AP (P, T )}.

Again if ∆1∆2 > ∆2
3 then { ∂

∂P
F (P, T )}{ ∂

∂T
G(P, T )} − ∂

∂T
{F (P, T )} > 0, since at

(P ∗, T ∗), ∆1 = ∂
∂P
{F (P, T )}, ∆2 = ∂

∂T
{G(P, T )} and ∆3 = ∂

∂T
{F (P, T )}.

i.e., ∂2

∂P 2{AP (P, T )} ∂2

∂T 2{AP (P, T )}-[ ∂2

∂P∂T
{AP (P, T )}]2 > 0 at (P ∗, T ∗), since

F (P, T ) = ∂
∂P
{AP (P, T )} and G(P, T ) = ∂

∆1∆2 > ∆2
3. Now, the proof is complete.

Lemma 3.9. If ∆1 > 0 and ∆2 < 0 then the maximum average profit AP (P ∗, T ∗) does not

exist.

Proof. Here P = P ∗ and T = T ∗ are the solution of ∂
∂P
{AP (P, T )} = 0 and

∂
∂T
{AP (P, T )} = 0.

Now if ∆1 > 0 and ∆2 < 0 then ∂
∂P
{F (P ∗, T ∗)} > 0 and ∂

∂T
{G(P ∗, T ∗)} < 0,

since ∆1 = ∂
∂P
{F (P, T )} and ∆2 = ∂

∂T
{G(P, T )} at (P ∗, T ∗).

i.e., ∂2

∂P 2{AP (P, T )} > 0 and ∂2

∂T 2{AP (P, T )} < 0 at (P ∗, T ∗), since

F (P, T ) = ∂
∂P
{AP (P, T )} and G(P, T ) = ∂

∂T
{AP (P, T )}. Therefore one condition

(Proposition 3.1) for the existence of maximum value of AP (P, T ) at the point (P ∗, T ∗) is

not satisfy. So if ∆1 > 0 and ∆2 < 0 then there does not exist the maximum average profit

AP (P ∗, T ∗). Now, the proof is complete.

Lemma 3.10. If ∆1 < 0 and ∆2 > 0 then the maximum average profit AP (P ∗, T ∗) does not

exist.

Proof. The proof is similar to that in Lemma 3.9. Hence we omit it.

Lemma 3.11. If ∆1∆2−∆2
3 < 0 then the maximum average profit AP (P ∗, T ∗) does not exist.

Proof. Here P = P ∗ and T = T ∗ are the solution of ∂
∂P
{AP (P, T )} = 0 and

∂
∂T
{AP (P, T )} = 0.

Now, if ∆1∆2 − ∆2
3 < 0 then { ∂

∂P
F (P, T )}{ ∂

∂T
G(P, T )} − ∂

∂T
{F (P, T )} < 0, since at
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∂T
{G(P, T )} and ∆3 = ∂

∂T
{F (P, T )}.

i.e., ∂2

∂P 2{AP (P, T )} ∂2

∂T 2{AP (P, T )}-[ ∂2

∂P∂T
{AP (P, T )}]2 < 0 at (P ∗, T ∗), since

F (P, T ) = ∂
∂P
{AP (P, T )} and G(P, T ) = ∂

been not satisfied. So, if ∆1∆2 − ∆2
3 < 0 then there does not exist the maximum average

profit AP (P ∗, T ∗). Now, the proof is complete.

3.4 Solution Procedure
From equation (3.10) it is seen that in the proposed model, the objective function AP is highly
nonlinear. Here P and T are two decision variables. θ is a function of P according to equation
(3.1). Also t2 is a function of P and T obtained according to equation (3.8) in Lemma 3.7. t1
is a function of t2 obtained according to equation (3.6). Since the objective function is highly
nonlinear, hence to get the optimal solution of the proposed model the following algorithms
have been developed.

Algorithm 3.1. For a fixed x, suppose x = x0, the value of y can be obtained from ψ(x, y) = 0

as follows:

step 1: For x = x0, compute ψ(x0, y) = 0.

step 2: Select (y1, y2) such that ψ(x0, y1)ψ(x0, y2) < 0. Then by Rolle’s theorem there exist a

root of ψ(x0, y) = 0, between y1 and y2.

step 3: Calculate m = (y1+y2)
2

, be the midpoint of the interval (y1, y2).

step 4: Compute the signs of ψ(x0, y1), ψ(x0,m), and ψ(x0, y2).

step 5: If ψ(x0, y1)ψ(x0,m) < 0, then a root of ψ(x0, y) = 0 lies between y1 and m. In this

case, replace m by y2. Otherwise, a root of ψ(x0, y) = 0 lies between m and y2, then

replace m by y1.

step 6: Repeat steps 3 through 5 until |y1 − y2| < 10−ε where ε is a tolerance limit.

step 7: Then the root of ψ(x0, y) = 0 is m such that m = (y1+y2)
2

.
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Algorithm 3.2. Since there is no possibilities to get the general explicit solution due to absence

of linearness, hence to get the maximum profit of the proposed model following procedure has

been devised according to Lemma 3.8. Here, the optimal values of P , T , θ, t1, t2 andAP (P, T )

are denoted by P ∗, T ∗, θ∗, t∗1, t∗2 and AP ∗(P ∗, T ∗) respectively.

step 1: Set an interval (P10, P11) where P10 ∈ (0, P0) and P11 ∈ (0, P0). Here P ≤ P0 where

P0 also is initialized.

step 2: Compute T0F , T1F , T0G and T1G for T from F (P10, T ) = 0, F (P11, T ) = 0,G(P10, T ) =

0 and G(P11, T ) = 0 respectively by Algorithm 3.1.

step 3: Compute4P10 = T0F − T0G and4P11 = T1F − T1G.

step 4: If 4P104P11 < 0, i.e., the signs of 4P10 and 4P11 are opposite, then compute P1m =

(P10+P11)
2

.

step 5: Compute T1mF and T1mG for T from F (P1m, T ) = 0 and G(P1m, T ) = 0 respectively

by Algorithm 3.1.

step 6: Calculate4P1m = 4T1mF −4T1mG .

step 7: Compare 4P1m with 4P10 . If 4P104P1m < 0, i.e., the signs of 4P10 and 4P1m are

opposite, then replace P11 by P1m. Otherwise replace P10 by P1m.

step 8: Repeat steps 4 through 7 until the absolute values of (P10 − P1m) or (4P10 −4P1m) or

(4P10 −4P1m) are within the tolerance limits.

step 9: The root of F (P, T ) = 0 and G(P, T ) = 0 is (P r, T r) where P r = P1m and T r =

T0F+T1F
2

or T0G+T1G
2

.

step 10: Compute 41, 42 and 43 at the point (P r, T r) where ∆1 = ∂
∂P
{F (P, T )}, ∆2 =

∂
∂T
{G(P, T )} and ∆3 = ∂

∂T
{F (P, T )}.

step 11: If ∆1 < 0, ∆2 < 0 and ∆1∆2 > ∆2
3, then according Lemma 3.8 then (P r, T r) be

the optimal solution. So P ∗ = P r, T ∗ = T r and calculate t∗2 by equation (3.8), t∗1 by

equation (3.6), θ∗ by equation (3.1). Also calculate AP ∗(P ∗, T ∗) by equation (3.10).
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step 12: If ∆1 > 0, ∆2 < 0 by Lemma 3.9, ∆1 < 0, or ∆2 > 0 by Lemma 3.10, or ∆1∆2−∆2
3 < 0

by Lemma 3.11, then (P r, T r) is not optimal solution. In this case, goto step 2 and

change the value of (P10, P11).

step 13: Print the optimal values P ∗, T ∗, θ∗ t∗1, t∗2 and AP ∗(P ∗, T ∗).

3.5 Numerical Illustrations

In this section, we illustrate some numerical examples to study the feasibility of the proposed
imperfect production inventory model. The values of the parameters of the model, considered
in these numerical examples, are not elected from any real life case study, but these values
have been seemed to be realistic. All these examples have been solved to find the optimal
values of production period (t1), screening time (t2), defective rate (θ), production rate (P )
and business period (T ) along with the optimal average profit (AP (P, T )) of the system.

Example 3.1. In this model, the manufacturer’s perspective is to maximize the average profit

AP (P, T ). To get the maximum average profit, a manufacturer has taken different parametric

values to be shown in Table 3.2 and 3.3.

Table 3.2: Values of screening, defective, demand, advertisement and other parameters
Parameter x θ0 θ1 D0 (unit) η v0 v1 v2 Q0 (unit)

Value 0.80 0.33 0.59 21 0.27 12 11 0.25 32

Table 3.3: Values of cost parameters and selling prices of items per unit
Parameter cr csr L M ca hc hm h′m Am s s′

Value ($) 25 0.28 400 0.06 6 0.4 0.60 0.20 400 75 49
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Figure 3.4: Concavity of the average profit (AP ) for numerical example 1.1

Numerically for Example 3.1, Figure 3.4 shows the graphical representation of the average
profit function of P and T . From this figure, it is guarantied that the average profit function
is concave. So there exists a unique solution of (P, T ) that maximizes the average profit
AP (P, T ). Now, to get the optimum computational result (Table 3.4) for the non-linear profit
function AP (P, T ) using Table 3.2 and 3.3, our developed Algorithms 3.1 and 3.2 have been
used.

Table 3.4: Optimal result of the illustrated model
Production rate Defective rate Production time Screening time Business period Average Profit

(P ∗) (θ∗) (t∗1) (t∗2) (T ∗) (AP ∗(P ∗, T ∗))

79.39 0.28 35.66 44.57 48.78 1506.42

From Table 3.4, it is observed that the manufacturer gets the optimum average profit of amount
$ 1506.42 when the production rate and production time of the system are 79.39 unit and
35.66 unit respectively. Here defective rate is 0.28. Screening is performed up to time 44.57
unit. For this example the business ends after 48.78 unit. The Figure 3.5 shows the graphical
representation of the inventory of perfect quality items after the screening and the demand rate
from which it is implied that there does not occur shortages during the screening period for
this example.

Example 3.2. In this example, using the same data as in Example 3.1 except the safety stock

(Q0) of perfect quality item to be considered here, as zero and following result in Table 3.5

has obtained:
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Figure 3.5: Comparison between the inventory of perfect quality items and the demand rate

Table 3.5: Optimal results of the illustrated model when Q0 = 0

Production rate Defective rate Production time Screening time Business period Average Profit

(P ∗) (θ∗) (t∗1) (t∗2) (T ∗) (AP ∗(P ∗, T ∗))

79.39 0.28 35.66 44.57 48.78 1516.03

From Table 3.5, it is explored that production rate (P ∗), defective rate (θ∗), production time
(t∗1), screening time (t∗2) and total time (T ∗) are not changed from the result in Example 3.1
due to safety stock Q0 = 0 but the average profit (AP ∗(P ∗, T ∗)) has increased because total
holding cost has reduced by the absence of safety stock (Q0).

Example 3.3. In this example, using the same data as in Example 3.1 except screening rate

(x), here the production rate and screening rate have been considered as equal, i.e., P = xP

which implies that x = 1 and t1 = t2 by equation (3.8).

The corresponding computational results are shown in Table 3.6.

Table 3.6: Optimal results of the illustrated model when x = 1

Production rate Defective rate Production time Screening time Business period Average Profit

(P ∗) (θ∗) (t∗1) (t∗2) (T ∗) (AP ∗(P ∗, T ∗))

63.72 0.27 54.46 54.46 58.66 1608.62

From Table 3.6, it is seen that production rate (P ∗), defective rate (θ∗), production time (t∗1),
screening time (t∗2), business period (T ∗) and average profit (AP ∗(P ∗, T ∗)) have changed from
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Example 3.1, due to the change of screening rate (x). Here production rate is less than that
of Example 3.1 due to increase of screening rate, since the stock place is fixed and demand
is independent of screening rate. Since defective rate (θ∗) is dependent on production rate
and production rate decreases then defective rate also decreases. Again production time (t∗1)
and total time (T ∗) decrease due to the decrease of production rate (P ∗). Simultaneously
screening time (t∗2) is decreased due to the increase of screening rate. Ultimately, the average
profit (AP ∗(P ∗, T ∗)) has been increased due to the equality of production rate and screening
rate because of decrease of total holding cost.

Example 3.4. In this example, using the same data as in Example 3.1 except the advertisement

parameters (v0, v1, v2, ca), here all parameters associated with the advertisement have been

considered as zero, i.e., we do not consider advertisement dependent demand.

In this case, we get the following optimum results in Table 3.7.

Table 3.7: Optimal results of the illustrated model when v0 = 0, v1 = 0, v2 = 0, ca = 0

Production rate Defective rate Production time Screening time Business period Average Profit

(P ∗) (θ∗) (t∗1) (t∗2) (T ∗) (AP ∗(P ∗, T ∗))

110.20 0.31 0.78 0.98 5.18 438.95

Since here the advertisement is not considered, hence the rate of change of demand decreases
with respect to time. Henceforth, the business period (T ∗) and average profit (AP ∗(P ∗, T ∗))
are less than those of Example 3.1 which are shown in Table 3.7.

3.5.1 Sensitivity Analysis
In this section, we examine the effect of changes in the system parameters to study the sensi-
tivity analysis of the proposed model with respect to some parameters based on the preceding
numerical Example 3.1 as follows.

Sensitivity analysis 3.1. Using the numerical Example 3.1 mentioned earlier, the effect of

under or over estimation of various parameters on replenishment policy to maximize the net

profit has been studied.

Here, we employ, 4x = (x′ − x)/x′ × 100%, 4η = (η′ − η)/η′ × 100%,
4P ∗ = (P ∗

′ − P ∗)/P ′∗ × 100%, 4T ∗ = (T ∗
′ − T ∗)/T ′∗ × 100%,

4AP ∗(P ∗, T ∗) = {AP ∗′(P ∗, T ∗) − AP ∗(P ∗, T ∗)}/AP ′∗(P ∗, T ∗) × 100% as measure of
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sensitivity, where x, η, P ∗, T ∗, AP ∗(P ∗, T ∗) be the true values and x′, η′, P ∗′ , T ∗′ ,
AP ∗

′
(P ∗, T ∗) be also the corresponding estimated values. The sensitivity analysis has been

shown by increasing or decreasing the parameters x and η by different percentage(%), taking
one or more at a time with keeping the others at their true values. The results are presented in
following Table 3.8 and Table 3.9.

Table 3.8: Sensitivity analysis of the illustrated model w.r.t. screening rate
Percentage of change Percentage of change Percentage of change Percentage of change Percentage of change

of screening rate of production rate of defective rate of total time of average profit

(4x) (4P ∗) (4θ∗) (4T ∗) (4AP ∗(P ∗, T ∗))

-25 +31.88 +0.39 -14.13 -7.20

-10 +10.65 +0.16 -6.02 -2.63

+10 -8.71 -0.15 +6.84 +2.45

+20 -15.97 -0.30 +14.87 +4.83

+25 -19.16 -0.38 +19.50 +6.01

Figure 3.6: Screening rate vs production rate Figure 3.7: Screening rate vs defective rate

Figure 3.8: Screening rate vs total time Figure 3.9: Screening rate vs average profit

91



CHAPTER 3. IMPERFECT PRODUCTION INVENTORY MODEL WITH
PRODUCTION RATE DEPENDENT DEFECTIVE RATE AND ADVERTISEMENT

DEPENDENT DEMAND

• Here from Table 3.8, Figure 3.6 and 3.7 it is observed that production rate (P ∗) and
defective rate (θ∗) are both decreases respectively due to the increasing of screening rate (x).
Also from Table 3.8, Figure 3.8 and 3.9 it is also seen that total time (T ∗) and average profit
(AP ∗(P ∗, T ∗)) both are increases respectively due to the increasing of screening rate (x).
If screening rate increases, then business period and average profit also increase but
production rate and defective rate decreases due to limited holding space of perfect items and
production rate dependent defective rate respectively.

Table 3.9: Sensitivity analysis of the illustrated model w.r.t. depreciation rate of demand
Percentage of change Percentage of change Percentage of change Percentage of change Percentage of change

of depreciation rate of production rate of defective rate of total time of average profit

(4η) (4P ∗) (4θ∗) (4T ∗) (4AP ∗(P ∗, T ∗))

-20 +22.06 +0.29 +4.89 +19.18

-15 +15.68 +0.22 +3.61 +13.83

-5 +4.73 +0.07 +1.15 +4.28

+5 -4.32 -0.07 -1.11 -3.98

+15 -8.29 -0.15 -2.18 -7.70

+20 -15.31 -0.29 -4.20 -14.43

Figure 3.10: Depreciation rate vs production Figure 3.11: Depreciation rate vs average profit

• Here from Table 3.9, Figure 3.10, 3.11, 3.12 and 3.13 it is observed that production rate
(P ∗), defective rate (θ∗), total time (T ∗) and average profit (AP ∗(P ∗, T ∗)) are decreasing
respectively due to increasing of depreciation rate (η).

Sensitivity analysis 3.2. In this case, using the same data as those in Example 3.1 except

production cost parameters L and M . Here we experiment for the different values of L and

M . The results are given in following Table 3.10.
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Figure 3.12: Depreciation rate vs total time Figure 3.13: Depreciation rate vs defective rate

Table 3.10: Sensitivity analysis of the illustrated model when L and M changes
Parameters Production Defective Production Screening Business Average Profit

(L, M ) rate (P ∗) rate (θ∗) time (t∗1) time (t∗2) period (T ∗) (AP ∗(P ∗, T ∗))

L=300, M=0.08 79.34 0.278 34.93 43.67 47.87 1487.44

L=350, M=0.07 79.36 0.279 35.30 44.12 48.32 1496.91

L=400, M=0.06 79.39 0.280 35.66 44.57 48.78 1506.42

L=450, M=0.05 84.28 0.285 33.46 41.82 48.58 1516.80

L=500, M=0.04 101.22 0.290 27.20 34.01 47.49 1538.92

• Table 3.10 shows that when L increases and M decreases simultaneously, the production
rate (P ∗), defective rate (θ∗) and average profit (AP ∗(P ∗, T ∗)) are increasing respectively but
production period t∗1, screening period t∗2 and business period T ∗ initially increase, after that
decrease.

Sensitivity analysis 3.3. In this case, using the same data as those in Example 3.1 except

production cost parameters ca and v0. Here we experiment for the different values of ca and

v0. The results are given in following Table 3.11.

Table 3.11: Sensitivity analysis of the illustrated model when ca and v0 changes
Parameters Production Defective Production Screening Business Average Profit

(ca, v0) rate (P ∗) rate (θ∗) time (t∗1) time (t∗2) period (T ∗) (AP ∗(P ∗, T ∗))

ca = 5, v0 = 11 72.47 0.274 36.51 45.63 49.83 1379.53

ca = 6, v0 = 12 79.39 0.280 35.66 44.57 48.78 1506.42

ca = 7, v0 = 13 86.33 0.285 34.91 43.63 47.83 1627.24

ca = 8, v0 = 14 93.27 0.290 34.22 42.78 46.98 1741.95

ca = 9, v0 = 14 93.27 0.290 34.16 42.70 46.90 1728.89
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• Table 3.11 shows that when ca and v0 increase simultaneously, the production rate (P ∗),
defective rate (θ∗) and average profit (AP ∗(P ∗, T ∗)) are also increasing respectively but
production period t∗1, screening period t∗2 and business period T ∗ are decrease.

3.6 Conclusion
In this chapter, an imperfect production inventory model has been considered in which the
screening of produced items has been incorporated with the advertisement dependent
demand. Normally, such type of model is very useful for the product of saree (cloths), the
commodities made by brass etc. specially for developing countries. Here advertisement and
demand rate both are increasing with time at a decreasing rate. A realistic approach of
screening has been adopted in which the screening rate is less than or equal to the production
rate as well as greater than the demand rate. Further, the rate of producing defective items has
been considered as a function of production rate. Then, to get the optimal production period,
production rate, rate of producing defective items and business period, the profit function has
been optimized by developing algorithms. Finally, the numerical illustrations with sensitivity
analysis have been given to study the feasibility of the proposed model simulating the effect
of changes in the various parameters involved in the objective function. This generalization is
vital to accommodate many more real world complications. So, from this study the following
conclusions can be drawn:

(i) The advertisement has a good impact to increase the customer demand.

(ii) Increasing the screening rate, the average profit can be increased by decreasing the de-
fective rate through less production. So, it can be concluded that screening rate and pro-
duction rate can not be increased simultaneously to get the optimal profit.

(iii) When depreciation rate increases, the selling rate (customer demand) decreases.
Henceforth, production rate, total business period and average profit decrease.

(iv) When the advertisement cost and demand rate of customer increases simultaneously,
initially the average profit increases, after that the average profit decreases. Because
at first advertisement attracts more customers. As a result, the demand rate increases.
But later, advertisement cost increases, the rate of demand does not increase as much as
previous due to market saturation. So from this study, any manufacturer company can
find the optimal advertisement rate and corresponding cost.

(v) If the salary of the labour (i.e., labour cost) is increased then the tool material cost is
decreased due to the sincere care of the labour. So, it is concluded that when the labour
cost is increased, then the average profit is also increased due to the more decrease to
the tool material cost.
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Chapter 4

An EPQ model with promotional demand

in random planning horizon: population

varying genetic algorithm approach1

4.1 Introduction

One of the key features of an Economic Production Quantity (EPQ) model is that the quality
level is not subject to control, i.e., the defective items sometimes may also be produced
during the production run time. These defective items may be discarded or sold at a reduced
price (cf. Das and Maiti [48], Gumasta et al. [83]) or may be repaired / reworked (cf. Manna
et al. [147]) and then that items are reached to the customers. In 2000, Salameh and
Jaber [184] developed an EPQ model with imperfect quality items. Then Goyal and
Cardenas-Barron [78] extended the EPQ model of Salameh and Jaber [184] considering the
rework of imperfect items. Khouja and Mehrez [114] and Khouja [115] extended the
imperfect production process with flexible production rates to reduce the imperfect rate.
Husseini et al. [92] and Sana et al. [185,186] also discussed the volume of flexibility policy in
production. In practice, it is observed that the screening process is essentially required to sort
out the imperfect items which are to be reworked. So, in most of the existing literature, the
imperfect quantities are either rejected or fully screened in a single cycle for a single item.
But, till now, no one has considered a multi-item multi-cycle EPQ model for imperfect
quality items with rework.

Moreover, the inflation and time value of money play an important role in long time

1This model published in Journal of Intelligent Manufacturing, SPRINGER, 27(1), 2016, 1-17.
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business concerns, especially in the developing countries. Therefore, the effect of inflation
and time value of money can not be ignored in real situations. To relax the assumption of
inflation, Buzacott [12] and Dey et al. ( [55], [57]) simultaneously developed an EOQ model
with a constant inflation rate to all associated costs. From these literature survey, it is
known that no one has considered inflation and time value money together in a
imperfect production inventory model.

In the present competitive market, to increase the sale of items, the inventory/stock is
decoratively displayed to attract the customers. In this context, many researchers considered
the stock dependent demand (cf. Chan et al. [20, 22], Das et al. [49]) instead of constant
demand (cf. Dey et al. [55], Jana et al. [105]). Wadhwa et al. [209] also established the
impact of product availability for impulse demand. All these factors are virtually depending
on selling price and mode or regularity of the advertisement. Basically, the demand rate may
change due to different market conditions. But, there may be some dedicated customers who
are accustomed to a particular brand and they wait for that product until it is available.
Therefore, the demand of any item must have a minimum value. So, the demand of an
existing product can be considered as D = A + B, where A represents the minimum
requirement from the loyal customers who buy this product regularly and B represents the
varying demand from the disloyal customers. The volume of these disloyal customers
depends on the attractive contract terms, e.g. long-term relationships, quantity discounts, low
selling price for high quality items, terms of payment and delivery. Another relevant and
important scenarios are often accompanied by an intensive promotion campaign or
advertisement. In all the existing literature, the different demand parametric values are taken
by intuitions (Barron and Sana [13]). But, till now, no one has considered the estimation of
different demand parameters from market survey in imperfect production inventory
model.

Normally, it is seen that the production inventory models are developed in infinite planning
horizon (cf. Wang and Chan [218]) because it is assumed that in production inventory process,
the related various parameters remain constant over the future infinite time. But, in reality, it
is not correct due to several reasons such as variation of inventory costs, changes of product
specifications and designs, technological changes due to environmental conditions, availability
of product, etc. Moreover, for seasonal products like fruits, vegetables, warm garments, etc.
business period may not be finite. Das et al. [49], Ali et al. [5] and others supported this idea.
Rather for seasonal products (like, different type of juice, medicines,etc) the planning horizon
is not fixed, it varies over the years and may be considered as a random variable with some
probability. Moon [155] considered such type of horizon with exponential distribution for an
EOQ model. Then, a lot of research works has been done in this field (cf. Roy et al. [182]).
Very recently, Jana et al. [105] considered the random planning horizon for an EOQ model
with shortages. But, none have considered the random planning horizon for a imperfect
production rework model. The detailed comparative statement of the proposed model with
the existing literature has been given in Table 4.1.
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Table 4.1: Summary of related literature for multi-item EOQ/EPQ models
Author(s) EOQ Production Demand Reworked of Inflation and Time Multi

/EPQ rate rate imperfect items value of money -item

Das et al. [49] EPQ constant stock dependent No No No

Jana et al. [105] EOQ NA stock dependent NA Yes Yes

Roy et al. [182] EOQ NA stock dependent NA Yes No

Yang et al. [232] EOQ NA stock dependent NA No No

Taleizadeh &

Nematollahi [203] EOQ NA uniform NA No No

Present model EPQ Demand advertise and selling Yes Yes Yes

dependent price dependent

In this chapter, a multi-item production inventory model with promotional effected demand
under space constraints has been formulated. In the underlying EPQ model, the production
rate has been considered on the basis of demand of the market and the production cost is
taken as Khouja function (Khouja [115]) in the random planning horizon. The present study
provides the rework facility of the unsatisfactory products. A constant rate of inflation is
also introduced in the uncertain time scale. To our knowledge, these issues have not been
considered together by any researcher earlier. Moreover, here we perform a numerical
study from a market survey with a statistical test which enhances the feasibility of the
model.

4.2 Notations and Assumptions

The following notations and assumptions have been used to developing the proposed
model:

4.2.1 Notations

The following notations are used throughout the entire chapter (for the j-th item).
qji (t) : On hand inventory of i-th cycle at time t for perfect quality, (i = 1, 2, ...., N j).
qjL(t) : On hand inventory of last cycle at time t for perfect quality.
Qj : Maximum inventory level for perfect quality.
P j : The production rate of each cycle.
νj : Advertisement effort.
Dj : Demand rate of each cycle for perfect quality.
N j : Number of fully accommodated cycles to be made during the prescribed time horizon.
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T j : Duration of a complete cycle.
tj1 : Duration of production in each cycle.
βj : Percentage of perfect quality.
δj : Percentage of reworking to be perfect quality items from imperfect quality items.
cjp : Production cost per unit.
cjsr : Screening cost per unit item.
rjc : Reworking cost per unit item.
hjc : The inventory holding cost per unit time for perfect quality item.
sj : Selling price per unit for perfect quality item.
r : The discount rate.
k : The inflation rate which is varied by the social economical situations.
R : (=r-k) The discount rate minus the inflation rate.
H : The length of time horizon.
M : Total number of items.
aj : Space required for storing j-th item per unit.
B : Total space available in the system.

4.2.2 Assumptions
The following assumptions have been used to develop this model.

(i) In this production system, the multiple items are produced in the form of perfect and
imperfect quality. The perfect quality items are directly ready for sale and some of the
imperfect quality items are reworked to make as good as perfect. The rest imperfect
quality items which may be too much expensive to make as perfect quality items, are
disposed.

(ii) In this model the production rate (P j) has been considered as P j = P j
0 + P j

1D
j

where (a) P j
0 = Minimum production (which is constant) per unit time and (b) P j

1D
j =

The portion of the production which varies directly from the market demand per unit
time.

(iii) Here, demand of the items are inversely and directly proportional to the selling price
and advertisement respectively with constant coefficients which are estimated from the
market survey. The mathematical form of the demand rate of each item is:
Dj(νj, sj) = Dj

0 + Dj
1(sj) + Dj

2(νj), where (a) Dj
0 = minimum demand(which is

independent of advertisement effort and selling price) for each cycle.
(b) Dj

1(sj) = Aj s
j
max−sj
sj−sjmin

where Aj is positive constant and sj ∈ [sjmin, s
j
max] for each j.

Here d
dsj
Dj

1(sj) = Aj
sjmin−s

j
max

(sj−sjmin)2
< 0. This shows that the demand Dj

1(sj) is decreasing

function of the selling price sj . When sj = sjmax then Dj
1(sj) = 0 and when sj = sjmin

then the market has unlimited demand. i.e., Dj
1(sj) ∈ [0,∞), for sj ∈ [sjmin, s

j
max] for

j=1,2,...,M.
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(c) Dj
2(νj) = κj(1 − 1

νj+1
) where κj is positive constant for each j and it is estimated

from previous data by a curve fitting method. Here d
dνj
Dj

2(νj) = κj

(νj+1)2
> 0 and

d2

dνj2
Dj

2(νj) = −2κj

(νj+1)3
< 0 which shows that Dj

2(νj) is increasing with νj and the rate

of increasing is decreasing for each j. When νj = 0, Dj
2(νj) = 0 and νj → ∞,

Dj
2(νj) → κj . i.e., the demand is κj (which is maximum) for unlimited advertisement

effort. i.e., Dj
2(νj) ∈ [0, κj], νj ∈ [0,∞) for j=1,2,...,M.

(iv) The ratio of perfect and imperfect quantity items and the rework rate are constant through
out the time horizon.

(v) The length of time horizon, H is a random variable and the corresponding real value is
h which follows an exponential distribution with probability density function (p.d.f )

f(h) =

{
λe−λh , h ≥ 0
0 , otherwise

(4.1)

Here, λ(> 0) is the parameter of the distribution.

(vi) The time horizon completely accommodates first N j cycles and end during (N j + 1)th
cycle.

(vii) Lead time is negligible and shortages are not allowed.

(viii) The effects of inflation and time value of money have been considered.

(ix) The initial and terminal inventory levels in each cycle are zero.

(x) The promotional effort is an important management strategy to introduce a new product
to the customer when it is lunched to the market. The promotional efforts are free gift,
discount offer, delivery facilities, better services and advertising etc. Now-a-days, this
strategy is applied for any management system.

(xi) Per unit production cost follows Khouja [115] function and it is of the form: cjp(P
j) =

cjr + Lj

(P j)ηj
+ (P j)ρjM j; where cjr is the raw material cost which is independent of

production rate. Lj is the labor charge andM j is the tool wear and tear cost respectively.
Here, ηj and ρj are so chosen to best fit the production cost function. Also, Lj

(P j)ηj
is a

per unit cost component that decreases with increase of the production rate. (P j)ρjM j

is a per unit cost component that increases with the production rate and that may result
from the increased tool at a higher production rate.

4.3 Mathematical Formulation of the Proposed Model
In this model, simultaneously more than one item are produced in both perfect and imperfect
forms. The produced items are screened 100% and the repairable items are reworked and
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returned to the inventory of the good items. The perfect quality items are disposed to the
customers as per their demand rate (as discussed in assumption (iii)). Such EPQ model is
formulated in random time horizon scale which is taken as exponential distribution. The model
also assumes the existence of a pair of mutually exclusive events for the last cycle. For the
development of this model, we assume the time horizon H (random variable) to accommodate
completely N j cycles of equal time period T j , for j-th item.

4.3.1 Formulation for i-th (1 ≤ i ≤ N j) Cycle of j-th Item

In this case, the initial stock of the i-th cycle is zero and it starts the production with a rate
P j . As the production and rework continues, the inventory begins to pile up continuously after
meeting the demand of rate (Dj) of the customers. The production of the i-th cycle continues
upto the time (i− 1)T j + tj1 and again it starts at time iT j for next cycle. Each cycle ends with
zero inventory. During the cycle period [(i − 1)T j, iT j], the inventory rate increases with the
production rate of perfect item and the rework rate of the imperfect item as well as it decreases
along with the demand rate.
Hence, the differential equation to describe the inventory level qji (t) ∈ (i− 1)T j ≤ t ≤ iT j is
given by

dqji (t)

dt
=

{
βjP j + δj(1− βj)P j −Dj, (i− 1)T j ≤ t ≤ (i− 1)T j + tj1
−Dj, (i− 1)T j + tj1 ≤ t ≤ iT j

subject to the boundary conditions: qji [(i− 1)T j] = 0 and qji [iT
j] = 0

The above differential equation is linear with unit integrating factor. Therefore, the inventory
level is given by the solution:

qji (t) =


[
{βj + δj(1− βj)}(P j

0 + P j
1D

j)

−Dj
]
[t− (i− 1)T j], (i− 1)T j ≤ t ≤ (i− 1)T j + tj1

Dj(iT j − t), (i− 1)T j + tj1 ≤ t ≤ iT j

(4.2)

The above qji (t) is a continuous function on the defined range of interval [(i − 1)T j, iT j],
therefore

qji ((i− 1)T j + tj1 − 0) = qji ((i− 1)T j + tj1 + 0)

i.e.,{βj + δj(1− βj)}(P j
0 + P j

1D
j)tj1 = DjT j (4.3)

Therefore, the present value of production cost of the jth item during the ith (1 ≤ i ≤ N j)
cycle is given by

PCj
i = cjp

∫ (i−1)T j+tj1

(i−1)T j
P je−Rt dt =

cjp
R

(P j
0 + P j

1D
j)(1− e−Rt

j
1)e−R(i−1)T j
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Present value of screening cost of the ith (1 ≤ i ≤ N j) cycle is given by

SCj
i = cjsr

∫ (i−1)T j+tj1

(i−1)T j
P je−Rt dt =

cjsr
R

(P j
0 + P j

1D
j)(1− e−Rt

j
1)e−R(i−1)T j

Present value of reworked cost of the ith (1 ≤ i ≤ N j) cycle is given by

RCj
i = rjc

∫ (i−1)T j+tj1

(i−1)T j
δj(1− β)P je−Rt dt

=
rjc
R
δj(1− βj)(P j

0 + P j
1D

j)(1− e−Rt
j
1)e−R(i−1)T j

Present value of holding cost of the inventory for the ith (1 ≤ i ≤ N j) cycle is given by

HCj
i = hjc[

∫ (i−1)T j+tj1

(i−1)T j
qji (t)e

−Rt dt+

∫ iT j

(i−1)T j+tj1

qji (t)e
−Rt dt]

=
hjc
R2

[
{βj + δj(1− βj)}(P j

0 + P j
1D

j)−Dj
]{

1− (1 +Rtj1)e−Rt
j
1

}
e−R(i−1)T j

+
hjcD

j

R2

[
e−RT

j − {R(T j − tj1) + 1}e−Rt
j
1

]
e−R(i−1)T j

Present value of sales revenue for the ith (1 ≤ i ≤ N j) cycle is given by

SRj
i = sj

∫ iT j

(i−1)T j
Dje−Rt dt =

Djsj

R
(1− e−RT j)e−R(i−1)T j

Therefore, total profit after completing N j full cycles is given by

TP (T j) =
Nj∑
i=1

[
SRj

i − PC
j
i − SC

j
i −RC

j
i −HC

j
i

]
=

[sjDj

R
(1− e−RT j)− 1

R
{cjp + cjsr + rjcδ

j(1− βj)}(P j
0 + P j

1D
j)(1− e−Rt

j
1)

− h
j
c

R2

{
{βj + δj(1− βj)}(P j

0 + P j
1D

j)−Dj
}
{1− (1 +Rtj1)e−Rt

j
1}

−h
j
cD

j

R2

{
e−RT

j − {R(T j − tj1) + 1}e−Rt
j
1

}]1− e−NjRT j

1− e−RT j
, (See Appendix B).
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Since f(h) is the p.d.f of the planning horizon H , therefore the expected total profit in N j

complete cycles is given by

E[TP (T j)] =
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
TP (N j, T j)f(h) dh

=
[sjDj

R
(1− e−RT j)− 1

R
{cjp + cjsr + rjcδ

j(1− βj)}(P j
0 + P j

1D
j)(1− e−Rt

j
1)

− h
j
c

R2

{
{βj + δj(1− βj)}(P j

0 + P j
1D

j)−Dj
}
{1− (1 +Rtj1)e−Rt

j
1}

−h
j
cD

j

R2

{
e−RT

j − {R(T j − tj1) + 1}e−Rt
j
1

}] e−λT
j

1− e−(λ+R)T j
, (See Appendix B).

4.3.2 Formulation for Last Cycle

In this case, the initial stock of the last cycle is zero and starts production with rate P j . As
production and rework are continue, inventory begins to pile up continuously after meeting
demand with rate Dj . Production and reworking of last cycle stop at time N jT j + tj1. During
the time [N jT j , N jT j + tj1], the inventory rate increases with production rate of perfect item,
rework rate of the imperfect item and decreases with demand rate. And during the time
[N jT j + tj1, (N j + 1)T j ] inventory level decreases with demand rate. Hence, the differential
equation describing the inventory level qjL(t) in the interval N jT j ≤ t ≤ (N j + 1)T j is given
by

dqjL(t)

dt
=

{
βjP j + δj(1− βj)P j −Dj, N jT j ≤ t ≤ N jT j + tj1
−Dj, N jT j + tj1 ≤ t ≤ (N j + 1)T j

subject to the boundary conditions: qjL(N jT j) = 0 and qjL((N j + 1)T j) = 0.
The solution of above differential equation is given by

qjL(t) =


[
{βj + δj(1− βj)}(P j

0 + P j
1D

j)

−Dj
]
(t−N jT j), N jT j ≤ t ≤ N jT j + tj1

Dj
{

(N j + 1)T j − t
}
, N jT j + tj1 ≤ t ≤ (N j + 1)T j

(4.4)

The above equation indicate the amount of stock at any time during the last cycle. More-over,
the parameter h present in the expression of last cycle is a random variable follows exponential
distribution (as discuss in assumption (v)). For simplicity we consider two cases depending
upon the cycle length.
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Case-I: when N jT j ≤ h < N jT j + tj1

Figure 4.1: Graphical Representation of Inventory Model for case-I

As like earlier, the present value of production cost of the jth item for the last cycle is given
by

PCj
L1

= cjp[

∫ h

NjT j
P je−Rt dt] =

cjp
R

(P j
0 + P j

1D
j)(e−RN

jT j − e−Rh)

Present value of screening cost of the last cycle is given by

SCj
L1

= cjsr[

∫ h

NjT j
Pe−Rt dt] =

cjsr
R

(P j
0 + P j

1D
j)(e−RN

jT j − e−Rh)

Present value of reworked cost of the last cycle is given by

RCj
L1

= rjc [

∫ h

NjT j
δj(1− βj)P je−Rt dt] =

rjc
R
δj(1− βj)(P j

0 + P j
1D

j)(e−RN
jT j − e−Rh)

Present value of sales revenue for the last cycle is given by

SRj
L1

= sj
∫ h

NjT j
Dje−Rt dt =

Djsj

R
(e−RN

jT j − e−Rh)

Present value of holding cost of the inventory for the last cycle is given by

HCj
L1

= hjc[

∫ h

NjT j
qjL(t)e−Rt dt]

=
hjc
R2

[{
βj + δj(1− βj)

}
(P j

0 + P j
1D

j)−Dj
][
e−RN

jT j − {1 +R(h−N jT j)}e−Rh
]
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Case-II: when N jT j + tj1 ≤ h < (N j + 1)T j

Figure 4.2: Graphical Representation of Inventory Model for case-II

Similarly, the present value of the production cost for the last cycle is given by

PCj
L2

= cjp

∫ NjT j+tj1

NjT j
P je−Rt dt =

cjp
R

(P j
0 + P j

1D
j)(1− e−Rt

j
1)e−RN

jT j

Present value of screening cost of the last cycle is given by

SCj
L2

= cjsr

∫ NjT j+tj1

NjT j
P je−Rt dt =

cjsr
R

(P j
0 + P j

1D
j)(1− e−Rt

j
1)e−RN

jT j

Present value of reworked cost of the last cycle is given by

RCj
L2

= rjc

∫ NjT j+tj1

NjT j
δj(1− βj)P je−Rt dt =

rjc
R
δj(1− βj)(P j

0 + P j
1D

j)(1− e−Rt
j
1)e−RN

jT j

Present value of holding cost of the inventory for the last cycle is given by

HCj
L2

= hjc[

∫ NjT j+tj1

NjT j
qjL(t)e−Rt dt+

∫ h

NjT j+tj1

qjL(t)e−Rt dt]

=
hjc
R2

[
{βj + δj(1− βj)}(P j

0 + P j
1D

j)−Dj
]{

1− (1 +Rtj1)e−Rt
j
1

}
e−RN

jT j

+
hjcD

j

R2
[1−R{(N j + 1)T j − h}]e−Rh +

hjcD
j

R2
[(T j − tj1)R− 1]e−RN

jT j .e−Rt
j
1

Present value of sales revenue for the last cycle is given by

SRj
L2

= sj
∫ h

NjT j
Dje−Rt dt =

Djsj

R
(e−RN

jT j − e−Rh)

Hence, expected production cost for the last cycle (see Appendix B) is given by

E[PCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
PCj

Lf(h) dh

=
cjp(P

j
0 + P j

1D
j)

R{1− e−(R+λ)T j}

[ R

R + λ
{1− e−(R+λ)tj1} − (1− e−Rt

j
1)e−λT

j

)
]
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Expected screening cost for the last cycle (see Appendix B) is given by

E[SCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
SCj

Lf(h) dh

=
cjsr(P

j
0 + P j

1D
j)

R{1− e−(R+λ)T j}

[ R

R + λ
{1− e−(R+λ)tj1} − (1− e−Rt

j
1)e−λT

j

)
]

Expected reworked cost for the last cycle (see Appendix B) is given by

E[RCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
RCj

Lf(h) dh

=
δjrjc(1− βj)(P

j
0 + P j

1D
j)

R{1− e−(R+λ)T j}

[ R

R + λ
{1− e−(R+λ)tj1} − (1− e−Rt

j
1)e−λT

j
]

Expected holding cost for the last cycle is given by

E[HCj
L] =

∞∑
Nj=0

∫ NjT j+tj1

NjT j
HCj

L1
f(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj1

HCj
L2
f(h) dh

=
hjc

R2{1− e−(R+λ)T j}

[
{βj + δj(1− βj)}(P j

0 + P j
1D

j)−Dj
][

(1− e−λt
j
1)

+
λ

R2(R + λ)2

{
{R(R + λ)tj1 + λ}e−(R+λ)tj1 − λ

}
+ {1− (1 +Rtj1)e−Rt

j
1}(e−λt

j
1 − e−λT j)

]
− λhjcD

j

R2(R + λ)2{1− e−(R+λ)T j}

[
λ{e−(R+λ)T j − e−(R+λ)tj1}+R(R + λ)e−(R+λ)tj1

]
+

hjcD
j

R2{1− e−(R+λ)T j}

[
{(T j − tj1)R− 1}{e−λt

j
1 − e−λT j}e−Rt

j
1

]
Expected sales revenue from the last cycle (see Appendix B) is given by

E[SRj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
SRj

Lf(h) dh

=
Djsj

R{1− e−(R+λ)T j}

[
(1− e−λT j) +

λ

R + λ
(e−(R+λ)T j − 1)

]

4.3.3 Objective of the Proposed Model
Therefore, expected total profit in the last cycle for jth item is given by the positive differences
of the costs from the sales revenue, i.e.,

E[TP j
L(T j)] = E[SRj

L]− E[PCj
L]− E[SCj

L]− E[RCj
L]− E[HCj

L]
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Now, total expected profit during the time horizon is given by adding the total expected profit
of N j complete cycles and expected total profit for last cycle and summing over the number
of items. i.e.,

E[TP ] =
M∑
j=1

E[TP j(T j)] +
M∑
j=1

E[TP j
L(T j)] (4.5)

In the present chapter the decision manager with its limited space investigate the optimum
decision variables T j in such a manner that the total expected profit is maximum. Hence the
problem becomes:

Maximize E[TP ] =
M∑
j=1

E[TP j(T j)] +
M∑
j=1

E[TP j
L(T j)] (4.6)

Subject to the constraint:
M∑
j=1

ajQj ≤ B (4.7)

4.4 Solution Procedure
The proposed model is numerically solved through following steps:

Step-1: Consider the minimum demand rates of the items Dj
0.

Step-2: Estimate the other demand parameters.

Step-3: Receive the other input parameters.

Step-4: Hypothetically, propose the available space.

Step-5: With the help of above data, decision variables T 1, T 2 are optimized through GAVP,
described in section 2.4.4.

4.5 Numerical Illustration
To find the different input parameters of the demand function, we consider the market survey
at “Sarama Steel Furniture, Midnapore, Paschim Medinipur, W.B., India”, for two different
items: steel almiraha and steel bed. The minimum demand be Dj

0 estimated by considering
the minimum demand for the year-2012, D1

0=49 unit and D2
0=47 unit.

The second term of demand expression Dj
1(sj), s1

min=Rs. 72 s2
min=Rs. 75. Other constant

parameters Aj and sjmax are estimated using the method curve fitting from the average daily
demands of 7 months ( during this months the selling prices are different).
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Table 4.2: Market survey for estimating D1
1(s1)

Markets→ Jan’12 Feb’12 Mar’12 Apr’12 May’12 Jun’12 Jul’12

s1(Rs.) 88 89 90 91 92 93 94

D1(unit) 55.8 54.6 53.1 52.9 52.3 51.5 51.3

Following Appendix B, the estimated values are: for the first item A1 = 10.20, s1
max =

Rs. 98.30, and similarly for the 2nd item A2 = 7, s2
max = Rs. 98.00. Again, the demand

parameter kj present in the third term are also estimated from the daily market demand about
7 months ( January, 2007 to July, 2007) (This survey is made in the period, when selling price
is fixed at Rs. 91) by increasing advertisement efforts month to month.

Table 4.3: Market survey for estimating D1
2(ν1)

Days→ 1 2 3 4 5 6 7

ν1 8 11 14 17 20 23 26

D1(unit) 58.3 58.8 59.1 59.5 59.8 60.2 60.8

Following Appendix B, the estimated value: for the 1st item k1 = 6.97 and similarly for the
2nd item k2 = 4.0. Other input parameters are: λ = 0.1009, R = 0.39, D1 = 59.56unit,
D2 = 51.81unit, β1 = 0.95, β2 = 0.94, δ1 = 0.86, δ2 = 0.87, η1 = 0.3, η2 = 0.83, L1 = 6,
L2 = 16, M1 = 2, M2 = 2.5, ρ1 = .03, ρ2 = .031, c1

r = Rs. 34, c2
r = Rs. 28, ν1 = 20,

ν2 = 16, s1 = Rs. 91, s2 = Rs. 95, r1
c = Rs. 2, r2

c = Rs. 2.02, c1
sr = Rs. 1.5, c2

sr = Rs. 1.25,
h1
c = Rs. 2.10, h2

c = Rs. 2.12.
Now, using above input values we get the optimum expected profit which given computational
result Table 4.4.

Table 4.4: Optimum results of the illustrated model

ITEM T j(unit) tj1(unit) Qj(unit) P j(unit) E(PCj)(Rs.) ETP (Rs.)

ITEM-1 7.60 3.67 234.08 124.20 37.72 6914.45

ITEM-2 4.53 1.97 132.85 120.31 31.19

The graphical representation of the fitness value of ETP for different number of generations
are given in the following figure:
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Figure 4.3: ETP vs no of generation

Figure 4.4: Selling price vs production rate Figure 4.5: Selling price vs inventory level

Figure 4.6: Demand rate vs inventory level Figure 4.7: Production rate vs inventory level
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4.5.1 Sensitivity Analysis

The change in the values of parameters may happen due to uncertainties in any
decision-making situation. In order to examine the implications of these changes, the
sensitivity analysis will be of great help in decision-making. The numerical example given in
the preceding section, the sensitivity analysis of various parameters such as advertisement
efforts (v1, v2), inflation effect (R) and mean (λ) of exponential distribution has been done.
The optimal values of T 1 and T 2 along with the maximum expected total profit have been
calculated for different values of v1, v2, R and λ. The results of sensitivity analysis are
summarized in Table 4.5 and Table 4.6.

Table 4.5: Sensitivity analysis on advertisement parameters ν1 and ν2

Advertisement effort Advertisement effort Demand rate Demand rate Expected total profit

1st item (ν1) 2nd item (ν2) 1st item (D1) 2nd item (D2) (ETP)

14 59.522 51.783 6907.36

15 59.522 51.800 6908.84

18 16 59.522 51.814 6910.15

17 59.522 51.827 6911.31

18 59.522 51.839 6912.36

14 59.540 51.783 6909.62

15 59.540 51.800 6911.09

19 16 59.540 51.814 6912.41

17 59.540 51.827 6913.57

18 59.540 51.839 6914.62

14 59.557 51.783 6911.66

15 59.557 51.800 6913.14

20 16 59.557 51.814 6914.45

17 59.557 51.827 6915.61

18 59.557 51.839 6916.66

14 59.572 51.783 6913.51

15 59.572 51.800 6914.99

21 16 59.572 51.814 6916.30

17 59.572 51.827 6917.47

18 59.572 51.839 6918.51

14 59.585 51.783 6915.20

15 59.585 51.800 6916.68

22 16 59.585 51.814 6917.99

17 59.585 51.827 6919.16

18 59.585 51.839 6910.21
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Table 4.6: Sensitivity analysis when R and λ changes
Percentage change in R Percentage change in λ Percentage change in Percentage change in

[T 1, T 2] expected total profit

-7.69 0 [0, +8.34] +6.76

-2.56 0 [0, +2.63] +2.19

0 0 [0, 0] 0

+2.56 0 [0, -2.5] -2.14

+7.69 0 [0, -7.14] -6.23

0 -0.20 [+0.2, 0] -0.04

0 -0.30 [+0.3, 0] -0.06

0 -0.40 [+0.4, 0] -0.08

0 +1.09 [-1.08, 0] +0.22

0 +2.08 [-2.04, 0] +0.41

4.5.2 Discussion and Managerial Insights
The proposed model and its numerical character help the decision maker to make different
managerial decisions. Here, the demands of the items are affected by more than one influence
(advertisement and selling price) and the affections are find-out by method of estimation.
From Table 4.5, it reveals that with the frequency of advertisement the market demand varies
proportionally, which gives more profit for more advertisement. In numerical point of view,
the following decisions can also be made, which are also reflected from the figures
(i) Figure 4.4 shows that higher selling price implies lower production rate.
(ii) Figure 4.5, 4.6 and 4.7 indicate that inventory is a convex function of selling price,
demand rate and production rate respectively.
Significant management implications for the practical application of the proposed approach
are as follows. The obtained optimal order quantity is a crisp and precise solution, although
the inventory problem is stochastic. This is important to decision-makers since one of their
major concerns is how to find the precise target values for order quantities when some data
are uncertain in terms of stochastic. Moreover, the proposed research work lights to the newly
established companies with considerable input parameters.

4.5.3 Comparison between the Demands by ANOVA Test
Comparison test of the demands of the 1st item present in Table 4.2 and Table 4.3 with constant
demandD1

0 = 49 by ANOVA test. For convenience, letX1(i) = D1
0,X2(i) = D1(i)(presented
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in Table 4.2) and X3(i) = D1(i)(presented in Table 4.3), for i = 1, 2,. . . ,7.
Then, the corresponding means are, X̄1=49, X̄2 = 53.07 and X̄3 = 59.5.
The total sum of squares be SSt = 412.73, with degree of freedom dft = 20.
Between groups sum of squares be SSb = 329.36, with degree of freedom dfb = 2.
And within groups sum squares be SSw= 20.37, with degree of freedom dfw = 18.
Therefore, F =

s2b
s2w

with (k-1, N-k)d.f where s2
b = SSB

k−1
and s2

w = SSW
N−k is given in the

following Table 4.7.

Table 4.7: Table for different demand pattern ANOVA test

Sources of variation Sums of squares df Variances F

Between groups 329.36 2 196.18 173.31

Within groups 20.37 18 1.13

Total 349.73 20

The critical F values (df=2, 18) are quoted below.
F.05(2,18) = 3.55, F.01(2,18) = 5.61

As the computed F is found to be higher than the critical F for 0.01 level also, the computed
F is significant beyond the 0.01 level (P < 0.01). Hence, there is a significant added treatment
component between the groups.

4.5.4 Practical Implications
A manufacturing system may be illustrated as follows: Let an automobile industrial company
produces two different types of vehicles. The company has a showroom of fixed space to store
the vehicles (say, 500 acre land). Each of the items has its different demand rate and other
parameters. The decision managers of the company decide that how much of each quantity is
produced? and what will be the length or frequency of the production cycle ? In such a real
life problem, the present model can be implemented.

4.6 Conclusion
For the first time, this model presents a production inventory model for multi-item with
constant rate of reworking the defective items in finite time horizon employing the net present
value in the objective function. Moreover, the time horizon is randomly distributed. The
demands of the items have a promotional effort due to the selling price of the items and
frequency of the advertisement. The proposed model provides an optimal cycle length in the
random time period, production quantity on the basis of total expected profit. The described
model is optimized through the population varying genetic algorithm. Finally, numerical
examples are considered through a market survey.
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Chapter 5

A deteriorating manufacturing system

considering inspection errors with

discount and warranty period dependent

demand

5.1 Introduction
The classical economic production quantity (EPQ) models assume that the production system
is free of failures and all items produced are perfect [194]. Many research efforts have been
made to extend the classical EPQ model by loosening various assumptions. In real world
manufacturing system, the quality of the product is not always perfect but it is dependent on
the product design and stability of the production process. However, the production process
starts in an in-control state by producing perfect items, and then it may become out-of-control
state by producing mixture of perfect and imperfect items due to deterioration of machinery
system as well as other factors. Porteus [166] was one of the researchers to consider the
situation where the production process may shift from an ‘in-control state to an
‘out-of-control state with a given probability. Rosenblatt and Lee [181] considered an EPQ
model that deals with imperfect quality. They assumed that at some random point in time the
process might shift from an in-control to an out-of-control state, and a fixed percentage of
defective items are produced. Liao [135] studied imperfect production processes that require
maintenance. They considered two states, namely the in-control and the out-of-control states
of the production process. It is seen that the maintenance process improves a production
system to a perfect state.
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Most of researchers on the EPQ models with imperfect production process considered the
inspection process for searching the defective items to be perfect i.e., error-free. But in
general, this assumption is not true in real business world. Practically, the inspection process
is not error free due to different types of factors related to machine and human factors in the
system. It may be a possibility of Type I error (falsely rejecting non-defective items) or Type
II error (falsely accepting defective items) in any industry. Salameh and Jaber [184] studied a
joint lot sizing and inspection policy for an EOQ model when a random proportion of the
units in a lot are defective. They assumed a 100% screening process with no human error.
Raouf et al. [172] is one of the researchers of inspection policies who showed for the first
time that inspection process is not entirely correct as it is controlled by human. Raz and
Bricker [174] considered inspection errors during screening in an production process.
Rentoul et al. [175] studied several ways of inspection errors in manufacturing system which
are made by comparing inspection points with a solid model of the desired component. Wang
and Sheu [212] considered inspection errors on an optimal production, inspection and
maintenance policy. An inventory model in an imperfect production process with the
preventive maintenance and inspection errors is considered by Darwish and Ben-Daya [47].
Duffuaa and Khan [66] studied the optimal inspection policy under different kinds of
misclassifications. Wang [215] considered inspection policy with two types of inspection
errors to accept the economic production quantity for real world applications. Khan et
al. [112] generalized Salameh and Jaber’s [184] model by considering the imperfect
screening process and adopting the approach of Raouf et al. [172] to depict the
misclassifications. Hsu and Hsu [94] developed an economic order quantity (EOQ) model
with imperfect quality items, inspection errors, shortages and sales returns.

Any manufacturing system produces perfect as well as defective items. A reworking cost
is allowed to make the defective items as new as the perfect one through some reworks. This
rework policy plays an important role in eliminating waste and affecting the cost of
manufacturing. Therefore, determining the optimal lot size in a system that allows for rework
is a valuable objective for maximizing profit. Hayek and Salameh [97] and Chiu [38] studied
the determination of optimal production lot size with reworking of defective items. Flappera
and Teunterb [73] showed how reworking plans could reduce the costs keeping the
environment from disposal pollution. Chen [30] and Chiu et al. [38] proposed a more general
model that allowed a certain proportion of reworked units to be scrapped.

In practice, the manufacturer and retailer usually offer a warranty for all selling items for
the specific warranty period due to increasing the selling rate and reliability of product.
Warranty period of a product is a duration in which a purchased product provides satisfactory
performance to the customer. If any purchased product failed to work within its warranty
period, then the servicing center replaces it with a new item or repair the product by replacing
one or more parts. Due to this reason, a manufacturer considers warranty cost if there exists
free-warranty on selling items in the warranty period. Wang and Sheu [212] investigated the
imperfect production model with a free warranty for the discrete unit item. Wang [213]
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studied the production process problem to consider the sold product with free warranty. Yeh
et al. [235] developed a production inventory model considering the free warranty and
derived the optimal production cycle time.

Recently, the most of the inventory models have generally considered the various demand
functions for the business period, such as constant, stock-dependent, time dependent, selling
price dependent etc. But in real life, the assumption is not always true in general. The
demand may vary with selling price discount and warranty period of the product. The
retailers and users are both lured by the displays, advertisements, selling price discount and
warranty period. For example, mobile, computers etc., lead to greater sales for selling price
discount and warranty period. From previous researches, inventory models incorporating
warranty-dependent demand have been widely studied. Chung [44] considered the economic
production quantity (EPQ) model with the warranty period-dependent demand, effects on
inspection scheduling and supply chain replenishment policy. Nevertheless, the integration
issue in two entities, both the warranty period and selling price discount effect on demand
and sales is ignored in above researches. First time in this model, we consider a new type
of selling rate which depends on both selling price discount and warranty period. The
detailed comparative statement of the proposed model with the existing literature has been
given in Table 5.1.

Table 5.1: Summary of related literature for EPQ/EOQ models
Author(s) Production Imperfect Inspection Time (τ ) which Rework of Warranty Warranty policy

inventory items error shifts in-control imperfect Policy and discount

model inventory to out-control item dependent demand

Chakraborty and Giri [17]
√ √ √ √

Chung [44]
√ √ √

Hayek and Salameh [97]
√ √ √

Hsu and Hsu [94]
√ √

Khan et al. [112]
√ √

Liao [135]
√ √ √

Ma et al. [146]
√ √ √

Rosenblatt and Lee [181]
√ √

Taheri-Tolgari et al. [199]
√ √ √ √

Wang and Sheu [212]
√ √ √ √

Wang [213]
√ √ √ √

Yeh et al. [235]
√ √ √

Present model
√ √ √ √ √ √ √

In this chapter, we consider imperfect production inventory model in which the
production process shifts from in-control state to out-of-control state at any random time.
Also we consider discount and warranty period dependent selling rate with replenishment
policy. Here, we develop a new type inspection errors to inspect the imperfect items.
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Type I error has possibilities of two types such as (i) when a non-defective items are rejected
and (ii) when a non-defective items are submitted in reworked cell. Here, rejecting a
non-defective item manufacturer loses the good one. For the second case, there is no loss of
manufacturer since it will be detected as a non-defective in the reworked cell again.
Simultaneously, Type II error is also considered in this model where the acceptance of the
defective item has been considered as a non-defective item and due to that it has a risk to a
customer. Due to Type-I inspection error, a conforming item may be falsely selected as
defective item. As a result, it may be put into (i) rejected item’s cell, where the item is treated
as rejected or (ii) reworked item’s cell, where the item is prepared for reworking, but without
any rework the item is transferred to the conforming item cell. Due to Type-II inspection
error, a defective item (either rejected or reworkable item) may be falsely accepted as
non-defective item. As a result (i) a rejected item may be sold to the customer as a
non-defective item and obviously it is returned back from the market. Then a new
non-defective item be replaced instead of the rejected item to the customer by the
manufacturer or (ii) a reworkable item may be sold to the customer as a non-conforming item
without any necessary rework and it is also returned back to the manufacturer from the
market. Then after some necessary reworks, the manufacturer returns back to the customer
with full satisfaction.

5.2 Notations and Assumptions
The following notations and assumptions have been used to develop the model.

5.2.1 Notations
The following notations are used throughout the entire chapter.
P : Production rate.
D : Selling rate of manufacturer/demand rate customer.
η : Selling price discount parameter.
ρ : Effective parameter of demand on warranty period.
τ : Random time with mean 1

λ
after which the system shifts from an “in-control” state to

an “out-of-control” state for manufacturer.
θ1 : Percentage of defective items produced in in-control state.
θ1 : Percentage of defective items produced in out-of-control state (θ1 < θ2).
δ : Probability of rework rate of defective units per unit time.
cp : Production cost per unit.
csr : Screening cost per unit item.
hc : The inventory holding cost per unit time for products in production center.
cw : Average warranty cost for selling item.
s : Selling price per unit item sold for perfect quality.
cr : Average reworking cost per unit item for manufacturer.
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cd : Disposal cost per unit.
A : = (A0 + K

Pt1
), set up cost of retailer.

cv : Development cost.
m1 : Probability of a Type I error (classifying a non- defective item as defective).
m2 : Probability of a Type II error (classifying a defective item as non-defective).
f(τ) : Probability density function of τ .
φ(δ) : Probability density function of δ.
φ(m1): Probability density function of m1.
φ(m2): Probability density function of m2.
ca : The cost of accepting a defective item, where ca = ct + cl.
t1 : Production period.
tw : Warranty period of selling item.
T : Total business period.

5.2.2 Assumptions

The proposed model is based on the following assumptions.

(i) In a production system, a manufacturer produces a mixture of defective and
non-defective quality items and some portion of defective items are reworked at a cost.

(ii) In any production system, it is seen that initially in the production cycle, the production
process is in an in-control state, because every factors associated with the system are
fresh. But, due to continuous running of system these factors gradually losses their
perfectness. So, after some time (τ ) of production, the production process may shift
from the in-control state to out-control state. The time (τ ) is an exponential distributed
with a finite mean.

(iii) When the production process shifts to out-control state then this shift continues upto the
end of the production period. The production process will be reset to an in-control state
at the beginning of next production period.

(iv) According to assumption (ii), every one connected to the production has capability to
give its perfection to produce an item perfectly. So, during the period (0, τ), obviously
the number of imperfect items is small in amount but after this period it will be high.
Therefore, it is assumed that the defective rate (θ1) in in-control state is less than the
defective rate (θ2) in out-control state and is given by

θ =

{
θ1, 0 ≤ t ≤ τ
θ2, τ ≤ t ≤ t1

(5.1)

where θ1 and θ2 (θ1 < θ2) be the percentages of defective items to be produced in in-
control state and out-of-control state respectively. Here the defective rates θ1 and θ2 are
considered to be distributed uniformly with a finite mean and variance.
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(v) In any production system, it is seen that every produced item may not be 100% perfect
due to different factors involved in the system such as machine, raw-materials,
unexpertised labour etc. So, there is necessary to inspect each item after production to
check whether the item is perfect or not. But, after inspection there may exist some
possibility that a perfect item is treated as an imperfect item and an imperfect item may
be considered as a perfect item which are known as type-I error and type-II error
respectively. According to the production process proposed in the system, the defective
items are send to the reworked cell to convert into the non-defective items but, under
type-I error an item may be truly non-defective or defective. If it is non-defective then
it is send to the inventory of non-defective items after checking from the reworked cell.
Other hand, if it is defective then it is reworked on item and then send to the inventory
to the non-defective items, otherwise it is rejected completely from the rework cell.
Again in case of type-II error, an defective item is delivered as a non-defective item to
the customers. So after checking it by customer, it is send back to the manufacturer.
Therefore under type-II error the manufacturer is compelled to bear an extra cost as a
miss-classification cost.

(vi) We consider the warranty cost (cw) per unit item is not constant, it is depend on the
production period (tw) and is given by

cw = a+ btw (5.2)

(vii) Selling price (s) per unit item sold for non-defective item is not fixed always, we consider

s =

{
s0 − ηs0, 0 ≤ t ≤ t1
s0, t1 ≤ t ≤ T

(5.3)

where η is the discounts percentage of selling price .

(viii) Production rate is constant.

(ix) In this model, we assume that the selling rate which dependent both selling price
discount and warranty period due to increasing selling rate and reliability of product.
The selling rate is defined as

D =

{
(D0 + ρtw)ekη, 0 ≤ t ≤ t1
D0 + ρtw, t1 ≤ t ≤ T

(5.4)

where k is the effective parameter of demand rate on discount and ρ is the effective
parameter of demand rate on warranty period.

(x) Due to long run production process and increasing the duration of in-control state, refine
production methods and reduce production costs we consider devolvement cost (cv) as
the form cv = f(τ), where

f(τ) =

{
B0, 0 ≤ t ≤ τ

B0 +B1(t− τ)e
k1
υmax−υ
υ−υmin , τ ≤ t ≤ t1

(5.5)

(xi) Production period (t1) and warranty period (tw) are decision variables.

120



5.3. MATHEMATICAL FORMULATION OF THE PROPOSED MODEL

5.3 Mathematical Formulation of the Proposed Model

Figure 5.1: Schematic representation of the production inventory model

This model considers a supply chain system between manufacturer and customer for single
type of products such as mobiles, in which the qualities of the production process and
inspection process are not perfect. In this manufacturing system, it is considered that
production, inspections and reworked processes are performed simultaneously. Here
production is started at a rate of P from the beginning and it continues upto the end of the
production run, t1. During the whole production period all produced items are inspected at
the rate of P . Initially, the production system starts from in-control state and continues to any
random time, τ from which in-control state shifts to out-of-control state and it stays in
out-of-control state until the end of the production-run, t1. According to assumption (iv), the
probability of the number of defective items in in-control state is less than the probability of
the number of defective items in out-of-control state.
Further, since the inspection process is not perfect, hence it generates both Type-I and Type-II
inspection errors. During this process there is possibilities separate some non-defective
products as defective of amount m1(1− θ1)P in in-control state and of amount m1(1− θ2)P
in out-of-control state. On the other hand, it classifies some defective items as non-defective
of amount m2θ1P in in-control state and m2θ2P in out-of-control state. Here for sorting the
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items an inspection cost (csr) has been considered. After the inspection of the product the
portion δ of defective items are send in rework cell to covert it non-defective item as fixed
cost rc. Then all confirming items are sent to the market with warranty period tw and
warranty cost cw. Figure 5.1 shows the relationship among production, inspection, selling and
rework processes. The consumption process continues at the customer demand rate (D)
according to the assumption (ix) until the end of business cycle time T . Since the time τ is
random i.e., the time for which the system goes from in-control to out-control, depending on
the position of τ with respect to the end of the production, the model has two different cases
such as Case I: 0 < τ < t1; and Case II: t1 ≤ τ <∞; which are discussed as follows:

5.3.1 Case I: when 0 < τ < t1 i.e., the “out-of-control” state to be

occurred during the production-run time

Figure 5.2: Graphical representation of inventory of selling item

In this case, the production period [0, t1] can be divided into two sub-intervals such as [0, τ ]
and [τ, t1]. During the time interval [0, τ ], the production process is in in-control state and in
[τ, t1] the process is in out-of-control state. Throughout the time interval [0, τ ], the amount
of non-defective items, defective items and reworked items are (1 − θ1)Pτ , θ1Pτ and δθ1Pτ
respectively. Also on [τ, t1], the amount of non-defective items, defective items and reworked
items are (1− θ2)P (t1− τ), θ2P (t1− τ) and δθ2P (t1− τ) respectively. During the inspection
period [0, τ ], the inspectors accept defective items the amount of θ1Pτ in which the amount
of falsely accepted defective items and falsely rejected non-defective items are m2θ1Pτ and
(1 − γ)m1(1 − θ1)Pτ respectively. Also, the inspection period [τ, t1], inspectors accept the
defective items of the amount θ2P (t1 − τ) in which the amount of falsely accepted defective
items and falsely reject amount of non-defective items are m2θ2P (t1 − τ) and (1− γ)m1(1−
θ2)P (t1− τ) respectively. During the period [0, t1], the inventory level increases due to excess
production after fulfill the customer demand upto time t = t1 at which the inventory level
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reaches at maximum. Therefor the behavior of the inventory level during the interval [0, τ ] and
[τ, t1] are given by

I1(t) = [{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

−(D0 + ρtw)ekη]t, 0 ≤ t ≤ τ

and I2(t) = [{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

−(D0 + ρtw)ekη](t− τ) + [{1− (1− γ)m1}(1− θ1)P

+{1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη]τ, τ ≤ t ≤ t1

Then during the period [t1, T ] the inventory level decline due to meeting customer demand and
it reaches zero at T . Therefor the behavior of the inventory level during the interval [t1, T ] is
given by

I3(t) = D(T − t) = (D0 + ρtw)(T − t), t1 ≤ t ≤ T

Lemma 5.1. When 0 < τ ≤ t1, in a manufacturing system the business period (T ) must satisfy

the following relation in terms of production rate (P ), demand rate (D), warranty period (tw)

and production period (t1)

T =
1

(D0 + ρtw)

[{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P + (D0

+ρtw)(1− ekη)
}
t1 +

{
{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}

}
(θ2 − θ1)Pτ

]
Proof. Using the continuity condition of I2(t) and I3(t) at t = t1 a relation is obtain as

[{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P − (D0 + ρtw)ekη]t1

+[{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}](θ2 − θ1)Pτ = (D0 + ρtw)(T − t1)

i.e., (D0 + ρtw)T = [{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

+(D0 + ρtw)(1− ekη)]t1 + [{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}](θ2 − θ1)Pτ

i.e., T =
1

(D0 + ρtw)

[{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

+(D0 + ρtw)(1− ekη)
}
t1 +

{
{1− (1− γ)m1}+ {1− (1− δ)(1−m2)}

}
(θ2 − θ1)Pτ

]
Now, the proof is complete.

Now, we derive the holding cost, manufacturing cost, rework cost, setup cost, inspection
cost, return cost, penalty cost, development cost and warranty cost in one cycle as follows.

123



CHAPTER 5. A DETERIORATING MANUFACTURING SYSTEM CONSIDERING
INSPECTION ERRORS WITH DISCOUNT AND WARRANTY PERIOD DEPENDENT

DEMAND

Holding cost:
During the period [0, T ], the holding cost is given by

HC = hc

[ ∫ τ

0

I1(t)dt+

∫ t1

τ

I2(t)dt+

∫ T

t1

I3(t)dt
]

=
hc
2

[{
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

}
(2t1τ − τ 2)

+
{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

}
(t1 − τ)2

−(D0 + ρtw)ekηt21 + (D0 + ρtw)(T − t1)2
]

Manufacturing, inspection and reworked cost:
During the period [0, t1], total manufacturing, inspection and reworked cost is given by
PC = (cp + cs)Pt1 + crδ(1−m2){θ1Pτ + θ2P (t1 − τ)}
Setup cost=A0 + K

PT

Return and penalty cost:
The return cost including communication and reverse logistics per unit (Ct), and penalty cost
per unit (cl), due to inspection errors during the period [0, T ] is given by
RC = (ct + cl)m2{θ1Pτ + θ2P (t1 − τ)}
Inspection error cost (or misclassification cost):
During the period [0, t1], inspectors accept the amount of θ1Pt1 defective items in which
falsely accepted amount of defective items and falsely reject amount of non-defective items
are m2{θ1Pτ + θ2P (t1 − τ)} and m1{(1− θ1)Pτ + (1− θ2)P (t1 − τ)} respectively.
Therefore the inspection error cost is given by,
IEC = s(1− γ)m1{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}
Development cost:
During the period [0, t1], the development cost is given by

cv =
[ ∫ τ

0

B0dt+

∫ t1

τ

{B0 +B1(t− τ)e
k υmax−υ
υ−υmin }dt

]
= B0t1 +

B1

2
(t1 − τ)2e

k1
υmax−υ
υ−υmin

Revenue from serviceable items:
During the period [0, T ], the amount of serviceable items (i.e., falsely accepted defective and
successfully accepted non-defective items) is [(1−m1){(1− θ1)Pτ + (1− θ2)P (t1 − τ)}+
m2{θ1Pτ + θ2P (t1 − τ)}] at a unit selling price of s, so the sales revenue is s[(1−m1){(1−
θ1)Pτ+(1−θ2)P (t1−τ)}+m2{θ1Pτ+θ2P (t1−τ)}]. Again, the amount of defective items
is returned from the customers’ due to Type-II inspection errors ism2{θ1Pτ+θ2P (t1−τ)} for
refunds at its full unit price s or replace by non-defective items, it incurs revenue loss which is
sm2{θ1Pτ + θ2P (t1 − τ)}. Further, the amount of returned non-defective items from rework
cell due to inspection errors is m1γ{(1 − θ1)Pτ + (1 − θ2)P (t1 − τ)} and the manufacturer
obtained sales revenue sm1γ{(1− θ1)Pτ + (1− θ2)P (t1− τ)}. Also the amount of reworked
serviceable items is δ(1 −m2){θ1Pτ + θ2P (t1 − τ)} at the same unit selling price of s and
obtained sales revenue sδ(1−m2){θ1Pτ +θ2P (t1−τ)}. Thus, the total sales revenues during
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the interval [0, T ] is given by

R = s[{1− (1− γ)m1}{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}
+{δ + (1− δ)m2}{θ1Pτ + θ2P (t1 − τ)}]

The warranty cost:
During the period [0, T ], the warranty cost is given by

WC = cw[{1− (1− γ)m1}{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}
+{δ + (1− δ)m2}{θ1Pτ + θ2P (t1 − τ)}]

Therefore, the profit function of production system is given by during the time period
0 < τ < t1

π1(t1, tw) = (s− cw)[{1− (1− γ)m1}{(1− θ1)Pτ + (1− θ2)P (t1 − τ)}+ {δ + (1− δ)m2}
×{θ1Pτ + θ2P (t1 − τ)}]− [(cp + cs)Pt1 + crδ(1−m2){θ1Pτ + θ2P (t1 − τ)}]

−hc
2

[{
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

}
(2t1τ − τ 2)

+
{
{1− (1− γ)m1}(1− θ2)P + {1− (1− δ)(1−m2)}θ2P

}
(t1 − τ)2

−(D0 + ρtw)ekηt21 + (D0 + ρtw)(T − t1)2
]
− (A0 +

K

Pt1
)

−(ct + cl)m2{θ1Pτ + θ2P (t1 − τ)} −B0t1 −
B1

2
(t1 − τ)2e

k1
υmax−υ
υ−υmin

The expected profit function during the time period 0 < τ < t1 is given by

E[π1(t1, tw)] = (s− cw)
[
{1− E[m1(1− γ)]}{(1− θ1)PE[τ ] + (1− θ2)PE[(t1 − τ)]}

+E[{m2 + δ(1−m2)}]{θ1PE[τ ] + θ2PE[(t1 − τ)]}
]
− (A0 +

K

Pt1
)

∫ t1

0

f(τ) dτ

−
[
(cp + cs)Pt1 + crE[δ(1−m2)]{θ1PE[τ ] + θ2PE[(t1 − τ)]}

]
−hc

2

[{
{1− E[m1(1− γ)]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}θ1P

}
(2t1E[τ ]− E[τ 2])

+
{
{1− E[(1− γ)m1]}(1− θ2)P + {1− E[(1− δ)(1−m2)]}θ2P

}
E[(t1 − τ)2]

+
{

(D0 + ρtw)(T − t1)2 − (D0 + ρtw)ekηt21

}∫ t1

0

f(τ) dτ
]
− (ct + cl)E[m2]{θ1PE[τ ]

+θ2PE[(t1 − τ)]} −B0t1

∫ t1

0

f(τ) dτ − B1

2
e
k υmax−υ
υ−υmin

∫ t1

0

(t1 − τ)2f(τ) dτ

125



CHAPTER 5. A DETERIORATING MANUFACTURING SYSTEM CONSIDERING
INSPECTION ERRORS WITH DISCOUNT AND WARRANTY PERIOD DEPENDENT

DEMAND

= (s− cw)
[
{1− E[m1(1− γ)]}{(1− θ1)Pλt21 + (1− θ2)P

λt21
2
}+ E[{m2 + δ(1−m2)}]

×{θ1Pλt
2
1 + θ2P

λt21
2
}
]
−
[
(cp + cs)Pt1 + crE[δ(1−m2)]{θ1Pλt

2
1 + θ2P

λt21
2
}
]

−hc
2

[{
{1− E[m1(1− γ)]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}θ1P

}
(2λt31 −

1

2
λ2t41)

+
{
{1− E[(1− γ)m1]}(1− θ2)P + {1− E[(1− δ)(1−m2)]}θ2P

}1

3
λt31

+
{

(D0 + ρtw)(T − t1)2 − (D0 + ρtw)ekη
}
λt1

]
− (A0 +

K

Pt1
)λt1

−(ct + cl)E[m2]{θ1Pλt
2
1 + θ2P

λt21
2
} −B0λt

2
1 −

B1λt
3
1

6
e
k1
υmax−υ
υ−υmin

See Appendix C, approximating the function exp(−λt1) for its expansion.

5.3.2 Case II: when τ ≥ t1, the “out-of-control” state not to be occurred

with in the production-run time
In this case, during the production period [0, t1], the production process does not occurs
“out-of-control” state, i.e., the whole production process is in “in-control” state. Through-out
the time interval [0, t1], the amount of non-defective items, defective items and reworked
items are (1− θ1)Pt1, θ1Pt1 and δθ1Pt1 respectively.

Figure 5.3: Graphical representation of inventory model of perfect quality item

During the inspection period [0, t1], the inspectors accept defective items of amount θ1Pt1 in
which the amount of falsely accepted defective items and falsely rejected non-defective items
are m2θ1Pt1 and (1− γ)m1(1− θ1)Pt1 respectively.
During the period [0, t1], the inventory level increases due to production after fulfill the
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customer demand upto time t = t1 at which the inventory level reaches at maximum.
Therefore, the behavior of the inventory level during the interval [0, t1] is given by

I1(t) = [{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

−(D0 + ρtw)ekη]t, 0 ≤ t ≤ t1

Then during the period [t1, T ], the inventory level declines due to meet the customer demand
and it reaches zero at T . Therefore the behavior of the inventory level during the interval [t1, T ]
is given by

I2(t) = D(T − t) = (D0 + ρtw)(T − t), t1 ≤ t ≤ T

Lemma 5.2. When 0 < τ < t1, in a manufacturing system the business period (T ) must satisfy

the following relation in terms of production rate (P ), demand rate (D), warranty period (tw)

and production period (t1) is given by

T =
1

(D0 + ρtw)

[
{1− (1− γ)m1}(1− θ1) + {1− (1− δ)(1−m2)}θ1

]
Pt1 + (1− ekη)t1

Proof. From the continuity condition of I1(t) and I2(t) at t = t1 a relation is obtain as

[{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P − (D0 + ρtw)ekη]t1

= (D0 + ρtw)(T − t1)

i.e., T =
1

(D0 + ρtw)

[
{1− (1− γ)m1}(1− θ1) + {m2 + δ(1−m2)}θ1

]
Pt1 + (1− ekη)t1

Now, the proof is complete.

Now, we derive the holding cost, manufacturing cost, rework cost, inspection cost, setup cost,
return cost, penalty cost, development cost and warranty cost in one cycle as follows.
Holding cost:
During the period [0, T ], the holding cost is given by

HC = hc

[ ∫ t1

0

I1(t)dt+

∫ T

t1

I2(t)dt
]

=
hc
2

[{
{1− (1− γ)m1}(1− θ1)P + {1− (1− δ)(1−m2)}θ1P

}
t21

+(D0 + ρtw)(T 2 − 2t1T )
]

Manufacturing, inspection and rework cost:
During the period [0, t1], total manufacturing, inspection and reworked cost is given by
PC = {cp + cs + crδ(1−m2)θ1}Pt1
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Setup cost=A0 + K
PT

Return and penalty cost:
The return cost including communication and reverse logistics per unit (Ct), and penalty cost
per unit (cl), due to inspection errors during the period [0, T ] is given by
RC = (ct + cl)m2θ1Pt1
Inspection error cost (or misclassification cost):
During the period [0, t1], inspectors accepts the amount of defective items θ1Pt1 in which
falsely accepted amount of defective items and falsely reject amount of non-defective items
are m2θ1Pt1 and m1(1− θ1)Pt1 respectively.
Therefore the inspection error cost is given by,
IEC = s(1− γ)m1(1− θ1)Pt1
Development cost:
During the period [0, t1], the development cost is given by

cv =

∫ t1

0

B0dt = B0t1

Revenue from serviceable items:
During the period [0, T ], the amount of serviceable items (i.e., falsely accepted defective and
successfully accepted non-defective items) is [(1 − m1)(1 − θ1)Pt1 + m2θ1Pt1] at a unit
selling price of s, so the sales revenue is s[(1−m1)(1−θ1)Pt1 +m2θ1Pt1]. Again, amount of
defective items to be returned from the customers’ due to Type-II inspection errors is m2θ1Pt1
and refunds at its full unit price s or replace by non-defective items, it incurs revenue loss
which is sm2θ1Pt1. Further, the amount of returned non-defective items from rework cell due
to inspection error is m1γ(1 − θ1)Pt1 and the manufacturer obtains sales revenue sm1γ(1 −
θ1)Pt1. Also the amount of reworked serviceable items is δ(1−m2)θ1Pt1 which is sold at the
same unit selling price of s and obtains sales revenue sδ(1 −m2)θ1Pt1. Thus, the total sales
revenues during the interval [0, T ] is given by

R = s
[
{1− (1− γ)m1}(1− θ1)Pt1 + {m2 + δ(1−m2)}θ1Pt1

]
The warranty cost:
During the period [0, T ], the warranty cost is given by

WC = cw

[
{1− (1− γ)m1}(1− θ1)Pt1 + {m2 + δ(1−m2)}θ1Pt1

]
Now, we derive the equations for the present worth costs of the holding, setup, inspection,
return, penalty, manufacturing, and rework for one cycle as follows:
Therefore, the profit function of production system is given by

π2(t1, tw) = (s− cw)[{1− (1− γ)m1}(1− θ1)Pt1 + {δ + (1− δ)m2}θ1Pt1]

−{cp + cs + crδ(1−m2)θ1}Pt1 −
hc
2

[{
{1− (1− γ)m1}(1− θ1)Pt1

+{δ + (1− δ)m2}θ1Pt1 − (D0 + ρtw)ekη
}
t21 + (D0 + ρtw)(T − t1)2

]
−(A0 +

K

Pt1
)− {(ct + cl)m2θ1Pt1 − s(1− γ)m1(1− θ1)Pt1} −B0t1
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Therefore, the expected profit during the time period t1 < τ < T is given by

E[π2(t1, tw)] =
[
(s− cw)

{
{1− E[m1(1− γ)]}(1− θ1) + E[{δ + (1− δ)m2}]θ1

}
−{cp + cs + crE[δ(1−m2)]θ1}

]
Pt1

∫ ∞
t1

f(τ) dτ − hc
2

[{
E[{1− (1− γ)m1}](1− θ1)Pt1

+E[{δ + (1− δ)m2}]θ1Pt1 − (D0 + ρtw)ekη
}
t21 + (D0 + ρtw)(T − t1)2

] ∫ ∞
t1

f(τ) dτ

−
[
{(ct + cl)E[m2]θ1Pt1 + crE[(1− δ)m1](1− θ1)Pt1}+ (A0 +B0t1 +

K

Pt1
)
] ∫ ∞

t1

f(τ) dτ

= (s− cw)
[
{1− E[m1(1− γ)](1− θ1)Pt1 + E[{δ + (1− δ)m2}]θ1Pt1

]
(1− λt1)

−{cp + cs + crE[δ(1−m2)]θ1}Pt1(1− λt1)− hc
2

[{
E[{1− (1− γ)m1}](1− θ1)Pt1

+E[{δ + (1− δ)m2}]θ1Pt1 − (D0 + ρtw)ekη
}
t21 + (D0 + ρtw)(T − t1)2

]
(1− λt1)

−
[
{(ct + cl)E[m2]θ1Pt1 + crE[(1− δ)m1](1− θ1)Pt1}+ (A0 +B0t1 +

K

Pt1
)
]
(1− λt1)

Now combining Case I and Case II, we have, the expected total profit during whole busi-
ness period T is given by

E[π(t1, tw)] = (s− cw)
[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}

+E[m2 + δ(1−m2)]{θ1 +
θ2

2
λt1}Pt1

]
−
[
(cp + cs) + crE[δ(1−m2)]{θ1 +

θ2

2
λt1}

]
Pt1

−hc
2

[
{E[1− (1− γ)m1](1− θ1)P + E[δ + (1− δ)m2]θ1P}(t21 + λt31 −

λ2t41
2

)

+
1

3

{
E[1− (1− γ)m1](1− θ2)P + E[δ + (1− δ)m2]θ2P

}
λt31 − (D0 + ρtw)ekηt21

+(D0 + ρtw)(T − t1)2
]
− (ct + cl)E[m2]{θ1 +

θ2

2
λt1}Pt1 − crE[(1− δ)m1]{(1− θ1)

+(1− θ2)
λt1
2
}Pt1 −B0t1 −

B1λt
3
1

6
e
k1
υmax−υ
υ−υmin − (A0 +

K

Pt1
)

Lemma 5.3. In the manufacturing system the business period (T ) must satisfy the following

relation in terms of production rate (P ), demand rate (D), warranty period (tw) and

production period (t1) as follows

T =
1

(D0 + ρtw)

[{
{1− E[(1− γ)m1]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}

×{2(θ2 − θ1)λt1 + θ1}P + (D0 + ρtw)(1− ekη)
}
t1

]
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Proof. From Lemma 5.1, the expected value of T in 0 < τ ≤ t1 is given by

∫ t1

0

T f(τ) dτ =
1

(D0 + ρtw)

[{
{1− E[(1− γ)m1]}(1− θ2)P + (D0 + ρtw)(1− ekη)

+{1− E[(1− δ)(1−m2)]}θ2P
}
t1

∫ t1

0

f(τ) dτ +
{
{1− E[](1− γ)m1]}

+{1− E[(1− δ)(1−m2)]}
}

(θ2 − θ1)P

∫ t1

0

τ f(τ) dτ
]

(5.6)

Again, from Lemma 5.2, the expected value of T in t1 < τ ≤ ∞ is given by

∫ ∞
t1

T f(τ) dτ =
1

(D0 + ρtw)
[{1− E[(1− γ)m1]}(1− θ1)P + (D0 + ρtw)(1− ekη)

+{1− E[(1− δ)(1−m2)]}θ1P ]t1

∫ ∞
t1

f(τ) dτ (5.7)

Combining (5.6) and (5.7), we have

T =
1

(D0 + ρtw)

[{
{1− E[(1− γ)m1]}(1− θ1)P + {1− E[(1− δ)(1−m2)]}

×{2(θ2 − θ1)λt1 + θ1}P + (D0 + ρtw)(1− ekη)
}
t1

]
Now, the proof is complete.

Hence, the average total expected profit is given by

AEP (t1, tw) =
(s− a− btw)

T

[
{1− E[m1(1− γ)]}{(1− θ1) + (1− θ2)

λt1
2
}

+E[m2 + δ(1−m2)]{θ1 + θ2
λt1
2
}
]
Pt1 −

Pt1
T

[
(cp + cs) + crE[δ(1−m2)]{θ1 + θ2

λt1
2
}
]

− hc
2T

[
{E[1− (1− γ)m1](1− θ1)P + E[δ + (1− δ)m2]θ1P}(t21 + λt31 −

λ2t41
2

)

+
1

3

{
E[1− (1− γ)m1](1− θ2)P + E[δ + (1− δ)m2]θ2P

}
λt31 − (D0 + ρtw)ekηt21

+(D0 + ρtw)(T − t1)2
]
− (ct + cl)E[m2]{θ1t1 + θ2

λt21
2
}P
T
− cr
T
E[(1− δ)m1]

×{(1− θ1)Pt1 + (1− θ2)P
λt21
2
} − B0t1

T
− B1λt

3
1

6T
e
k1
υmax−υ
υ−υmin − 1

T
(A0 +

K

Pt1
) (5.8)
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By taking the first derivatives of AEP (t1, tw) with respect to tw, we have

∂

∂tw
{AEP (t1, tw)} = − b

T

[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}

+E[m2 + δ(1−m2)]{θ1 + θ2
λt1
2
}Pt1

]
+
hc
2T

[
ρekη(t21 +

λ2t41
2

)− ρ(T − t1)2
]

−(s− a− btw)

T 2

[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}+ E[m2

+δ(1−m2)]{θ1Pt1 + θ2P
λt21
2
}
] ∂T
∂tw

+
1

T 2

[
(cp + cs)Pt1 + crE[δ(1−m2)]{θ1Pt1

+θ2P
λt21
2
}
] ∂T
∂tw

+
hc

2T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(t21 − λt31 +

λ2t41
2

)

+{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
] ∂T
∂tw

+
1

T 2
(ct + cl)E[m2]{θ1Pt1 + θ2P

λt21
2
} ∂T
∂tw

+
cr
T 2
E[(1− δ)m1]{(1− θ1)Pt1

+(1− θ2)P
λt21
2
} ∂T
∂tw

+
B1λt

3
1

6T 2

∂T

∂tw
e
k1
υmax−υ
υ−υmin +

1

T 2
(A0 +B0t1 +

K

Pt1
)
∂T

∂tw

Taking the second derivatives of AEP (t1, tw) with respect to tw, we have

∂2

∂t2w
{AEP (t1, tw)} =

2b

T 2

[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}

+E[m2 + δ(1−m2)]{θ1 + θ2
λt1
2
}Pt1

] ∂T
∂tw

+
hc
T 2

[
ρekη(t21 +

λ2t41
2

)− ρ(T − t1)2
]

+(s− a− btw)
[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}+ E[m2 + δ(1

−m2)]{θ1Pt1 + θ2P
λt21
2
}
]{ 2

T 3
(
∂T

∂t1
)2 − 1

T 2

∂2T

∂t21

}
+
[
(cp + cs)Pt1 + crE[δ(1−m2)]

×{θ1Pt1 + θ2P
λt21
2
}
]{ 1

T 2

∂2T

∂t21
− 2

T 3
(
∂T

∂t1
)2
}

+
hc
2

[
{(1− θ1)P + E[δ]θ1P − (D0

+ρtw)ekη}(t21 − λt31 +
λ2t41

2
) + {(1− θ2)P + E[δ]θ2P}λt31 + (D0 + ρtw){(T − t1)2

−ekηλt31}
]{ 1

T 2

∂2T

∂t21
− 2

T 3
(
∂T

∂t1
)2
}

+
[
(ct + cl)E[m2]{θ1Pt1 + θ2P

λt21
2
}

+
cr
T 2
E[(1− δ)m1]{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}
]{ 1

T 2

∂2T

∂t21
− 2

T 3
(
∂T

∂t1
)2
}

+
B1λt

3
1

6T 2

{∂2T

∂t21
− 2

T 3
(
∂T

∂t1
)2
}
e
k1
υmax−υ
υ−υmin + (A0 +B0t1 +

K

Pt1
)
{ 1

T 2

∂2T

∂t21
− 2

T 3
(
∂T

∂t1
)2
}
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By taking the first derivatives of AEP (t1, tw) with respect to t1, we have

∂

∂t1
{AEP (t1, tw)} =

(s− a− btw)

T

[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}

+E[m2 + δ(1−m2)]{θ1P + θ2Pλt1}
]
− 1

T

[
(cp + cs)P + crE[δ(1−m2)]{θ1P

+θ2Pλt1}
]
− hc

2T

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2t1 − 3λt21 + 2λ2t31)

+3{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt21 − 2(D0 + ρtw)(T − t1)
]

− 1

T
(ct + cl)E[m2]{θ1P + θ2Pλt1} −

cr
T
E[(1− δ)m1]{(1− θ1) + (1− θ2)λt1}P

−B0

T
− B1λt

2
1

2T
e
k υmax−υ
υ−υmin +

K

PTt21
− (s− a− btw)

T 2

[
{1− E[m1(1− γ)]}

×{(1− θ1)Pt1 + (1− θ2)P
λt21
2
}+ E[m2 + δ(1−m2)]{θ1Pt1 + θ2P

λt21
2
}
]∂T
∂t1

+
1

T 2

[
(cp + cs)Pt1 + crE[δ(1−m2)]{θ1Pt1 + θ2P

λt21
2
}
]∂T
∂t1

+
hc

2T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(t21 − λt31 +

λ2t41
2

)

+{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
]∂T
∂t1

+
1

T 2
(ct + cl)E[m2]{θ1Pt1 + θ2P

λt21
2
}∂T
∂t1

+
cr
T 2
E[(1− δ)m1]{(1− θ1)Pt1

+(1− θ2)P
λt21
2
}∂T
∂t1

+
B1λt

3
1

6T 2

∂T

∂t1
e
k1
υmax−υ
υ−υmin +

1

T 2
(A0 +B0t1 +

K

Pt1
)
∂T

∂t1

Taking the second derivatives of AEP (t1, tw) with respect to t1, we have

∂2

∂t21
{AEP (t1, tw)} =

(s− a− btw)

T

[
{1− E[m1(1− γ)]}(1− θ2)Pλ

+E[m2 + δ(1−m2)]θ2Pλ
]
− cr
T
E[δ(1−m2)]θ2Pλ

− hc
2T

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2− 6λt1 + 6λ2t21)

+6{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt1 + 2(D0 + ρtw)
]

− 1

T
(ct + cl)E[m2]θ2Pλ−

cr
T
E[(1− δ)m1](1− θ2)Pλ+

B1λt
2
1

T
e
k1
υmax−υ
υ−υmin − 2K

PTt31

−2(s− a− btw)

T 2

[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}+ E[m2 + δ(1−m2)]

×{θ1P + θ2Pλt1}
]∂T
∂t1

+
2

T 2

[
(cp + cs)P + crE[δ(1−m2)]{θ1P + θ2Pλt1}

]∂T
∂t1
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+
hc
T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2t1 − 3λt21 + 2λ2t31)

+3{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt21 − 2(D0 + ρtw)(T − t1)
]∂T
∂t1

+
2

T 2
(ct + cl)E[m2]{θ1P + θ2Pλt1}

∂T

∂t1
+

2cr
T 2

E[(1− δ)m1]{(1− θ1)P

+(1− θ2)Pλt1}
∂T

∂t1
+

2B0

T 2

∂T

∂t1
+
B1λt

2
1

2T 2

∂T

∂t1
e
k υmax−υ
υ−υmin +

2K

PT 2t21

∂T

∂t1

+(s− a− btw)
[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}

+E[m2 + δ(1−m2)]{θ1Pt1 + θ2P
λt21
2
}
]{ 2

T 3
(
∂T

∂t1
)2 − 1

T 2

∂2T

∂t21

}
+
[
(cp + cs)Pt1 + crE[δ(1−m2)]{θ1Pt1 + θ2P

λt21
2
}
]{ 1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
+
hc
2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(t21 − λt31 +

λ2t41
2

)

+{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
]

×
{ 1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
+ (ct + cl)E[m2]{θ1Pt1 + θ2P

λt21
2
}∂T
∂t1

{ 1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
+crE[(1− δ)m1]{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}
{ 1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
+
B1λt

3
1

6

{ 1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}
e
k1
υmax−υ
υ−υmin + (A0 +B0t1 +

K

Pt1
)
{ 1

T 2

∂2T

∂t21
− 2

T 3

∂T

∂t1

}

∂2

∂t1∂tw
{AEP (t1, tw)} = − b

T

[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}

+E[m2 + δ(1−m2)]{θ1P + θ2Pλt1}
]

+
hc
2T

[
ρekη(2t1 + 2λ2t31) + 2ρ(T − t1)

]
+
b

T 2

[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}+ E[m2 + δ(1−m2)]

×{θ1Pt1 + θ2P
λt21
2
}
]∂T
∂t1
− hc

2T 2

[
ρekη(t21 +

λ2t41
2

)− ρ(T − t1)2
]∂T
∂t1
− (s− a− btw)

T 2

×
[
{1− E[m1(1− γ)]}{(1− θ1)P + (1− θ2)Pλt1}+ E[m2 + δ(1−m2)]

×{θ1P + θ2Pλt1}
] ∂T
∂tw

+
1

T 2

[
(cp + cs)P + crE[δ(1−m2)]{θ1P + θ2Pλt1}

] ∂T
∂tw

+
hc

2T 2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(2t1 − 3λt1 + 2λ2t31)

+{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}3λt21 − 2(D0 + ρtw)(T − t1)
] ∂T
∂tw
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+
1

T 2
(ct + cl)E[m2]{θ1P + θ2Pλt1}

∂T

∂tw
+
cr
T 2
E[(1− δ)m1]{(1− θ1)P

+(1− θ2)Pλt1}
∂T

∂tw
+
B1λt

2
1

2T 2

∂T

∂tw
e
k1
υmax−υ
υ−υmin +

1

T 2
(B0 −

K

Pt21
)
∂T

∂tw

+(s− a− btw)
[
{1− E[m1(1− γ)]}{(1− θ1)Pt1 + (1− θ2)P

λt21
2
}

+E[m2 + δ(1−m2)]{θ1Pt1 + θ2P
λt21
2
}
]{ 2

T 3

∂T

∂t1

∂T

∂tw
− 1

T 2

∂2T

∂t1∂tw

}
+
[
(cp + cs)Pt1 + crE[δ(1−m2)]{θ1Pt1 + θ2P

λt21
2
}
]{ 1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
+
hc
2

[
{(1− θ1)P + E[δ]θ1P − (D0 + ρtw)ekη}(t21 − λt31 +

λ2t41
2

)

+{(1− θ2)P + E[δ]θ2P − (D0 + ρtw)ekη}λt31 + (D0 + ρtw)(T − t1)2
]

×
{ 1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
+ (ct + cl)E[m2]{θ1Pt1 + θ2P

λt21
2
}

×
{ 1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
+
B1λt

3
1

6

{ 1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
e
k υmax−υ
υ−υmin

+crE[(1− δ)m1]{(1− θ1)Pt1 + (1− θ2)P
λt21
2
}
{ 1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
+(A0 +B0t1 +

K

Pt1
)
{ 1

T 2

∂2T

∂t1∂tw
− 2

T 3

∂T

∂t1

∂T

∂tw

}
Now the average expected profit (AEP) is a function of two independent variables t1 and tw.
Here it is considered that ∂

∂t1
(AEP (t1, tw)) = F (t1, tw) and ∂

∂tw
(AEP (t1, tw)) = G(t1, tw).

Due to complexity of the equations, F (t1, tw) = 0 and G(t1, tw) = 0, it is not possible to
show the existence of the solution analytically. Now it is supposed that there exists at least one
positive point (tr1, t

r
w) for which F (tr1, t

r
w) = 0 and G(tr1, t

r
w) = 0 for some parametric values

involved in the system.
Let at (tr1, t

r
w), ∂F

∂t1
= ∆1, ∂G

∂tw
= ∆2 and ∂F

∂tw
= ∆3.

Lemma 5.4. The maximum average profit AEP (tr1, t
r
w) exist if ∆1∆2 > ∆2

3, ∆1 < 0 and

∆2 < 0.

Proof. Now, from the optimization calculus, it is known that a function of two variables,

φ(u, v) is maximum at the stationary point (a, b) if ∂2

∂u2
(φ(a, b)) ∂2

∂v2
(φ(a, b)) -

{ ∂2

∂u∂v
(φ(a, b))}2 > 0, ∂2

∂u2
(φ(a, b)) < 0 and ∂2

∂v2
(φ(a, b)) < 0.

The 1st condition for the existence of maximum value of AEP (t1, tw) at the point (tr1, t
r
w) is

∂2

∂t21
(AEP (tr1, t

r
w)) ∂2

∂t2w
(AEP (tr1, t

r
w))-{ ∂2

∂t1∂tw
(AEP (tr1, t

r
w))}2 > 0.

i.e., ∂
∂t1

(F (tr1, t
r
w)) ∂

∂tw
(G(tr1, t

r
w))-{ ∂

∂tw
(F (tr1, t

r
w))}2 > 0, since
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∂
∂t1

(AEP (t1, tw)) = F (t1, tw) and ∂
∂tw

(AEP (t1, tw)) = G(t1, tw).

i.e., ∆1∆2 > ∆2
3, since ∂

∂t1
F (tr1, t

r
w) = ∆1, ∂

∂tw
G(tr1, t

r
w) = ∆2 and ∂

∂tw
F (tr1, t

r
w) = ∆3.

The 2nd condition for the existence of maximum value of AEP (t1, tw) at the point (tr1, t
r
w) is

∂2

∂t21
(AEP (tr1, t

r
w)) < 0. i.e., ∂

∂t1
(F (tr1, t

r
w)) < 0, since ∂

∂t1
(AEP (t1, tw)) = F (t1, tw).

i.e., ∆1 < 0, since ∂
∂t1
F (tr1, t

r
w) = ∆1.

The 3rd condition for the existence of maximum value of AEP (t1, tw) at the point (tr1, t
r
w) is

∂2

∂t2w
(AEP (tr1, t

r
w)) < 0. i.e., ∂

∂tw
(G(tr1, t

r
w)) < 0, since ∂

∂tw
(AEP (t1, tw)) = G(t1, tw).

i.e., ∆2 < 0, since ∂
∂tw
G(tr1, t

r
w) = ∆2. Now, the proof is complete.

Lemma 5.5. There does not exist the maximum average profit AEP (tr1, t
r
w) if ∆1 > 0 and

∆2 > 0.

Lemma 5.6. There does not exist the maximum average profitAEP (tr1, t
r
w) if ∆1∆2−∆2

3 < 0.

5.4 Solution Procedure
From equation (5.8), it is seen that in the proposed model, the objective function AEP (t1, tw)
is highly nonlinear. Here, t1 and tw are two decision variables. Also T is a function of t1 and
tw obtained according to Lemma 5.3. Since the objective function is highly nonlinear, hence to
get the optimal solution of the proposed model the following algorithms have been developed.

Algorithm 5.1. For a fixed x, suppose x = x0, the value of y from ψ(x, y) = 0 can be obtained

as follows:

step 1: For x = x0, compute ψ(x0, y) = 0.

step 2: Select (y1, y2) such that ψ(x0, y1)ψ(x0, y2) < 0. Then by Rolle’s theorem there exist a

root of ψ(x0, y) = 0, between y1 and y2.

step 3: Calculate m = (y1+y2)
2

, be the midpoint of the interval (y1, y2).

step 4: Compute the signs of ψ(x0, y1), ψ(x0,m), and ψ(x0, y2).

step 5: If ψ(x0, y1)ψ(x0,m) < 0, then a root of ψ(x0, y) = 0 lies between y1 and m. In this

case, replace y2 by m. Otherwise, a root of ψ(x0, y) = 0 lies between m and y2, then

replace y1 by m.
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step 6: Repeat steps 3 through 5 until |y1 − y2| < 10−ε where ε is a tolerance limit.

step 7: Then the root of ψ(x0, y) = 0 is m such that m = (y1+y2)
2

.

Algorithm 5.2. Since there is no possibility to get the general explicit solution due to absence

of linearity of the profit function, to get the maximum profit the following procedure has been

devised according to Lemma 5.4 and Algorithm 5.1. Here the optimal values of T , t1, tw and

AEP (t1, tw) are denoted by T ∗, t∗1, t∗w and AEP ∗ respectively.

step 1: Initialize all parameters associated with the objective function AEP (t1, tw).

step 2: Set an interval (t10, t11) where t10 ∈ (0, T0) and t11 ∈ (0, T0). Here tw ≤ T0 where T0

also is initialized.

step 3: Compute tw0F , tw1F , tw0G and tw1G for tw from F (t10, tw) = 0, F (t11, tw) = 0,

G(t10, tw) = 0 and G(t11, tw) = 0 respectively by Algorithm 5.1.

step 4: Compute4t10 = tw0F − tw0G and4t11 = tw1F − tw1G.

step 5: If 4t104t11 < 0, i.e., the signs of 4t10 and 4t11 are opposite, then compute t1m =

(t10+t11)
2

.

step 6: Compute tw1mF and tw1mG for tw from F (t1m, tw) = 0 and G(t1m, tw) = 0 respectively

by Algorithm 5.1.

step 7: Calculate4t1m = 4tw1mF
−4tw1mG

.

step 8: Compare4t1m with4t10 . If4t104t1m < 0, i.e., the signs of4t10 and4t1m are opposite,

then replace t11 by t1m. Otherwise replace t10 by t1m.

step 9: Repeat steps 5 through 8 until the absolute values of (t10 − t1m) or (4t10 − 4t1m) or

(4t10 −4t1m) are within the tolerance limits.

step 10: The root of F (t1, tw) = 0 and G(t1, tw) = 0 is (t1
r, tw

r) where t1r = t1m and twr =

tw0F+tw1F

2
or tw0G+tw1G

2
.
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step 11: Compute41,42 and43 at the point (tr1, t
r
w) where ∂F

∂t1
= ∆1, ∂G

∂tw
= ∆2 and ∂F

∂tw
= ∆3.

step 12: If ∆1 < 0, ∆2 < 0 and ∆1∆2 > ∆2
3, then according Lemma 5.4 then (t1

r, tw
r) be the

optimal solution. So t∗1 = t1
r, t∗w = tw

r and calculate T ∗ by Lemma 5.3. Also calculate

AEP ∗ = AEP (t∗1, t
∗
w).

step 13: If ∆1 > 0, ∆2 > 0 by Lemma 5.5, or ∆1∆2 −∆2
3 < 0 by Lemma 5.6, then (t1

r, tw
r) is

not optimal solution. In this case, goto step 1 and change some parametric values.

step 14: Print the optimal values t∗1, t∗w, T ∗ and AEP ∗.

5.5 Numerical Illustrations

It is considered that a production inventory system that produces perfect and defective items,
continuously fills up the customer demand. The inspection process that screens out the
defective items is also imperfect. Since in a production system the time at which a process
goes from in-control to out-of-control in a cycle has been considered random which is
exponentially distributed with mean 1

λ
. Similarly, the parameters for inspection errors and

rework rate have been considered as uniform distribution. The probability density functions
of the inspection errors and rework rate are mostly taken from the history of a machine and
workers. Using the above mentioned solution procedure (Section 5.4), the optimum values of
t1, tw, T and the average expected total profit, AEP (t1, tw) have been calculated for the
following values of the parameters of the illustrated model:
P = 100 unit per unit time, D0 = 45 unit per unit time, θ1 = 0.05, θ2 = 0.12, s = $85 per
unit, λ = 0.01, cp = $25 per unit, csr = $3 per unit, cr = $15 per unit, (ct + cl) = $5.5 per
unit, hc = $1.5 per unit per unit time,hc = $1.5 per unit per unit time, a = $15, vmax = 10,
vmin = 3, v = 8, B1 = $58, B0 = $45 per unit time, A0 = $257, k = 1, K = 25.
The probability density functions of the inspection errors (m1 and m2), fraction of rejecting
non-defective items (γ) due to type I error and rework rate (δ) are considered as follows:

φ(m1) =

{
1
α
, 0 ≤ m1 ≤ α

0, otherwise φ(m2) =

{
1
β
, 0 ≤ m2 ≤ β

0, otherwise

φ(γ) =

{
1
ξ
, 0 ≤ γ ≤ ξ

0, otherwise
φ(δ) =

{
1
µ
, 0 ≤ δ ≤ µ

0, otherwise
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Now we calculate E[m2], E[δ], E[(1− γ)m1], E[δ(1−m2)], and E[(1− δ)(1−m2)] and the
values are given by

E[m2] =

∫ β

0

m2φ(m2) dδ =
β

2
, E[δ] =

∫ µ

0

δφ(δ) dδ =
µ

2

E[(1− γ)m1] =

∫ α

0

m1φ(m1) dm1

∫ ξ

0

(1− γ)φ(γ) dγ =
α

2
(1− ξ

2
)

E[δ(1−m2)] =

∫ µ

0

δφ(δ) dδ

∫ α

0

(1−m2)φ(m2) dm1 =
µ

2
(1− β

2
)

E[(1− δ)(1−m2)] =

∫ α

0

(1− δ)φ(δ) dδ

∫ β

0

(1−m2)φ(m2) dm1 = (1− µ

2
)(1− β

2
)

Substituting the above expressions in the profit function in equation (5.8), we obtain the
optimal values of the expected average profit when α = 0.04, β = 0.06, ξ = 0.0004 and
µ = 0.60, η = 0.10, ρ = 0.50, b0 = 0.40, k = 0.80.

Figure 5.4: Expected average profit vs production period (t1) and warranty period (tw).

For this data set, Figure 5.4 shows the average expected profit as a function of t1 and tw.
From this figure it is guarantied that the average expected profit is concave. So there exist
unique solution of (t1, tw) that maximize the average expected profit AEP (t1, tw). The
optimal solutions for the given parametric set with different type of demand rate are
represented by following Table 5.2, 5.3 and 5.4:
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Table 5.2: Optimal result of the illustrated model
Production period Warranty period Business cycle period Expected average profit

(t∗1 umit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

Optimal value 2.59 7.79 4.93 1706.15

Table 5.3: Optimal result of the model with the effect of only warranty period on demand
Production period Warranty period Business cycle period Expected average profit

(t∗1 umit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

Optimal value 2.26 5.17 4.61 1624.77

Table 5.4: Optimal result of the model with the effect of only discount on demand
Production period Warranty period Business cycle period Expected average profit

(t∗1 umit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

Optimal value 2.28 − 4.73 1694.55

5.5.1 Sensitivity Analysis
The change in the values of the system parameters can take place an important role in decision-
making about the system due to uncertainties and dynamic market conditions. In order to
examine the implications of these changes in the values of parameters, the sensitivity analysis
will be of great help in a decision-making process. Here, the sensitivity analysis with respect
to the parameters such as α, β, µ, η, k, ρ, λ, and b have been carried out. The results of the
sensitivity analysis are shown in Table 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11.

Table 5.5: Sensitivity analysis w.r.t. the probability of Type I error (α)
Parameter Production period Warranty period Business cycle period Expected average profit

(α) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

0.04 2.59 7.78 4.93 1706.15

0.08 2.66 6.89 5.01 1669.81

0.12 2.72 5.95 5.09 1632.42

0.16 2.80 4.98 5.18 1593.94

0.20 2.87 3.97 5.27 1554.34
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• From Table 5.5, we see that the warranty period (t∗w), the business cycle period (T ∗) and the
expected average profit (AEP ∗(t∗1, t

∗
w)) decrease with the increase of α i.e., probability of a

Type I error. But, the production period (t∗1) increases when α increases.

Table 5.6: Sensitivity analysis w.r.t. the probability of Type II error (β)

Parameter Production period Warranty period Business cycle period Expected average profit

(β) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

0.06 2.59 7.78 4.93 1706.15

0.12 2.56 7.39 4.89 1694.23

0.18 2.53 7.01 4.86 1682.38

0.24 2.50 6.63 4.83 1670.60

0.30 2.48 6.25 4.80 1658.89

• From Table 5.6, we see that the production period (t∗1), warranty period (t∗w), the business
cycle period (T ∗) and the expected average profit (AEP ∗(t∗1, t

∗
w)) decrease with the increase

of β i.e., probability of a Type II error.

Table 5.7: Sensitivity analysis w.r.t. rework rate (µ) and reworked cost (cr) simultaneously
Parameter Reworked Production period Warranty period Business cycle Expected average profit

(µ) cost (cr $) (t∗1 unit) (t∗w unit) time (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

0.45 11 2.56 7.81 4.90 1692.84

0.50 12 2.57 7.82 4.91 1697.85

0.55 13 2.58 7.83 4.92 1702.78

0.60 15 2.59 7.79 4.93 1706.15

0.65 20 2.58 7.61 4.92 1704.75

0.70 25 2.58 7.42 4.92 1702.96

0.75 28 2.58 7.22 4.92 1700.77

• From Table 5.7 it is observed that when µ and cr increases simultaneously, the production
period (t∗1), warranty period (t∗w) and the expected average profit (AEP ∗(t∗1, t

∗
w)) initially in-

crease, then decrease due to the rapidly increase of average rework cost for defective item.
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Table 5.8: Sensitivity analysis of t1, tw, T and EAP w.r.t. η for a fixed k
Parameter Production period Warranty period Business cycle period Expected average profit

(η) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

0.06 2.44 6.67 4.78 1671.61

0.08 2.51 7.22 4.85 1688.52

0.10 2.59 7.78 4.92 1706.15

0.12 2.68 8.38 5.01 1724.55

0.14 2.76 9.01 5.11 1743.78

• Table 5.8 signifies that when k is fixed, the production period (t∗1), warranty period (t∗w), the
business cycle period (T ∗) and the expected average profit (AEP ∗(t∗1, t

∗
w)) increase together

due to the increase of discount rate η.

Table 5.9: Sensitivity analysis of t1, tw, T and EAP w.r.t. η and k simultaneously
Parameter Production period Warranty period Business cycle period Expected average profit

(η and k) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

η = 0.05, k = 1.2 2.50 7.08 4.83 1684.23

η = 0.07, k = 1.0 2.54 7.43 4.88 1695.04

η = 0.10, k = 0.8 2.59 7.78 4.92 1706.15

η = 0.12, k = 0.6 2.55 7.50 4.88 1697.24

η = 0.14, k = 0.4 2.47 6.94 4.81 1679.98

• Table 5.9 shows that when η increases and k decreases simultaneously, the production
period (t∗1),warranty period (t∗w), the business cycle period (T ∗) and the average expected
profit (AEP ∗(t∗1, t

∗
w)) initially increase, after that decrease.

Table 5.10: Sensitivity analysis of t1, tw, T and EAP w.r.t. λ
Parameter Production period Warranty period Business cycle period Expected average profit

(λ) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

0.005 2.26 7.01 4.32 1690.68

0.010 2.59 7.78 4.92 1706.15

0.015 3.10 8.87 5.84 1724.09

0.020 3.99 10.54 7.41 1745.99

0.025 5.73 13.48 10.40 1774.95

• Table 5.10 explores that when the value of λ increases, both the production period (t∗1)
and warranty period (t∗w) increase as well as the corresponding business cycle period T ∗ and
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expected average profit (AEP ∗(t∗1, t
∗
w)) also increase due to the increase of the in-control state.

Table 5.11: Sensitivity analysis of t1, tw, T and EAP w.r.t. ρ
Parameter Production period Warranty period Business cycle period Expected average profit

(ρ) (t∗1 unit) (t∗w unit) (T ∗ unit) (AEP ∗(t∗1, t
∗
w) $)

0.45 2.36 2.38 4.77 1695.54

0.50 2.59 7.78 4.92 1706.15

0.55 2.87 12.34 5.14 1726.22

0.60 3.22 16.33 5.44 1753.88

0.65 3.71 19.96 5.91 1788.05

• Table 5.11 shows that when the value of ρ increases, all of the production period (t∗1),
warranty period (t∗w) and the business cycle period (T ∗) increases together. In this case it is
also observed that the expected average profit (AEP ∗(t∗1, t

∗
w)) increases due to increase of

the demand rate.

5.5.2 Practical Implication
There are many practical implications of this proposed model. As for example, it is very
practicable in the manufacturing system for mobile phones. At the time of production few
defective units (like, scratching, disorder shape, etc) are produced and then some of them be
repaired to sell at the market. Sometimes the company gives a discount on selling price and
increases the warranty period to increase selling rate. The decision manager of the company
decides the maximization of the profit function, considering the warranty period of each
product and the length of the production cycle. For such a real life problem, the present
model can be implemented. From this study some managerial insights have been drawn
which are very useful for the decision maker of any newly established mobile company.

5.6 Conclusion
In this chapter, we have studied the combined effects of deterioration of production process,
inspection errors, warranty policy and discount on selling price. In practice, generally both
production and inspection processes in a manufacturing system are not perfect. In most of the
existing literature, there is a consideration of imperfect production except inspection errors.
Here, a profit maximization model has been developed with two types of inspection errors
with a demand depending on warranty period and discount on selling price. To solve such
complex objective function, a computational algorithm have been devised to determine the

142



5.6. CONCLUSION

optimal warranty period and optimal production period considering the randomness of the
time from in-control to out-control state, inspection errors and defective rate. Finally,
numerical examples has been presented to explore the feasibility of the proposed model from
which the following insights have been drawn.

(i) From Table 5.2, 5.3 and 5.4 it is concluded that the average expected profit is maximum
when manufacturer gives both effects such as (a) selling price discount, and (b) warranty
period policy on the sale because of attraction of customer.

(ii) Again, from Table 5.5 and 5.6 it is inferred that the expected average profit decreases as
the probability of a Type I and Type II error increase. This is because of (a) addition to the
loss of incorrectly rejection of a non-defective item, and (b) return and penalty cost for a
defective item to be sold as a non-defective item which is returned from market.

(iii) Table 5.7 shows that when the probability of reworking rate and average reworked cost
simultaneously increase, initially average expected profit increases, after that average
expected profit decrease due to some portion of defective item to be reworked with a
minimum reworked cost and rest portion of defective item to be reworked with a large
amount reworked cost. So any manufacturer company can find the optimal reworked rate
from this study.

(iv) Table 5.9 shows that when selling price discount(η) increases and the corresponding
effective parameter (k) simultaneously decreases, initially the average expected profit
increases, after that the average expected profit decreases. Because at first selling price
discount attracts more customers. As a result, the demand rate increases. But latter, though
discount rate increases, the rate of demand does not increase as much as previous due to
market saturation. So from this study, any manufacturer company can find the optimal selling
price discount rate.
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Chapter 6

Two layers supply chain in an imperfect

production inventory model with two

storage facilities under reliability

consideration

6.1 Introduction
Supply chain model is the new era in the imperfect production inventory management. It is
the oversight of materials, information and finances as they move in a process from supplier
to manufacturer to wholesaler to retailer to consumer. It involves coordinating and integrating
these flows both within and among companies. The investigation of supply chain
management for defective and non-defective items has been published by several researchers
such as Weng [223], Munson and Rosenblatt [157], Khouja [117], Yao et al. [234], Wang et
al. [216].

Inventory management is generally attracted for large stock for several reasons such as an
attractive price discount for bulk purchase, the replenishment cost, transportation cost, the
demand of an item and so on. Therefore, due to space limitation of showroom, one (or
sometimes more than one) warehouse(s) is hired on rental basis to store the excess items. The
secondary warehouse (SW) may be located away from the Showroom or nearer to the
showroom. The actual service to the customer is done at the showroom only. Hartely [90]
first introduced the basic two warehouses problem in his book “Operations Research - A
Managerial Emphasis”. After Hartely [90], a number of research papers have been published
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by the different authors. Among them, the work done by Sarma [189], Dave [53], Goswami
and Chaudhuri [76], Pakkala and Achary [161], Bhunia and Maiti [11], Benkherouf [10],
Zhou [243], Kar et al. [111] and Chung & Huang [45] are worth mentioning. Dey et al. [57]
considered a finite time horizon inventory problem for a deteriorating item having two
separate warehouses with interval-valued lead time under inflation and a time value of money.
Liang and Zhou [134] investigated a two-warehouse inventory model for deteriorating items
under conditionally permissible delay in payments. Hariga [88] proposed an EOQ model with
multiple storage facilities where both owned and rented warehouses had limited stock
capacity. They assumed the rented warehouse having higher unit holding costs than the own
warehouse but offered better preservation resulting in a lower rate of deterioration for the
goods than in the own warehouse.

The production before the due time to meet the unexpected demand may cause to spoilage
as it cannot be stored till the particular time arises or it cannot be perfectly estimated the
demand. As a result, firm faces the problem of modeling the production of seasonal items,
estimating the reliability of the factors of production to undertake the orders from the
customers, budgeting the costs to be incurred to set up the EPQ model. Hazari et. al [98],
Panda and Maiti [163] and others discussed several dimensional EPQ model under the
consideration of reliability. But, none has considered the reliability conception in a supply
chain model with two warehouse facilities. The production of complete perfect items is not
possible in reality due to unrealistic assumption of 100% reliable system. Moreover, the
imperfect production also may arise to switch over “in-control” state to “out-of-control” state
in a long run production system.

In this chapter, a supply chain model consisting of manufacturer, retailer and customer
has been considered. The production system may undergo an “out-of-control” state from an
“in-control” state, after a certain time that follows a probability density function. The density
function varies with reliability of the machinery system that may be controlled by new
technologies, investing more capital. A mixture of perfect and imperfect quality items are
produced by the manufacturer. After some rework, some repairable portion of imperfect
quality items is transformed into perfect quality items and some of non repairable portion of
imperfect items are sold with reduced price to the retailer. Retailer purchases both perfect and
imperfect quality items and sales both items to the customers through his/her respective
showrooms of finite capacities at a market place. In this chapter, it has been considered that
the holding cost of perfect quality items in the secondary warehouse is less than the holding
cost of the showroom as the nature of the items are non-deteriorating and so having no
preservation cost. The perfect quality items are transported to the showroom via secondary
warehouse and the less perfect quality items are directly transported to the related showroom.
For this purpose, transportation cost is incurred to transport both quality items at the
respective showrooms from the production center. In order to optimize the production rate
and reliability parameter(the decision variables), the integrated average profit function of the
chain is maximized. Finally, a numerical example has been provided to illustrate the
feasibility of the model.
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6.2 Notations and Assumptions

To develop the proposed model, following notations and assumptions have been used.

6.2.1 Notations

The following notations have been used to develop the model.

q1m(t) : Inventory level of perfect quality items for the manufacturer at any time t.
q2m(t) : Inventory level of less perfect quality items for the manufacturer at any time t.
q1r(t) : Inventory level of perfect quality items for the retailer at any time t.
q2r(t) : Inventory level of less perfect quality items for the retailer at any time t.
P : Production rate per unit time.
t1 : Production run-time in one period.
β : Percentage of imperfect quality items per unit time.
δ : Percentage of rework of defective units per unit time.
γ : Percentage of imperfect items per unit time which are not reworked and suit-

able for sale through reduction.
Dr : Demand rate of perfect quality items for the retailer.
D′r : Demand rate of imperfect quality items for the retailer.
Dc : Demand rate of perfect quality items for the customer.
D′c : Demand rate of imperfect quality items for the customer.
τ : An exponential random variable with mean 1

λ
and denotes the time at which the

production system shifts from ‘in-control’ state to the ‘out-of-control’ state.
f(τ) : Probability density function of τ .
λ : Reliability parameter.
V (λ) : Development Cost per unit time.
T : Total time in one period.
cp : Production cost per unit.
sc : Screening cost per unit item.
rcm : Reworking cost per unit for manufacturer.
Am : Set up cost of manufacturer, Am = Am0 + Am1P

ξ, ξ > 0.
hm : Holding cost per unit for per unit time for perfect item in manufacturer.
h′m : Holding cost per unit for per unit time for imperfect item in manufacturer.
cd : Disposal cost per unit.
sm : Selling price per unit of perfect quality items for manufacturer.
s′m : Selling price per unit less perfect quality items for manufacturer.
Ar : Set up cost of retailer.
hr : Holding cost per unit item per unit time of perfect quality items in PW1 of

retailer.
hrs : Holding cost per unit item per unit time of perfect quality items of retailer in

secondary ware house.
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h′r : Holding cost per unit item per unit time of less perfect quality items in PW2

for retailer.
sr : Selling price per unit of perfect quality items for retailer at PW1.
s′r : Selling price per unit of less perfect quality items for retailer at PW2.
S : Capacity of secondary warehouse.
Wj : Capacity of PWj(j=1,2).

6.2.2 Assumptions
The following assumptions have been used to develop the model.

(i) Manufacturer produces a mixture of perfect and imperfect quality items. Some portion
of imperfect items are reworked at a cost.

(ii) Production rate (P ) is a decision variable satisfying Pmin ≤ P ≤ Pmax.

(iii) Lead time is negligible and manufacturer has ignored the machine breakdown.

(iv) In the ‘in-control’ state (the system is in better condition) of the production system it
produces perfect items and after shifting the system in the out-control state (i.e., after
occurrence of τ ), the condition of production system decreases with time and produces
defective items. If the production rate P increases the occupance of τ is very quickly,
i.e., mean time of failure decreases with P (i.e., the production system shifts from ‘in-
control’ state to ‘out-control’ state very quickly) and produce more non conforming
items then earlier. So, a development cost is required to control the occurrence of τ and
smaller value of λ. We take the development cost V (λ) as (cf. Mettas [149])

V (λ) = A+Be
(1−k)λmax−λ

λ−λmin (6.1)

where, λ ∈ [λmin, λmax], A is the fixed cost like labor and energy costs which is
independent of reliability factor (λ), B is the cost of technology and design complexity
for production when λ = λmax. The constant k represents the feasibility of increasing
reliability of the production system lies between 0 and 1.

(v) Reliability parameter of a production system is defined as
λ = number of failures

total unit of operating hours . Generally, in an imperfect production system,
number of failures (i.e., number of imperfect items) increases with the increases of
production rate P . i.e., the value of reliability parameter λ is dependent upon P and it
is increasing with P . Here we take λ = λ1φ(P ), where φ(P ) is an increasing function
of P and mean time failure 1

λ1φ(P )
is a decreasing function of P (i.e., the production

system will shifts from ‘in-control’ state to ‘out-control’ state rapidly if P increases)
where λ1 is a parameter satisfying 0 ≤ λ1 <

1
φ(P )

.
Since f(P ) is increasing function of P so Pmin and Pmax respectively gives minimum
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and maximum value of λ (i.e., λmin and λmax). Therefore, λmin = λ1φ(P )
]
P=Pmin

and

λmax = λ1φ(P )
]
P=Pmax

.

(vi) In this chapter, the unit production cost has been considered as a function of development
cost and production rate in the following form

C(P ) = Cr +
V (λ)

P δ1
+ α1P

δ2 + α2P
δ3 , δ1, δ2, δ3 > 0 (6.2)

where (a) Cr is the material cost per unit which is fixed.
(b) The second term is the development cost.
(iii) The third term α1P

δ2 is wear and tear cost.
(c) The fourth term α2P

δ3 is environment protection cost assuming that the cost due to
the measures taken for the environment protection. For example, in a thermal electricity
plant, the inject of ‘ash’ in the atmosphere depends upon the rate of production. If the
production is more, the amount of required raw material i.e., impure coal is more and
hence the amount of ‘fly ash’ is more. Now-a-days, some measures are taken to reduce
the ‘fly ash’ amount. Thus the cost due to this measure varies with the production rate.

(vii) It is assumed that, demand rates of retailers to the manufacturer is constant. But the
customers’ demand is stock dependent and selling price dependent for the perfect
quality items and less perfect items respectively. Since the storage space of the
showroom for perfect quality items is limited due to space problem and the demand of
the corresponding items is stock dependent, hence a secondary warehouse is hired by
the retailer on rental basis to store the excess amount of perfect quality items and these
items are continuously transferred to the showroom concerned. The literature suggests
that the holding cost of secondary warehouse per unit item per unit time is more than
the holding cost of showroom due to the preservation cost for maintaining the quality
of the product and other costs related to holding large quantity of the product in the
secondary warehouse.

(viii) Set up cost of manufacturer has been considered as production rate dependent. Also
assume that the set up cost of retailer depends on the demand rate of retailer to the
manufacturer.

(ix) It is well known that the quality and imperfectness of a product depends on raw
material, labour experience, machine component, production rate, production-run time
etc. Here we assume that the defective rate (β) depends upon the production rate (P ) of
the production center and simultaneously it depends upon the time length (t− τ) in the
out-control state and is given by

β =

{
0 , 0 ≤ t ≤ τ
(θ0 − θ1

P δ5
)(t− τ)δ4 , τ ≤ t ≤ t1

(6.3)

where θ0 and θ1 be the positive constants.
The above construction of β have the following properties:
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Proposition 6.1. If P increases then (θ0 − θ1
P δ5

) (for fixed value of δ5) increases and

when P →∞ then β → θ0(t− τ)δ4 , where θ0 is the maximum value of (θ0 − θ1
P δ5

).

Proposition 6.2. For fixed value of P if we increase the value of parameter δ5 then

(θ0 − θ1
P δ5

) increases and it become θ0 for large value of δ5.

Proposition 6.3. If t → τ then β → 0 and if t → t1 then β → βmax, where βmax is the

maximum value of β. i.e., in out control state, defective rate increases with the δ4 power

of time length of the out control state, whatever may be the production rate.

Proposition 6.4. If δ4 6= 0, δ5 = 0 then (θ0 − θ1
P δ5

(x) After reworking, the defective items are restored to its original quality.

(xi) Here two adjacent showrooms PW1 and PW2 have been considered by the retailer to
store the perfect items and imperfect items respectively.

6.3 Mathematical Formulation of the Proposed Model

In this article, the production rate and demand rate of the inventory system is constant. During
the regular production-run-time, the production system may undergo ‘out-of-control’ state
after a random time τ that follows exponential probability distribution function with mean

1
λ1φ(P )

and during that time rate of producing imperfect items is β. When the system is in “in-
control”, then the system may produce perfect items and the probability of producing perfect
items at the rate P . The defective items which are produced during regular production-run-
time are reworked with rate δ. Inventory holding cost per unit of perfect items is much more
than the holding cost of imperfect items.
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production rate P .

Proposition 6.5. If δ4 = 0, δ5 6= 0 then β does not depend upon the time length

inthe outcontrol state.

Proposition 6.6. If δ4 = 0, δ5 = 0 then production system has constant defective rate

(θ0 − θ1).



6.3. MATHEMATICAL FORMULATION OF THE PROPOSED MODEL

Figure 6.1: Schematic representation of the production inventory model

Figure 6.2: Pictorial representation of inventory situation of the integrated model

6.3.1 Formulation of the Manufacturer

At the beginning of the production, the process is assumed to be in “in-control” state. After a
random time τ with mean 1

λ1φ(P )
, the process may shift to an “out-of-control” state and may

generate non-conforming quality items. Reliability of machines in a manufacturing system is
generally assumed to be an exponential function of time t which is R(t) = exp(−λt). Since
a unit either fails or survives, and one of these two mutually exclusive alternatives must occur,
we have R(t) = 1−F (t). Here F (t) =

∫ t
0
f(u) du, where f(u) denotes the failure probability

density function such that
∫∞

0
f(t) dt = 1. Thus f(t) = d

dt
{F (t)} = λ1φ(P )e−λ1φ(P )t.

In our production system, two cases may arise:
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Case I: when 0 ≤ τ ≤ t1 the ‘out-of-control’ state occurs during production-run time

Here the production starts with production rate P . During production run time t1, the
inventory piles up, after adjusting the demand of retailer. As τ occurs in the time span (0, t1),
the system produces good quality items during [0, τ ] and it produces both good and defective
items during [τ, t1]. The total good items produced during [0, t1] are used to meet the demand
of perfect and less perfect item upto time t2 and t3 respectively.
For Perfect Quality Items of Manufacturer
The rate of change of inventory level of manufacturer for perfect quality items can be
represented by the following differential equations:

dq1m

dt
=


P −Dr, 0 ≤ t ≤ τ
P −Dr − (1− δ)βP, τ ≤ t ≤ t1
−Dr, t1 ≤ t ≤ t3

(6.4)

with boundary conditions q1m(0) = 0, q1m(τ) = (P −Dr)τand q1m(t3) = 0.
The solution of above differential equations are given by

q1m(t) =


(P −Dr)t, 0 ≤ t ≤ τ

(P −Dr)t− (1− δ)P (θ0 −
θ1

P δ5
)
(t− τ)δ4+1

δ4 + 1
, τ ≤ t ≤ t1

−Dr(t− t3), t1 ≤ t ≤ t3

(6.5)

Lemma 6.1. The manufacturer’s production time length (t1) and production rate (P ) must

satisfy the condition Pt1 − (1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
= Drt3.

Proof. From the continuity conditions of q1m(t) at t = t1, the following is obtained,

(P −Dr)t1 − (1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
= −Dr(t1 − t3)

i.e., Pt1 − (1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
= Drt3. Hence the proof.

Reworking Cost(RCM) for Manufacture

RCM = rcm

∫ t1

τ

δβP dt =
rcmδ

δ4 + 1
P (θ0 −

θ1

P δ5
)(t1 − τ)δ4+1.

Inventory holding cost for perfect items is:

HCM1 = hm

[ ∫ τ

0

q1m(t)dt+

∫ t1

τ

q1m(t)dt+

∫ t3

t1

q1m(t)dt
]

=
hm
2

[
(P −Dr)t

2
1 −

2(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 −
θ1

P δ5
)(t1 − τ)δ4+2 +Dr(t1 − t3)2

]
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For Imperfect Quality Items of Manufacturer

The rate of change of inventory level of manufacturer for imperfect quality items can be rep-
resented by the following differential equations:

dq2m

dt
=

{
γ(1− δ)βP −D′r, τ ≤ t ≤ t1
−D′r, t1 ≤ t ≤ t2

(6.6)

with boundary conditions q2m(τ) = 0, and q2m(t2) = 0.
The solution of above differential equations are given by

q2m(t) =

{
γ(1− δ)P (θ0 − θ1

P δ5
) (t−τ)δ4+1

δ4+1
−D′r(t− τ), τ ≤ t ≤ t1

−D′r(t− t2), t1 ≤ t ≤ t2
(6.7)

Lemma 6.2. The manufacturer’s production time length (t1) and production rate (P ) must

satisfy the condition γ(1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
+D′rτ = D′rt2.

Proof. From the continuity conditions of q2m(t) at t = t1, the following is obtained,

γ(1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
−D′r(t1 − τ) = −D′r(t1 − t2)

i.e., γ(1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
+D′rτ = D′rt2. Hence the proof.

Inventory holding cost for imperfect items is given by

HCM2 = h′m

[ ∫ t1

τ

q2m(t)dt+

∫ t2

t1

q1m(t)dt
]

=
h′m
2

[{ 2γ(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 −
θ1

P δ5
)(t1 − τ)δ4+2 −D′r

(
t1 − τ

)2}
+D′r

(
t1 − t2

)2]
Production cost for the manufacturer= cpPt1.
Inspection cost= scPt1.
Revenue of perfect quality items for the manufacturer= sm

∫ t3
0
Drdt = smDrt3.

Revenue of imperfect quality items for the manufacturer= s′m
∫ t2
τ
D′rdt,= s′mD

′
r(t2 − τ).

Amount of Disposal Items
The rate of change of inventory level of the disposal amount during the period (0, T ) can be
represented by the following differential equations:

dq3m

dt
= (1− γ)(1− δ)βP, τ ≤ t ≤ t1 (6.8)

Total disposal amount during the period (0, T ) = (1− γ)(1− δ)P (θ0 − θ1
P δ5

) (t1−τ)δ4+1

δ4+1
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In this case, total expected profit of manufacturer (TEPM) is given by

TEPM =
[ ∫ t1

0

smDrt3f(τ) dτ + s′m

∫ t1

0

D′r(t2 − τ)f(τ) dτ − cp
∫ t1

0

Pt1f(τ)dτ

−sc
∫ t1

0

Pt1f(τ) dτ − rcm
∫ t1

0

δ

δ4 + 1
P (θ0 −

θ1

P δ5
)(t1 − τ)δ4+1f(τ)dτ

−hm
2

∫ t1

0

[
(P −Dr)t

2
1 −

2(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 −
θ1

P δ5
)(t1 − τ)δ4+2

+Dr(t1 − t3)2
]
f(τ)dτ − h′m

2

∫ t1

0

[{ 2γ(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 −
θ1

P δ5
)(t1 − τ)δ4+2

−D′r
(
t1 − τ

)2}
+D′r

(
t1 − t2

)2]
f(τ)dτ −

∫ t1

0

Amf(τ) dτ

−cd
∫ t1

0

(1− γ)(1− δ)P (θ0 −
θ1

P δ5
)
(t1 − τ)δ4+1

δ4 + 1
f(τ) dτ

]
(6.9)

Case II: when t1 ≤ τ ≤ ∞, the “out-of-control” state does not occur within the

production-run time

In this case, no “out-of-control” state occurs during production run-time. Then governing
differential equations of the inventory system are given as follows:

For Perfect Quality Items of Manufacturer

dq1m

dt
=

{
P −Dr, 0 ≤ t ≤ t1
−Dr, t1 ≤ t ≤ t3

(6.10)

with boundary conditions q1m(0) = 0, and q1m(t3) = 0.
The solution of above differential equations are given by

q1m =

{
(P −Dr)t, 0 ≤ t ≤ t1
−Dr(t− t3), t1 ≤ t ≤ t3

(6.11)

Inventory holding cost for perfect quality items is given by

HCM = hm

[ ∫ t1

0

q1m(t) dt+

∫ t3

t1

q1m(t) dt
]

=
hm
2

[
(P −Dr)t

2
1 +Dr(t1 − t3)2

]
Production cost for the manufacturer= cpPt1.
Inspection cost= scPt1.
Revenue of perfect quality items for the manufacturer= sm

∫ t3
0
Drdt = smDrt3.
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In this case, total expected profit of manufacturer (TEPM) is given by

TEPM =
[ ∫ ∞

t1

smDrt3f(τ) dτ −
∫ ∞
t1

cpPt1f(τ)dτ −
∫ ∞
t1

scPt1f(τ) dτ

−hm
2

∫ ∞
t1

{
(P −Dr)t

2
1 +Dr(t1 − t3)2

}
f(τ)dτ −

∫ ∞
t1

Amf(τ) dτ
]

(6.12)

Now combining Case I and Case II, by (6.9) and (6.12), the total expected profit is

TEPM = smDrt3 + s′m

∫ t1

0

D′r(t2 − τ)f(τ) dτ − cpPt1 − scPt1

−
{
cd(1− γ)(1− δ) + rcmδ

} P

δ4 + 1
(θ0 −

θ1

P δ5
)

∫ t1

0

(t1 − τ)δ4+1f(τ)dτ

−hm
2

∫ t1

0

2(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 −
θ1

P δ5
)(t1 − τ)δ4+2 f(τ) dτ

−h
′
m

2

∫ t1

0

[{ 2γ(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 −
θ1

P δ5
)(t1 − τ)δ4+2 −D′r

(
t1 − τ

)2}
+D′r

(
t1 − t2

)2]
f(τ)dτ − Am −

hm
2

{
(P −Dr)t

2
1 +Dr(t1 − t3)2

}

6.3.2 Formulation of the Retailer

For Perfect Quality Items of Retailer
In this case the demand rate (Dc) of customers at PW1 has consider as stock dependent as the
following form

Dc =


α1 + β1q1r, 0 ≤ t ≤ T1

α1 + β1W1, T1 ≤ t ≤ T2

α1 + β1q1r, T2 ≤ t ≤ T

Now the corresponding rate of change of inventory of perfect quality items are given by

dq1r

dt
=

{
(Dr −Dc), 0 ≤ t ≤ t1
−Dc, t1 ≤ t ≤ T

(6.13)

with boundary conditions

q1r(t) =


0, at t = 0
W1, at t = T1

S, at t = t3
W1, at t = T2

0, at t = T
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Therefore the solutions of above differential equations are given by

q1r(t) =



Dr−α1

β1
(1− e−β1t), 0 ≤ t ≤ T1

W1 +
[
Dr − (α1 + β1W1)

]
(t− T1), T1 ≤ t ≤ t3

S −
[
(α1 + β1W1)

]
(t− t3), t3 ≤ t ≤ T2

−α1

β1

[
1− e−β1(t−T )

]
, T2 ≤ t ≤ T

(6.14)

Lemma 6.3. The retailer demand rate (Dr) of perfect item and capacity of perfect quality

items for retailer at PW1 must satisfy the condition T1 = 1
β1
log (Dr−α1)

Dr−α1−W1β1
.

Proof. From the continuity conditions of q1r(t) at t = T1, the following is obtained,
Dr−α1

β1
(1− e−β1T1) = W1

i.e., (1− W1β1
Dr−α1

) = e−β1T1 i.e., T1 = 1
β1
log (Dr−α1)

Dr−α1−W1β1
. Hence the proof.

Lemma 6.4. The retailer demand rate (Dr), capacity of retailer in secondary warehouse (S)

and capacity of retailer at PW1 of perfect item must satisfy the condition

t3 = 1
β1
log (Dr−α1)

Dr−α1−W1β1
+ S−W1

{Dr−(α1+β1W1)} .

Proof. From the continuity conditions of q1r(t) at t = t3, the following is obtained,

W1 +
{
Dr − (α1 + β1W1)

}
(t3 − T1) = S

i.e., t3 = 1
β1
log (Dr−α1)

Dr−α1−W1β1
+ S−W1

{Dr−(α1+β1W1)} , (using Lemma 6.3)

Hence the proof.

Lemma 6.5. The capacity of retailer in secondary warehouse (S) and total business time

length T must satisfy the condition S −
{

(α1 + β1W1)
}

(T2 − t3) = −α1

β1

{
1− e−β1(T2−T )

}
.

Proof. Similarly proof to Lemma 6.4.

Holding cost(HCRW ) of the secondary warehouse SW is given by

HCRW = hrs

∫ t3

T1

{q1r(t)−W1} dt+ hrs

∫ T2

t3

{q1r(t)−W1} dt

=
hrs
2

[
(Dr − (α1 + β1W1))(t3 − T1)2 − (α1 + β1W1)(T2 − t3)2 + 2(S −W1)(T2 − t3)

]
.

Holding cost(HCRS1) of the showroom PW1 is given by

HCRS1 = hr

∫ T1

0

q1r(t) dt+ hr

∫ T2

T1

W1 dt+ hr

∫ T

T2

q1r(t) dt

= hr
Dr − α1

β1

[
T1 +

e−β1T1

β1

− 1

β1

]
+W1hr(T2 − T1)− hr

α1

β1

[
(T − T2) +

1

β1

− e−β1(T2−T )

β1

]
.
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Transportation cost(TCPR) for perfect quality items of retailer is given by

TCPR = ctr

∫ T

0

DC dt

= ctr

[
(α1 + β1W1)(T2 − T1) +DrT1 −

Dr

β1

+
Dr − α1

β1

e−β1T1 +
α1

β1

e−β1(T2−T )
]
.

Revenue from selling perfect quality items is given by

REPR = sr

∫ T

0

Dc dt

= sr

[
(α1 + β1W1)(T2 − T1) +DrT1 −

Dr

β1

+
Dr − α1

β1

e−β1T1 +
α1

β1

e−β1(T2−T )
]
.

Hence the total profit of the retailer from the perfect quality items is given by

TPR1 = (sr − ctr)
[
(α1 + β1W1)(T2 − T1) +DrT1 −

Dr

β1

+
Dr − α1

β1

e−β1T1

+
α1

β1

e−β1(T2−T )
]
−
[
hr
Dr − α1

β1

{
T1 +

e−β1T1

β1

− 1

β1

}
+W1hr(T2 − T1)

−hr
α1

β1

{
(T − T2) +

1

β1

− e−β1(T2−T )

β1

}]
− Ar − smDrt3

−hrs
2

[
(Dr − (α1 + β1W1))(t3 − T1)2 − (α1 + β1W1)(T2 − t3)2 + 2(S −W1)(T2 − t3)

]
For Imperfect Quality Items of Retailer
In this case demand rate (D′c) of customers at PW2 is assumed as selling price dependent
defined as D′c = (a − bs′r) and corresponding change of on hand inventory of less perfect
quality items are given by

dq2r

dt
=

{
D′r −D′c, 0 ≤ t ≤ t2
−D′c, t2 ≤ t ≤ t4

(6.15)

with boundary conditions q2r(0) = 0, and q2r(t4) = 0.
The solution of above differential equations are given by

q2r =

{
(D′r −D′c)t, 0 ≤ t ≤ t2
−D′c(t− t4), t2 ≤ t ≤ t4

(6.16)

Lemma 6.6. The retailer demand rate (D′r) and customer demand rate (D′c) must satisfy the

condition t2 = D′c
D′r
t4.

Proof. From the continuity conditions of q2r(t) at t = t2, the following is obtained,

(D′r −D′c)t2 = −D′c(t2 − t4) i.e., t2 = D′c
D′r
t4. Hence the proof.
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Holding cost (HCRS2) of the showroom PW2 is given by

HCRS2 = h′r

∫ t2

0

q2r(t) dt+ h′r

∫ t4

t2

q2r(t) dt =
h′r
2

[
(D′r −D′c)t22 +D′c(t2 − t4)2

]
.

Transportation cost(TCIR) for less perfect quality items of retailer is given by

TCIR = c′tr

∫ t4

0

D′c dt = c′trD
′
ct4.

Revenue(REIR) from selling less perfect quality items of retailer is given by

REIR = s′r

∫ t4

0

D′c dt = s′rD
′
ct4.

Total Profit(TPR2) of Retailer for less perfect quality items is given by

TPR2 = (s′r − c′tr)D′ct4 −
h′r
2

[
(D′r −D′c)t22 +D′c(t2 − t4)2

]
− A′r − s′mD′rλ1φ(P )t1(t2 − t1)

Total Profit of Retailer during (0, T ) is

TPR = TPR1 + TPR2

= (sr − ctr)
[
(α1 + β1W1)(T2 − T1) +DrT1 −

Dr

β1

+
Dr − α1

β1

e−β1T1 +
α1

β1

e−β1(T2−T )
]

−hrs
2

[
(Dr − (α1 + β1W1))(t3 − T1)2 − (α1 + β1W1)(T2 − t3)2 + 2(S −W1)(T2 − t3)

]
−
[
hr
Dr − α1

β1

{
T1 +

e−β1T1

β1

− 1

β1

}
+W1hr(T2 − T1)− hr

α1

β1

{
(T − T2) +

1

β1

− e−β1(T2−T )

β1

}]
−h

′
r

2

[
(D′r −D′c)t22 +D′c(t2 − t4)2

]
− s′mD′rλ1φ(P )t1(t2 − t1)

−smDrt3 + (s′r − c′tr)D′ct4 − Ar − A′r

6.3.3 Average Profit of the Proposed Model
Average expected profit of the model during (0, T ) is given by

AEP (P, T ) =
1

T
[TEPM + TPR]

6.4 Scenarios of the Proposed Models
Depending upon the values of δ4 and δ5, different scenarios have been developed.
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6.4.1 Scenario-1 (Same as above Model with Defective Rate is Dependent

on both Production Rate and Production Run Time)

Taking δ4 6= 0, δ5 6= 0 i.e., β is dependent only production rate P and does depend production-
run time. In this case the rate of defectiveness β has been considered as follows:

β =

{
0 , 0 ≤ t ≤ τ
(θ0 − θ1

P δ5
)(t− τ)δ4 , τ ≤ t ≤ t1

(6.17)

where θ0 and θ1 be the positive constants.

TEPM1(P, T ) = smDrt3 + s′m

∫ t1

0

D′r(t2 − τ)f(τ) dτ − cpPt1 − scPt1 − Am

−
{
cd(1− γ)(1− δ) + rcmδ

} P

δ4 + 1
(θ0 −

θ1

P δ5
)

∫ t1

0

(t1 − τ)δ4+1f(τ)dτ

−hm
2

∫ t1

0

2(1− δ)P
(δ4 + 1)(δ4 + 2)

(θ0 −
θ1

P δ5
)(t1 − τ)δ4+2 f(τ) dτ

−h
′
m

2

∫ t1

0

[{ 2γ(1− δ)
(δ4 + 1)(δ4 + 2)P

(θ0 −
θ1

P δ5
)(t1 − τ)δ4+2 −D′r

(
t1 − τ

)2}
+D′r

(
t1 − t2

)2]
f(τ)dτ − hm

2

{
(P −Dr)t

2
1 +Dr(t1 − t3)2

}
Approximating the function exp(−f(P )t1) of its expansion as well as δ4 = 1, we have

(i)

∫ t1

0

f(τ) dτ ≈ λ1φ(P )t1,

(iii)

∫ t1

0

(
t1 − τ

)2

f(τ) dτ ≈ λ1φ(P )t31
3

,

(ii)

∫ t1

0

(
t2 − τ

)
f(τ) dτ ≈ λ1φ(P )t1(t2 − t1),

(iv)

∫ t1

0

(
t1 − τ

)3

f(τ) dτ ≈ λ1φ(P )t41
4

(For details see appendix D)

TEPM1(P, T ) = smDrt3 + s′mD
′
rλ1φ(P )t1(t2 − t1)− cpPt1 − scPt1

−P
6

{
cd(1− γ)(1− δ) + rcmδ

}
(θ0 −

θ1

P δ5
)λ1φ(P )t31 − Am

−hm
24

[
12
{

(P −Dr)t
2
1 +Dr(t1 − t3)2

}
− P (1− δ)(θ0 −

θ1

P δ5
)λ1φ(P )t41

]
−h

′
m

24

[{
Pγ(1− δ)(θ0 −

θ1

P δ5
)t31 − 4D′rt

2
1

}
+ 12D′r

(
t1 − t2

)2]
λ1φ(P )t1

Average expected profit of the model during (0, T ) is given by

AEP (P, T ) =
1

T
[TEPM1 + TPR]
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6.4.2 Scenario-2 (Same as above Model with Defective Rate is

Production Rate Dependent and Independent of Production Time)

Taking δ4 = 0, δ5 6= 0 i.e., β is dependent only production rate P and does depend production-
run time. In this case the rate of defectiveness β has been considered as follows:

β =

{
0 , 0 ≤ t ≤ τ
(θ0 − θ1

P δ5
) , τ ≤ t ≤ t1

(6.18)

where θ0 and θ1 be the positive constants.

TEPM2(P, T ) = smDrt3 + s′m

∫ t1

0

D′r(t2 − τ)f(τ) dτ − cpPt1 − scPt1

−
{
cd(1− γ)(1− δ) + rcmδ

} P

δ4 + 1
(θ0 −

θ1

P δ5
)

∫ t1

0

(t1 − τ)f(τ)dτ

−hm
2

{
(P −Dr)t

2
1 +Dr(t1 − t3)2

}
− hm

2

∫ t1

0

(1− δ)P (θ0 −
θ1

P δ5
)(t1 − τ)2 f(τ) dτ

−h
′
m

2

∫ t1

0

[{
γ(1− δ)P (θ0 −

θ1

P δ5
)−D′r

}(
t1 − τ

)2

+D′r

(
t1 − t2

)2]
f(τ)dτ − Am

Approximating the function exp(−f(P )t1) of its expansion, we have

(i)

∫ t1

0

f(τ) dτ ≈ λ1φ(P )t1,

(iii)

∫ t1

0

(
t1 − τ

)
f(τ) dτ ≈ λ1φ(P )t21

2
,

(ii)

∫ t1

0

(
t2 − τ

)
f(τ) dτ ≈ λ1φ(P )t1(t2 − t1),

(iv)

∫ t1

0

(
t1 − τ

)2

f(τ) dτ ≈ λ1φ(P )t31
3

,

(For details see appendix D)
Total expected profit of manufacturer is given by

TEPM2 = smDrt3 + s′mD
′
rλ1φ(P )t1(t2 − t1)− cpPt1 − scPt1

−1

2

{
cd(1− γ)(1− δ) + rcmδ

}
(θ0 −

θ1

P δ5
)Pλ1φ(P )t21

−hm
6

[
3
{

(P −Dr)t
2
1 +Dr(t1 − t3)2

}
− (1− δ)(θ0 −

θ1

P δ5
)λ1φ(P )t31

]
−h

′
m

6

[{
γ(1− δ)(θ0 −

θ1

P δ5
)P −D′r

}
t21 + 3D′r

(
t1 − t2

)2]
λ1φ(P )t1 − Am

Average expected profit of the model during (0, T ) is given by

AEP (P, T ) =
1

T
[TEPM2 + TPR]
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6.4.3 Scenario-3 (Same as above Model with Defective Rate is

Production Time Dependent and Independent of Production Rate)
Taking δ4 6= 0, δ5 = 0 i.e., β is not dependent on production rate P and depend only
production-run time. In this case the rate of defectiveness β has been considered as follows:

β =

{
0 , 0 ≤ t ≤ τ
(θ0 − θ1)(t− τ)δ4 , τ ≤ t ≤ t1

(6.19)

where θ0 and θ1 be the positive constants.

TEPM3 = smDrt3 + s′m

∫ t1

0

D′r(t2 − τ)f(τ) dτ − cpPt1 − scPt1

−
{
cd(1− γ)(1− δ) + rcmδ

} P

δ4 + 1
(θ0 − θ1)

∫ t1

0

(t1 − τ)δ4+1f(τ)dτ

−hm
2

∫ t1

0

2(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 − θ1)(t1 − τ)δ4+2 f(τ) dτ

−h
′
m

2

∫ t1

0

[{ 2γ(1− δ)
(δ4 + 1)(δ4 + 2)

P (θ0 − θ1)(t1 − τ)δ4+2 −D′r
(
t1 − τ

)2}
+D′r

(
t1 − t2

)2]
f(τ)dτ − Am −

hm
2

{
(P −Dr)t

2
1 +Dr(t1 − t3)2

}
Approximating the function exp(−f(P )t1) of its expansion and δ4 = 1, we have

(i)

∫ t1

0

f(τ) dτ ≈ λ1φ(P )t1,

(iii)

∫ t1

0

(
t1 − τ

)
f(τ) dτ ≈ λ1φ(P )t21

2
,

(v)

∫ t1

0

(
t1 − τ

)3

f(τ) dτ ≈ λ1φ(P )t41
4

,

(ii)

∫ t1

0

(
t2 − τ

)
f(τ) dτ ≈ λ1φ(P )t1(t2 − t1),

(iv)

∫ t1

0

(
t1 − τ

)2

f(τ) dτ ≈ λ1φ(P )t31
3

,

(For details see appendix D)

Total expected profit of manufacturer is given by

TEPM3 = smDrt3 + s′mD
′
rλ1φ(P )t1(t2 − t1)− cpPt1 − scPt1

−P
6

{
cd(1− γ)(1− δ) + rcmδ

}
(θ0 − θ1)λ1φ(P )t31

−hm
24

[
12
{

(P −Dr)t
2
1 +Dr(t1 − t3)2

}
− (1− δ)P (θ0 − θ1)λ1φ(P )t41

]
−h

′
m

24

[{
γ(1− δ)P (θ0 − θ1)t31 − 4D′rt

2
1

}
+ 12D′r

(
t1 − t2

)2]
λ1φ(P )t1 − Am

Average expected profit of the model during (0, T ) is given by

AEP (P, T ) =
1

T
[TEPM3 + TPR]
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6.4.4 Scenario-4 (Same as above Model with Constant Defective Rate )
Taking δ4 = 0, δ5 = 0 i.e., β does not dependents on both production rate P and production-
run time. In this case the rate of defectiveness β has been considered as follows:

β =

{
0 , 0 ≤ t ≤ τ
(θ0 − θ1) , τ ≤ t ≤ t1

(6.20)

where θ0 and θ1 be the positive constants.

TEPM4 = smDrt3 + s′m

∫ t1

0

D′r(t2 − τ)f(τ) dτ − cpPt1 − scPt1

−
{
cd(1− γ)(1− δ) + rcmδ

}
P (θ0 − θ1)

∫ t1

0

(t1 − τ)f(τ)dτ

−hm
2

{
(P −Dr)t

2
1 +Dr(t1 − t3)2

}
+
hm
2

∫ t1

0

(1− δ) P (θ0 − θ1)(t1 − τ)2 f(τ) dτ

−h
′
m

2

∫ t1

0

[{
γ(1− δ)P (θ0 − θ1)−D′r

}
(t1 − τ)2 +D′r

(
t1 − t2

)2]
f(τ)dτ − Am

Approximating the function exp(−f(P )t1) of its expansion, we have

(i)

∫ t1

0

f(τ) dτ ≈ λ1φ(P )t1,

(iii)

∫ t1

0

(
t1 − τ

)
f(τ) dτ ≈ λ1φ(P )t21

2
,

(ii)

∫ t1

0

(
t2 − τ

)
f(τ) dτ ≈ λ1φ(P )t1(t2 − t1),

(iv)

∫ t1

0

(
t1 − τ

)2

f(τ) dτ ≈ λ1φ(P )t31
3

,

(For details see appendix D)
Total expected profit of manufacturer is given by

TEPM4 = smDrt3 + s′mD
′
rλ1φ(P )t1(t2 − t1)− cpPt1 − scPt1

−1

2

{
cd(1− γ)(1− δ) + rcmδ

}
(θ0 − θ1)Pλ1φ(P )t21

−hm
6

[
3
{

(P −Dr)t
2
1 +Dr(t1 − t3)2

}
− (1− δ)(θ0 − θ1)Pf(P )t31

]
−h

′
m

6

[{
γ(1− δ)(θ0 − θ1)P −D′r

}
t21 + 3D′r

(
t1 − t2

)2]
λ1φ(P )t1 − Am

Average expected profit of the model during (0, T ) is given by

AEP (P, T ) =
1

T
[TEPM4 + TPR]
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6.5. NUMERICAL ILLUSTRATION

6.5 Numerical Illustration

Consider a manufacturer of the plastic product produces water tank in India. This production
system produces mixture of perfect and defective items. The inspection process that screens
out the defective items. The fraction of defective items have been reworked. Owing to the
regulations of environmental protection, the manufacturer considers the disposal cost with
aim to reduce the negative effects to environment. The company delivers the water tank to a
distributor/retailer (the buyer) continuously. The customer buy the product from retailer. The
customer demand is affected by the displayed stock and selling price. From the historical data,
the manufacture has taken following parametric values:
α1 = 0.003, α2 = 0.005, β1 = 0.40, γ = 0.80, δ = 0.70, δ1 = 2, δ2 = 2, δ3 = 1, λ1 = 0.004,
λmax = 0.80, λmin = 0.20, θ0 = 0.12, θ1 = 0.01, Dr = 31 units, D′r=4 units, A = $4000,
B = $1000, a = $28, b = 0.30, k = 0.5, Am0 = $48, Am1 = $0.05, Ar = $85, A′r = $40,
cr=$24 per unit, csr = $0.80 per unit, rcm = $2 per unit, ctr = $0.20 per unit, c′tr=$0.20 per
unit, cd = $0.6 per unit, hm = $0.90 per unit per unit time, h′m = $0.45 per unit per unit time,
hr = $1.5 per unit per unit time, h′r = $0.55, hrs = $1.2 per unit per unit time, sm = $89 per
unit, s′m = $59 per unit, sr = $122 per unit, s′r = $85 per unit, S = $78 pics, W1 = $56 pics.
Using the above parametric values, the optimum values of our proposed non-linear problem
have been shown in following Table 6.1.

Table 6.1: Optimal results of the illustrated model when φ(P ) = 1.29 + 0.59P

Scenario Production Production Total business Average Expected

rate (P ∗ unit) time (t∗1 unit) time (T ∗ unit) Profit (AEP ∗(P ∗, T ∗)

Scenario-1 65.07 2.15 6.25 $ 1639.57

δ4 = 0, δ5 = 0

Scenario-2 64.24 2.20 6.23 $ 1648.85

δ4 = 0, δ5 = 0

Scenario-3 62.18 2.25 6.19 $ 1664.71

δ4 = 0, δ5 = 0

Scenario-4 63.02 2.22 6.21 $ 1657.43

δ4 = 0, δ5 = 0

6.5.1 Sensitivity Analysis

In this section, we examine the effects of changes in the system parameters to study the
sensitivity analysis of the proposed model with respect to some parameters based on
Scenario-1. The results are presented in following Table 6.2, 6.3 and 6.4.
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Table 6.2: Sensitivity analysis of AEP ∗(P ∗, T ∗) when λ1 changes

λ1 λ V (λ) Reworking Cost (AEP ∗(P ∗, T ∗)

0.001 0.039 $4093.362 $1.03 $1639.65

0.003 0.119 $4014.910 $3.08 $1639.63

0.004 0.158 $4000.423 $4.11 $ 1639.57

0.005 0.198 $4000.000 $5.14 $1639.37

0.007 0.283 $26338.49 $7.48 $1488.06

Table 6.3: Sensitivity analysis of AEP ∗(P ∗, T ∗) when α1 and α2 changes

α1, α2 Unit Production Total Production Average Expected

Cost C(P ) Cost Profit (AEP ∗(P ∗, T ∗))

α1 = 0.000, α2 = 0.005 $ 25.27 $ 3535.29 $1935.74

α1 = 0.001, α2 = 0.003 $29.37 $ 4109.43 $1840.055

α1 = 0.003, α2 = 0.000 $37.65 $ 5266.82 $1647.15

α1 = 0.003, α2 = 0.005 $37.97 $ 5312.33 $ 1639.57

α1 = 0.005, α2 = 0.006 $46.50 $ 6506.13 $ 1440.605

α1 = 0.006, α2 = 0.008 $50.87 $ 7116.68 $ 1338.84

α1 = 0.007, α2 = 0.009 $55.16 $ 7718.13 $1238.60

α1 = 0.001, α2 = 0.005 $29.50 $ 4127.64 $1837.02

α1 = 0.002, α2 = 0.005 $33.73 $ 4719.99 $1738.29

α1 = 0.003, α2 = 0.005 $37.97 $ 5312.33 $1639.57

α1 = 0.004, α2 = 0.005 $42.20 $ 5904.68 $1540.84

α1 = 0.005, α2 = 0.005 $46.44 $ 6497.03 $1442.12

α1 = 0.003, α2 = 0.003 $37.84 $ 5294.13 $1642.60

α1 = 0.003, α2 = 0.004 $37.90 $ 5303.23 $1641.08

α1 = 0.003, α2 = 0.005 $37.97 $ 5312.33 $1639.57

α1 = 0.003, α2 = 0.006 $38.03 $ 5321.44 $ 1638.05

α1 = 0.003, α2 = 0.007 38.10 $ 5330.54 $ 1636.53
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Table 6.4: Sensitivity analysis of AEP ∗(P ∗, T ∗) when S and W1 changes
S W1 Holding Cost of Retailer Average Expected Profit (AEP ∗(P ∗, T ∗))

S = 68 W1 = 56 $379.16 $1641.87

S = 73 W1 = 56 $386.06 $1640.72

S = 78 W1 = 56 $392.96 $1639.57

S = 83 W1 = 56 $399.86 $1638.42

S = 88 W1 = 56 $406.76 $1637.27

S = 78 W1 = 46 $369.29 $1306.53

S = 78 W1 = 51 $381.12 $1473.05

S = 78 W1 = 56 $392.96 $1639.57

S = 78 W1 = 58 $397.70 $1706.17

S = 78 W1 = 61 $404.80 $1806.08

The main conclusions from the sensitivity analysis are as follows:
(i) The sensitivity analyses of the development cost, reworking cost and average expected
profit are shown in Table 6.2 when the parameter λ1 increases or decreases. Initially
increasing λ1 decrease development cost (V (λ)), but reworking cost increasing and average
expected profit (AEP ) decreases.
(ii) From Table 6.3 explore that when the rate of wear-tear cost (α1) and environment
protection cost (α2) increase, the average expected profit (AEP ) decrease due to increase of
unit production cost (C(P )).
(iii) Here the customer demand rate dependent on the stock of showroom (W1). So When the
the scale of stock (W1) increase, the average expected profit (AEP ) increase due to selling
rate of retailer increase (Dr) and manufacturer holding cost (hm) decreases (Table 6.4).

6.6 Conclusion
This chapter develops a two-layer supply chain production inventory model involving
manufacturer, retailer and customers. In comparing with the existing literature on the supply
chain, the followings are the main contributions in the proposed model:
After a random time, the process may shift to “out-of-control” state from “in-control” state
during the production run and may generate non-conforming quality items. Inspection cost is
incurred during the production run time and manufacturer continuously inspects as well as
separates the perfect quality items, less perfect quality items, repairable items which are
transformed into perfect quality items after some rework and reject items. Reworked cost is
considered by the manufacturer to repair a certain percent of imperfect quality items.
Demand rate of customers for perfect quality items and less perfect quality items are
respectively assumed to be stock dependent and selling price dependent. Here retailer have
two showrooms PW1 and PW2 of finite capacities at busy market place and the market
demands of perfect and less perfect quality items are respectively met through the showrooms
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PW1 and PW2. Retailer has a secondary warehouse SW of infinite capacity, away from busy
market place, to store the excess amount perfect quality items from where the items are
continuously transferred to the showroom. It is considered that the holding cost per unit per
unit time at SW is less than the holding cost at PW1 per unit per unit time. The repairing
costs of corrective and preventive maintenance should also be considered, as these costs
increase the unit production cost. Inventory and production decisions are made at the
manufacturer and retailer levels. Actually, in this chapter the coordination between
production and inventory decisions has been established across the supply chain so that the
integrated average profit of the chain is maximum.
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Chapter 7

Three layers supply chain in an imperfect

production inventory model with two

storage facilities under fuzzy rough

environment1

7.1 Introduction

Business organizations all over the world are striving hard to evolve strategies to survive in
the era of competition ushered in by globalization. Supply chain management (SCM) is one
such strategy. It is an effective methodology and presents an integrated approach to resolve
issues in sourcing customer service, demand flow and distribution. The focus is on the
customer. The results are in the form of reduced operational costs, improved flow of supplies,
reduction in delays of production and increased customer satisfaction. While the goal of
supply chain management is to reduce cost of producing and reaching the finished products to
the customers, inventory control is the means to achieve the goal. Researchers as well as
practitioners in manufacturing industries have given importance to develop inventory control
problems in supply chain management. All steps from supply of raw materials to finished
products can be included into a supply chain, connecting raw materials supplier,
manufacturer, retailer and finally customers. Recent reviews on supply chain management are
provided by Weng [223], Munson and Rosenblatt [157], Yang and Wee [230], Khouja [117],
Yao et al. [234], Chaharsooghi et al. [16], Wang et al. [216] and others.

1This model published in Journal of Uncertainty Analysis and Applications, 2(1) (2014) 1-31, SPRINGER.
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Now a days, it is common to all industries that a certain percentage of produced or ordered
items are mixed of perfect and imperfect quality. It is also important to a supply manager of
any organization to control and maintain the inventories of perfect and imperfect quality
items. Salameh and Jaber [184] developed an inventory model for imperfect quality items
using the EPQ/EOQ formulae and assumed that inferior quality items are sold as a single
batch at the end of the total screening process. Goyal and Cardenas-Barron [78] extended the
idea of Salameh and Jaber’s [184] model and proposed a practical approach to determine
EPQ for items with imperfect quality. Yu et al. [238] generalized the models of Salameh and
Jaber [184], incorpoting deterioration and partial back ordering. Liu and Yang [143]
investigated a single stage production system with imperfect process delivering two types of
defects: reworkable and non-reworkable items. The reworkable items are sent for reworking,
whereas non-reworkable items are immediately discarded from the system. Panda and
Maiti [163] represented a geometric programming approach for multi-item inventory models
with price dependent demand under flexibility and reliability with imprecise space constraint.
Ma et al. [146] considered the effects of imperfect production processes and the decision on
whether and when to implement a screening process for defective items generated during a
production run. Sana [187] develops two inventory models in an imperfect production system
and showed that the inferior quality items could be reworked at a cost where overall
production inventory costs could be reduced significantly. Sana [188] extended the idea of
imperfect production process in three layer supply chain management system.

Warehousing is an integral part of every logistics system. We can define warehousing as
that part of a firms logistics system that stores products (raw materials, parts, goods in
process, finished goods). The two warehouse model for a finite and infinite time horizon is
developed by several researchers (cf. Hartely [90], Pakkala and Achary [161], Bhunia and
Maiti [11], Kar et al. [111] and others) already discussed in Section 6.1.

Dubois and Prade [63] first studied the fuzzification problem of rough sets. Furthermore,
Morsi and Yakout [156] defined the upper and lower approximations of the fuzzy sets with
respect to a fuzzy min-similarity relation. Additionally, Radzikowska and Kerre [167], Xu
and Zhou [228], Liu and Sai [139], Chen [33] and others generalized the above definitions of
the fuzzy rough set to a more general case. Different types of uncertainty such as randomness,
fuzziness and roughness are common factors in any production inventory problem. But some
problems in production inventory system occur both fuzziness and roughness simultaneously.
In many cases, it is found that some inventory parameters involve both the fuzzy and rough
uncertainties. For example, the inventory related costs holding cost, set-up cost, idle costs,
etc. depend on several factors such as bank interest, inflation, etc. which are uncertain in
fuzzy rough sense. To be more specific, inventory holding cost is sometimes represented by a
fuzzy number and it depends on the storage amount which may be imprecise and range
within an interval due to several factors such as scarcity of storage space, market fluctuation,
human estimation thought process i.e. it may be represented by a rough set.
In this chapter, a supply chain model consisting of supplier, manufacturer and retailer has
been considered. Here supplier receives the raw materials in a lot and then the superior
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quality items of the raw materials are sold at a higher price to the manufacturer after the
screening the imperfect raw materials as well as inferior quality items of the raw materials are
also sold to another manufacturer at a reduced price in a single batch by the end of cent
percent screening process. A mixture of perfect and imperfect quality items are produced by
the manufacturer. After some rework, some repairable portion of imperfect quality items is
transformed into perfect quality items and some of non repairable portion of imperfect items
are sold with reduced price to the retailer. Retailer purchases both perfect and imperfect
quality items and sales both items to the customers through his/her respective showrooms of
finite capacities at a market place. Here customers’ demand is stock dependent and selling
price dependent for the perfect quality items and less perfect items respectively. Since the
storage space of the showroom for perfect quality items is limited due to space problem and
the demand of the corresponding items is stock dependent, hence a secondary warehouse is
hired by the retailer on rental basis to store the excess amount of perfect quality items and
these items are continuously transferred to the showroom concerned. The literature suggests
that the holding cost of secondary warehouse per unit item per unit time is more than the
holding cost of showroom due to the preservation cost for maintaining the quality of the
product and other costs related to holding large quantity of the product in the secondary
warehouse. But in this chapter it has been considered that the holding cost of perfect quality
items in the secondary warehouse is less than the holding cost of the showroom as the nature
of the items are non-deteriorating and so having no preservation cost. Here, transportation
cost is also incurred to transport both quality items at the respective showrooms from the
production center. Due to complexity of environment, inventory holding costs, idle costs,
set-up costs and transportation costs are considered as fuzzy rough type and these are reduced
to crisp ones using fuzzy rough expectation. In order to optimize the production rate and raw
material order size (the decision variables), the average profit function of the manufacturer is
maximized as the manufacturer acts as a leader (Stakelberg approach) and the supplier as
well as retailer are the followers of that chain. The decision variables are also optimized by
maximizing the integrated average profit function of the chain. Finally, a comparative study
has been made between both approaches Stakelberg and integrated. A numerical example is
provided to illustrate the feasibility of the model.

7.2 Notations and Assumptions
The following notations and assumptions have been used to develop the proposed model:

7.2.1 Notations

The following notations have been used to developed the model.
R : Replenishment lot size of the supplier.
P : Production rate for the manufacturer which is also the demand rate of supplier.
x : Screening rate of supplier.
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θ : Percentage of inferior quality items in each lot received by the supplier.
t1 : Cycle length of supplier.
t′ : Total Screening time of R units order per cycle.
As : Set up cost of supplier.
cs : Purchase cost per unit item of supplier.
hs : Holding cost per unit item for per unit time for supplier.
Ics : Cost per unit idle time of supplier.
sc : Screening cost per unit item.
ws : Selling price per unit of superior quality item for supplier.
w′s : Selling price per unit of inferior quality item for supplier.
β : Percentage of imperfect quality items suitable for rework to make perfect items.
γ : Percentage of imperfect items which are suitable for sale through reduction.
q1m(t): Inventory level of perfect quality items for the manufacturer at any time t.
q2m(t): Inventory level of less perfect quality items for the manufacturer at any time t.
Dr : Demand rate of the retailer for perfect quality items.
D′r : Demand rate of the retailer for less perfect quality items.
Am : Set up cost of manufacturer.
hm : Holding cost per unit item for per unit time for perfect item in manufacturer.
h′m : Holding cost per unit item for per unit time for imperfect item in manufacturer.
Icm : Cost per unit idle time of manufacturer.
Ism : Inspection cost per unit item for manufacturer.
rcm : Reworking cost per unit item for manufacturer.
C(P ) : Production cost per unit item.
sm : Selling price per unit of perfect quality items for manufacturer.
s′m : Selling price per unit less perfect quality items for manufacturer.
q1r(t) : Inventory level of perfect quality items for the retailer at any time t.
q2r(t) : Inventory level of less perfect quality items for the retailer at any time t.
Ar : Set up cost for perfect quality items of retailer.
A′r : Set up cost for less perfect quality items of retailer.
hr : Holding cost per unit item for per unit time of perfect quality items in PW1 for retailer.
hrs : Holding cost per unit item for per unit time of perfect quality items for the retailer in

secondary ware house.
h′r : Holding cost per unit item for per unit time of less perfect quality items in PW2 for

retailer.
sr : Selling price per unit of perfect quality items for retailer PW1.
s′r : Selling price per unit of less perfect quality items for retailer PW2 .
ctr : Transportation cost perfect item for retailer.
c′tr : Transportation cost of less perfect quality items for retailer.
S : Capacity of secondary warehouse.
Wj : Capacity of PWj(j=1,2).
Dc : Demand rate of customer for perfect quality items PW1.
D′c : Demand rate of customer for less perfect quality itemsPW2.
' : Denotes the fuzzy rough parameters.
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7.2.2 Assumptions
(i) Joint effect of supplier, manufacture and retailer is considered in a supply chain

management.

(ii) Model is developed for single item products and lead time is negligible.

(iii) Production rate is a decision variable.

(iv) Demand for perfect quality items is deterministic and function of current stock level.

(v) Replenishment rate of manufacture is instantaneously infinite but its size is finite.

(vi) Unit production cost C(P ) per unit item is considered as C(P ) = L + G
P

+ HP ,
where G be the total labor cost for manufacturing the items, L and H are respectively
the material cost and tool/die cost per unit item.

(vii) The manufacturer has ignored the machine breakdown.

(viii) Cost of idle times of supplier and manufacturer are taken into account.

(ix) Showrooms PW1 and PW2 of retailer are adjacent.

7.3 Mathematical Formulation of the Proposed Model
Block diagram and pictorial representation of the proposed supply chain production inventory
model are respectively depicted in Figure 7.1 and Figure 7.2. Formulation of the model for
supplier, manufacturer and retailer are given in the subsections 7.3.1, 7.3.2 and 7.3.3
respectively.

Figure 7.1: Block diagram representation of the proposed model
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Figure 7.2: Pictorial representation of inventory situation of the integrated model

7.3.1 Formulation of the Supplier

Here R be the lot-size received by the supplier at t = 0. A screening process of the lot
is conducted at a rate of x units per unit time and t′ be the total screening time of R units.
Defective items are kept in stock and sold prior to receiving the next shipment as a single batch
at a discounted price of w′s per unit. Rθ is the number of inferior quality items withdrawn from
inventory and t1 is the cycle length of the supplier. The number of superior quality items in
each lot, denoted by N(R, θ) , is given by

N(R, θ) = (R−Rθ). (7.1)

Supplier supplies the superior quality items as a raw materials to the manufacturer at a rate P
up to the time t1 and to avoid shortages, it is assumed that the number of superior quality items
N(r, θ) is at least equal to the demand during screening time t′, i.e.,

N(R, θ) ≥ Pt′ (7.2)

Substituting equation(7.1) in equation(7.2) and replacing t′ by R
x

, the value of R is restricted
to R ≤ 1− P

x
.

Sales revenue from superior quality items per cycle = ws(R−Rθ).
Sales revenue from inferior quality items per cycle = w′sRθ.
Procurement cost for the supplier per cycle = (Setup cost + Purchasing cost) = As + csR.
Screening cost per cycle = scR.
Holding cost during (0, t1) = hs[

(R−Rθ)t1
2

+ R2θ
x

].
Idle time cost per cycle = Ics(T − t1).
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Therefore, the average profit (APS) of the Supplier during (0, T ) is given by

APS =
1

T

[
{ws(1− θ) + w′sθ − cs − sc}R− As − hsR

{(1− θ)t1
2

+
Rθ

x

}
− Ics(T − t1)

]
=

1

T

[
− Z0s + Z1sR + Z2s

R

P
− Z3s

R2

2P
− Z4sR

2
]
. (7.3)

where t1 = (R−Rθ)
P

and Zis, i = 0, 1, 2, 3, 4 are independent of R and P .(See Appendix E)

7.3.2 Formulation of the Manufacturer
It is consider that a manufacturer produces some perfect and imperfect quality items at the rate
of P units during the period (0, t1), receiving the raw material from the supplier at the same
rate P during the period (0, t1). Pe−αt and P (1− e−αt) are respectively the expected quantity
of perfect and imperfect quality items at any time t, where α be the reliability parameter given
by α= number of failures

total units of operating hours . Among the imperfect quality items, only βP (1 − e−αt

units per unit time become perfect quality after reworking and the portion γ(1−β)P (1−e−αt)
are less perfect quality which are soled at a reduced price to the retailer. HereDr andD′r denote
the demand rates of a retailer for perfect quality and less perfect quality items which are met
by manufacturer during (0, t2) and (0, t′2) respectively.

For Perfect Quality Items of Manufacturer

The rate of change of inventory level of manufacturer for perfect quality items can be
represented by the following differential equations:

dq1m

dt
=

{
Pe−αt + βP (1− e−αt)−Dr, 0 ≤ t ≤ t1
−Dr, t1 ≤ t ≤ t2

(7.4)

with boundary conditions q1m(t) = 0 at t = 0 and t = t2.
The solution of above differential equations are given by

q1m(t) =

{
P
α

(1− β)(1− e−αt) + (Pβ −Dr)t, 0 ≤ t ≤ t1
Dr(t2 − t), t1 ≤ t ≤ t2

(7.5)

From continuity at t = t1, following condition is obtain
P

α
(1− β)(1− e−αt1) + (Pβ −Dr)t1 = Dr(t2 − t1)

which implies t2 =
P

Dr

[ 1

α
(1− β)(1− e−αt1) + βt1

]
. (7.6)

Now holding cost(HCM1) for perfect quality items for manufacture is given by

HCM1 = hm

∫ t1

0

q1m(t) dt+ hm

∫ t2

t1

q1m(t) dt

=
hmP

α
(1− β)t1 −

Phm
α2

(1− β)(1− e−αt1) + hmPβ
t21
2
−Drhm

t22
2
.
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and reworking Cost(RCM) for Manufacture

RCM = rcm

∫ t1

0

Pβ(1− e−αt) dt = rcmPβ
[
t1 −

1

α
{1− e−αt1}

]
.

For Less Perfect Quality Items of Manufacturer

The rate of change of inventory level of less perfect quality items for manufacturer can be
represented by the following differential equations:

dq2m

dt
=

{
γ(1− β)P (1− e−αt)−D′r, 0 ≤ t ≤ t1
−D′r, t1 ≤ t ≤ t′2

(7.7)

with boundary conditions q2m(t) = 0 at t = 0 and t = t′2.
The solution of above differential equations are given by

q2m(t) =

{
−P
α
γ(1− β)(1− e−tα) +

[
γ(1− β)P −D′r

]
t, 0 ≤ t ≤ t1

D′r(t
′
2 − t), t1 ≤ t ≤ t′2

(7.8)

From continuity at t = t1, following condition is obtain

t′2 =
1

D′r

[
− P

α
γ(1− β)(1− e−αt1) + γ(1− β)Pt1

]
. (7.9)

Now holding cost(HCM2) for less perfect quality items for manufacture

HCM2 = h′m

∫ t1

0

q2m(t) dt+ h′m

∫ t′2

t1

q2m(t) dt

= h′m
Pγ

α2
(1− β)

[
(1− e−αt1)− αt1

]
+ h′m

[
Pγ(1− β)−D′r

]t12

2
+ h′m

D′r
2

(t′2 − t1)2.

Production cost for the manufacturer= C(P )Pt1.
Inspection cost= IsmPt1.
Holding cost for the manufacturer = [HCM1 +HCM2]
Set up cost of the manufacturer=Am.
Idle time cost for the manufacturer= Icm(T − t2).
Revenue of perfect quality items for the manufacturer = sm

∫ t2
0
Drdt = smDrt2.

Revenue of less perfect quality items for the manufacturer = s′m
∫ t′2

0
D′rdt,= s′mD

′
rt
′
2.
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Average Profit of Manufacturer

Average profit (APM) of manufacturer during the period (0, T ) is given by

APM =
1

T

[
(smDrt2 + s′mD

′
rt
′
2)−

{
ws + C(P ) + Ism

}
Pt1 − Am − Icm(T − t2)

−rcmPβ
α

{
αt1 − (1− e−αt1)

}
− hm

{ P
α2

(1− β){αt1 − (1− e−αt1)}+ Pβ
t21
2
−Dr

t22
2

}
−h′m

{ P
α2
γ(1− β){(1− e−αt1)− αt1}+ {γ(1− β)P −D′r}

t21
2

+
D′r
2

(t1 − t′2)2
}]

=
1

T

[
− Z0m − Z1m

R

P
+ Z2mR + Z3m

R2

P 2
+ Z4m

R2

P
+ Z5mR

2 − Z6mPR
2
]
.

where Zim, i = 0, 1, 2, ..., 6, are independent of R and P . (see Appendix E)

7.3.3 Formulation of the Retailer
Customers’ demand for both perfect and less perfect quality items are met by the retailer
through the adjacent showrooms PW1 and PW2 respectively. Retailer has a secondary
warehouse SW to store the excess perfect quality items which are continuously transferred to
the showroom PW1. Less perfect quality items are directly transferred to the showroom
PW2. Transportation cost is taken into account to transfer each items from production center
to the showrooms.

For Perfect Quality Items of Retailer

In this case the demand rate (Dc) of customers at PW1 has consider as stock dependent as the
following form

Dc =


α1 + β1q1r, 0 ≤ t ≤ t3
α1 + β1W1, t3 ≤ t ≤ t4
α1 + β1q1r, t4 ≤ t ≤ T

Now the corresponding rate of change of on hand inventory of perfect quality items are given
by

dq1r

dt
=

{
Dr −Dc, 0 ≤ t ≤ t2
−Dc, t2 ≤ t ≤ T

with boundary conditions

q1r(t) =


0, at t = 0
W1, at t = t3
S, at t = t2
W1, at t = t4
0, at t = T
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Therefore the solutions of above differential equations are given by

q1r(t) =



Dr−α1

β1
(1− e−β1t), 0 ≤ t ≤ t3

W1 +
[
Dr − (α1 + β1W1)

]
(t− t3), t3 ≤ t ≤ t2

S −
[
(α1 + β1W1)

]
(t− t2), t2 ≤ t ≤ t4

−α1

β1

[
1− e−β1(t−T )

]
, t4 ≤ t ≤ T

(7.10)

Now, q1r(t3) = W1 ⇒ t3 = − 1

β1

log(1− W1β1

Dr − α1

) (7.11)

q1r(t2) = S gives t4 = t2 +
S −W1

α1 + β1W1

(7.12)

and W1 +
[
Dr − (α1 + β1W1)

]
(t2 − t3) = S (7.13)

q1r(t4) = W1 ⇒ T = t4 +
1

β1

log
[
(1− Dr

α1

)(1− e−β1t3)
]

(7.14)

Holding cost(HCRW ) of the secondary warehouse SW is given by

HCRW = hrs

∫ t2

t3

{q1r(t)−W1} dt+ hrs

∫ t4

t2

{q1r(t)−W1} dt

=
hrs
2

[
(Dr − (α1 + β1W1))(t2 − t3)2 − (α1 + β1W1)(t2 − t4)2

]
.

Holding cost(HCRS1) of the showroom PW1 is given by

HCRS1 = hr

∫ t3

0

q1r(t) dt+ hr

∫ t4

t3

W1 dt+

∫ T

t4

q1r(t) dt

= hr
Dr − α1

β1

[
t3 +

e−β1t3

β1

− 1

β1

]
+W1hr(t4 − t3)

−hr
α1

β1

[
(T − t4) +

1

β1

− e−β1(t4−T )

β1

]
.

Transportation cost(TCPR) for perfect quality items of retailer is given by

TCPR = ctr

∫ T

0

DC dt

= ctr

[
(α1 + β1W1)(t4 − t3) +Drt3 −

Dr

β1

+
Dr − α1

β1

e−β1t3 +
α1

β1

e−β1(t4−T )
]
.
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Revenue from selling perfect quality items is given by

REPR = sr

∫ T

0

Dc dt

= sr

[
(α1 + β1W1)(t4 − t3) +Drt3 −

Dr

β1

+
Dr − α1

β1

e−β1t3 +
α1

β1

e−β1(t4−T )
]
.

Hence the total profit of the retailer from the perfect quality items is given by

TPR1 = sr

[
(α1 + β1W1)(t4 − t3) +Drt3 −

Dr

β1

+
Dr − α1

β1

e−β1t3 +
α1

β1

e−β1(t4−T )
]

−ctr
[
(α1 + β1W1)(t4 − t3) +Drt3 −

Dr

β1

+
Dr − α1

β1

e−β1t3 +
α1

β1

e−β1(t4−T )
]

−hrs
2

[
(Dr − (α1 + β1W1))(t2 − t3)2 − (α1 + β1W1)(t2 − t4)2

]
− Ar

−hr
[Dr − α1

β1

(t3 +
e−β1t3

β1

− 1

β1

) +W1(t4 − t3)− α1

β1

{
(T − t4)

+
1

β1

− e−β1(t4−T )

β1

}]
− sm

[ P
α2

(1− β){αt1 − (1− e−αt1)}+ Pβ
t21
2
−Dr

t22
2

]
.

For Less Perfect Quality Items of Retailer

In this case demand rate (D′c) of customers at PW2 is assumed as selling price dependent
defined as D′c = (a − bs′r) and corresponding change of on hand inventory of less perfect
quality items are given by

dq2r

dt
=

{
D′r −D′c, 0 ≤ t ≤ t′2
−D′c, t′2 ≤ t ≤ T ′

with boundary conditions q2r(t) = 0 at t = 0 and t = T ′.
The solution of above differential equations are given by

q2r(t) =

{
(D′r −D′c)t, 0 ≤ t ≤ t′2
−D′c(t− T ′), t′2 ≤ t ≤ T ′

(7.15)

From continuity condition at t = t′2, T ′ = 1
D′c

[
γ(1− β)Pt1 − P

α2γ(1− β)(1− e−αt1)
]
.

Also q2r(t
′
2) = W2 i.e., W2 = (1− D′c

D′r
)
[
− P

α
γ(1− β)(1− e−αt1) + γ(1− β)Pt1

]
.

Holding cost(HCRS2) of the showroom PW2 is given by

HCRS2 = h′r

∫ t′2

0

q2r(t) dt+ h′r

∫ T ′

t′2

q2r(t) dt

=
h′r
2

[
(D′r −D′c)t′2

2
+D′c(t

′
2 − T ′)2

]
.
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Transportation cost(TCIR) for less perfect quality items of retailer is given by

TCIR = c′tr

∫ T ′

0

D′c dt = c′trD
′
cT
′.

Revenue(REIR) from selling less perfect quality items of retailer is given by

REIR = s′r

∫ T ′

0

D′c dt = s′rD
′
cT
′.

Total Profit(TPR2) of Retailer for less perfect quality items is given by

TPR2 = {s′r − c′tr}D′cT ′ −
h′r
2

[
(D′r −D′c)t′2

2
+D′c(t

′
2 − T ′)2

]
− A′r

−s′m
[Pγ
α2

(1− β)
{

(1− e−t1α)− αt1
}

+ (Pγ(1− β)−D′r)
t1

2

2
+
D′r
2

(t1 − t′2)2
]
.

Average Profit of Retailer

Average Profit(APR) of Retailer during (0, T ) is

APR =
1

T
[TPR1 + TPR2]

=
1

T

[
sr

{
(α1 + β1W1)(t4 − t3) +Drt3 −

Dr

β1

+
Dr − α1

β1

e−β1t3 +
α1

β1

e−β1(t4−T )
}

−ctr
{

(α1 + β1W1)(t4 − t3) +Drt3 −
Dr

β1

+
Dr − α1

β1

e−β1t3 +
α1

β1

e−β1(t4−T )
}

−hrs
2

{
(Dr − (α1 + β1W1))(t2 − t3)2 − (α1 + β1W1)(t2 − t4)2

}
+ s′rD

′
cT
′

−c′trD′cT ′ −
h′r
2

{
(D′r −D′c)t′2

2
+D′c(t

′
2 − T ′)2

}
− hr

{Dr − α1

β1

(t3 +
e−β1t3

β1

− 1

β1

) +W1(t4 − t3)− α1

β1

{(T − t4) +
1

β1

− e−β1(t4−T )

β1

}
}
− sm

{P
α

(1− β)t1

− P
α2

(1− β)(1− e−αt1) + Pβ
t21
2
−Dr

t22
2

}
− s′m

{Pγ
α2

(1− β)(1− e−t1α)

−Pγ
α

(1− β)t1 + (Pγ(1− β)−D′r)
t1

2

2
+
D′r
2

(t1 − t′2)2
}]
− Ar − A′r

=
1

T

[
Z0r + Z1rR + Z2r

R2

2P
+ Z3rR

2 + Z4r
R3

P
+ Z5r

R4

P 2

]
.

where Zir, i = 0, 1, ..., 5 are independent of R and P (See Appendix E).
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7.3.4 Integrated Average Profit
Average Profit(IAP ) for the Integrated Model during (0, T ) is

IAP = [APS + APM + APR]

=
1

T

[
Z0 + Z1

R

P
+ Z2R− Z3

R2

2P
+ Z4

R2

P 2
− Z5PR

2 − Z6R
2 + Z7

R3

P
+ Z8

R4

P 2

]
where Zi, i = 0, 1, ..., 8 are independent of R and P (See Appendix E).

7.3.5 Model in Fuzzy Rough Environment
In this environment, all holding cost, idle cost, setup cost and transportation cost have been
considered fuzzy-rough parameters. Then the corresponding fuzzy-rough objective functions
for supplier, manufacturer and retailer are given by

˜̄APS =
1

T

[
− ˜̄Z0s + ˜̄Z1sR + ˜̄Z2s

R

P
− ˜̄Z3s

R2

2P
− ˜̄Z4sR

2
]

˜̄APM =
1

T

[
− ˜̄Z0m − ˜̄Z1m

R

P
+ ˜̄Z2mR + ˜̄Z3m

R2

P 2
+ ˜̄Z4m

R2

P
+ ˜̄Z5mR

2 − ˜̄Z6mPR
2
]

and ˜̄APR =
1

T

[
˜̄Z0r + ˜̄Z1rR + ˜̄Z2r

R2

2P
+ ˜̄Z3rR

2 + ˜̄Z4r
R3

P
+ ˜̄Z5r

R4

P 2

]
Also the fuzzy-rough objective functions for integrated model is given by

˜̄IAP = [ ˜̄APS + ˜̄APM + ˜̄APR]

=
1

T

[
˜̄Z0 + ˜̄Z1

R

P
+ ˜̄Z2R− ˜̄Z3

R2

2P
+ ˜̄Z4

R2

P 2
− ˜̄Z5PR

2 − ˜̄Z6R
2 + ˜̄Z7

R3

P
+ ˜̄Z8

R4

P 2

]
where fuzzy rough parameters ˜̄hs,

˜̄hm,
˜̄h′m,

˜̄hr,
˜̄h′r,

˜̄hrs,
˜̄As,

˜̄Am, ˜̄Ar, ˜̄Ics,
˜̄Icm, ˜̄ctp,

˜̄c′tp are defined
as follows,
˜̄hs = (hs1, hs2, hs3, hs4) with hst ` ([hst2, hst3], [hst1, hst4]), 0 ≤ hst1 ≤ hst2 < hst3 ≤ hst4,
˜̄hm = (hm1, hm2, hm3, hm4) with hmt ` ([hmt2, hmt3], [hmt1, hmt4]),
0 ≤ hmt1 ≤ hmt2 < hmt3 ≤ hmt4.
˜̄h′m = (h′m1, h′m2, h′m3, h′m4) with h′mt ` ([h′mt2, h

′
mt3], [h′mt1, h

′
mt4]),

0 ≤ h′mt1 ≤ h′mt2 < h′mt3 ≤ h′mt4.
˜̄hr = (hr1, hr2, hr3, hr4) with hrt ` ([hrt2, hrt3], [hrt1, hrt4]), 0 ≤ hrt1 ≤ hrt2 < hrt3 ≤ hrt4.
˜̄h′r = (h′r1, h′r2, h′r3, h′r4) with h′rt ` ([h′rt2, h

′
rt3], [h′rt1, h

′
rt4]), 0 ≤ h′rt1 ≤ h′rt2 < h′rt3 ≤ h′rt4.

˜̄hrs = (hrs1, hrs2, hrs3, hrs4) with hrst ` ([hrst2, hrst3], [hrst1, hrst4]),
0 ≤ hrst1 ≤ hrst2 < hrst3 ≤ hrst4.
˜̄As = (As1, As2, As3, As4) with Ast ` ([Ast2, Ast3], [Ast1, Ast4]), 0 ≤ Ast1 ≤ Ast2 < Ast3 ≤
Ast4.
˜̄Am = (Am1, Am2, Am3, Am4) with Amt ` ([Amt2, Amt3], [Amt1, Amt4]),
0 ≤ Amt1 ≤ Amt2 < Amt3 ≤ Amt4.
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˜̄Ar = (Ar1, Ar2, Ar3, Ar4) with Art ` ([Art2, Art3], [Art1, Art4]), 0 ≤ Art1 ≤ Art2 < Art3 ≤
Art4.
˜̄Ics = (Ics1, Ics2, Ics3, Ics4) with Icst ` ([Icst2, Icst3], [Icst1, Icst4]), 0 ≤ Icst1 ≤ Icst2 < Icst3 ≤
Icst4.
˜̄Icm = (Icm1, Icm2, Icm3, Icm4) with Icmt ` ([Icmt2, Icst3], [Icmt1, Icmt4]),
0 ≤ Icmt1 ≤ Icmt2 < Icmt3 ≤ Icmt4.
˜̄ctp = (ctp1, ctp2, ctp3, ctp4) with ctpt ` ([ctpt2, ctpt3], [ctpt1, ctpt4]), 0 ≤ ctpt1 ≤ ctpt2 < ctpt3 ≤
ctpt4.
˜̄c′tp = (c′tp1, c′tp2, c′tp3, c′tp4) with c′tpt ` ([c′tpt2, c

′
tpt3], [c′tpt1, c

′
tpt4]), 0 ≤ c′tpt1 ≤ c′tpt2 < c′tpt3 ≤

c′tpt4.

7.3.6 Model in Equivalent Crisp Environment
In this environment, using Lemma 2.4 and Theorems 2.2 & 2.3, the fuzzy rough objective
functions for supplier, manufacturer and retailer are given by

EAPS = E[ ˜̄APS] =
1

T

[
− E[ ˜̄Z0s] + E[ ˜̄Z1s]R + E[ ˜̄Z2s]

R

P
− E[ ˜̄Z3s]

R2

2P
− E[ ˜̄Z4s]R

2
]

EAPM = E[ ˜̄APM ] =
1

T

[
− E[ ˜̄Z0m]− E[ ˜̄Z1m]

R

P
+ E[ ˜̄Z2m]R + E[ ˜̄Z3m]

R2

P 2

+E[ ˜̄Z4m]
R2

P
+ E[ ˜̄Z5m]R2 − E[ ˜̄Z6m]PR2

]
andEAPR = E[ ˜̄APR]

=
1

T

[
E[ ˜̄Z0r] + E[ ˜̄Z1r]R + E[ ˜̄Z2r]

R2

2P
+ E[ ˜̄Z3r]R

2 + E[ ˜̄Z4r]
R3

P
+ E[ ˜̄Z5r]

R4

P 2

]
Also the objective functions for integrated model is given by

EIAP = E[ ˜̄IAP ] =
[
E[ ˜̄APS] + E[ ˜̄APM ] + E[ ˜̄APR]

]
=

1

T

[
E[ ˜̄Z0] + E[ ˜̄Z1]

R

P
+ E[ ˜̄Z2]R− E[ ˜̄Z3]

R2

2P
+ ˜̄Z4

R2

P 2
− E[ ˜̄Z5]PR2 − ˜̄Z6R

2

+E[ ˜̄Z7]
R3

P
+ E[ ˜̄Z8]

R4

P 2

]

where E[˜̄hs] =
1

16

4∑
t=1

4∑
k=1

hstk, E[˜̄hm] =
1

16

4∑
t=1

4∑
k=1

hmtk, E[ ˜̄h′m] =
1

16

4∑
t=1

4∑
k=1

h′mtk,

E[˜̄hr] =
1

16

4∑
t=1

4∑
k=1

hrtk, E[ ˜̄h′r] =
1

16

4∑
t=1

4∑
k=1

h′rtk, E[˜̄hrs] =
1

16

4∑
t=1

4∑
k=1

hrstk,

E[ ˜̄As] =
1

16

4∑
t=1

4∑
k=1

Astk, E[ ˜̄Am] =
1

16

4∑
t=1

4∑
k=1

Amtk, E[ ˜̄Ar] =
1

16

4∑
t=1

4∑
k=1

Artk,
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E[ ˜̄Ics] =
1

16

4∑
t=1

4∑
k=1

Icstk, E[ ˜̄Icm] =
1

16

4∑
t=1

4∑
k=1

Icmtk, E[˜̄ctp] =
1

16

4∑
t=1

4∑
k=1

ctptk,

E[ ˜̄c′tp] = 1
16

∑4
t=1

∑4
k=1 c

′
tptk

7.3.7 Stakelberg Approach (Leader-follower Relationship)

In this case manufacturer is leader, supplier and retailer are followers. Also, optimum values
of the average profit of supplier and retailer are obtained by putting the optimum value of the
decision variables, which are obtained by optimizing the average profit of manufacturer. Using
the equation (7.6), (7.11), (7.12), (7.13) and (1− e−αt1) ≈ αt1, in the equation (7.14), the
relation T = 1−θ

Dr
R+ t0 is obtained where t0 is given by t0 = S−W1

α1+β1W1
+ 1

β1
log
[
(1− Dr

α1
)(1−

e−β1t3)
]

and it is independent of R and P and.

When both R and P are Decision Variables:

The expected average profit of manufacturer is given by

EAPM(R,P) =
1

T

[
− E[ ˜̄Z0m]− E[ ˜̄Z1m]

R

P
+ E[ ˜̄Z2m]R + E[ ˜̄Z3m]

R2

P 2
+ E[ ˜̄Z4m]

R2

P

+E[ ˜̄Z5m]R2 − E[ ˜̄Z6m]PR2
]

where E[ ˜̄Zim], i=0,1,2,...,6, are independent of R and P (see Appendix E).
The necessary conditions for maximum value of EAPM(R,P) are ∂

∂R
(EAPM) = 0 and

∂
∂P

(EAPM) = 0 which gives respectively

(1− θ)
DrT

E[ ˜̄Z0m]−
{

1− (1− θ)R
DrT

}{ 1

P
E[ ˜̄Z1m]− E[ ˜̄Z2m]

}
+
{2R

P
− (1− θ)R2

DrTP

}
×
{ 1

P
E[ ˜̄Z3m] + E[ ˜̄Z4m]

}
+
{

2R− (1− θ)R2

DrT

}{
E[ ˜̄Z5m]− PE[ ˜̄Z6m]

}
= 0 (7.16)

and E[ ˜̄Z1m]
R

P 2
− 2E[ ˜̄Z3m]

R2

P 3
− E[ ˜̄Z4m]

R2

P 2
− E[ ˜̄Z6m]R2 = 0 (7.17)

Solving (7.16) and (7.17), we can obtain the optimum value of R and P , say R∗ and P ∗.

If
{

∂2

∂R2 (EAPM)
}{

∂2

∂P 2 (EAPM)
}
−
{

∂2

∂P∂R
(EAPM)

}2

> 0, ∂2

∂R2 (EAPM) < 0, and
∂2

∂P 2 (EAPM) < 0 holds for R = R∗ and P = P ∗ then EAPM (R∗, P ∗) is maximum.
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Now ∂2

∂R2 (EAPM)
]
at (R∗,P ∗)

< 0

i.e., −(1− θ)2

Dr
2T ∗2

E[ ˜̄Z0m] +
{ (1− θ)
DrT ∗P ∗

− (1− θ)2R∗

Dr
2T ∗2P ∗

}
E[ ˜̄Z1m] +

{(1− θ)2R∗

Dr
2T ∗2

−(1− θ)
DrT ∗

}
E[ ˜̄Z2m] +

{(1− θ)2R∗2

Dr
2T ∗2P ∗2

+
1

P ∗2
− 2(1− θ)R∗

DrT ∗P ∗
2

}
E[ ˜̄Z3m] +

{ (1− θ)2

Dr
2T ∗2P ∗

+
1

P ∗
− 2(1− θ)R∗

DrT ∗P ∗

}
E[ ˜̄Z4m] +

{
1− 2(1− θ)R∗

DrT ∗P ∗
+

(1− θ)2R∗2

Dr
2T ∗2

}
E[ ˜̄Z5m]

−
{
P ∗ − 2(1− θ)P ∗R∗

DrT ∗
+

(1− θ)2R∗2P ∗

Dr
2T ∗2

}
E[ ˜̄Z6m] < 0 (7.18)

and ∂2

∂P 2 (EAPM)]at (R∗,P ∗) < 0

i.e., −E[ ˜̄Z1m]
R∗

P ∗3
+ 3E[ ˜̄Z3m]

R∗2

P ∗4
+ E[ ˜̄Z4m]

R∗2

P ∗3
< 0 (7.19)

and
[{ ∂2

∂R2
(EAPM)

}{ ∂2

∂P 2
(EAPM)

}
−
{ ∂2

∂P∂R
(EAPM)

}2]
at (R∗,P ∗)

> 0 (7.20)

Therefore, EAPM(R∗, P ∗) is maximum if the relations (7.18), (7.19) and (7.20) holds and the
corresponding optimum average profit of supplier and retailer are
EAPS(R∗, P ∗) = 1

T ∗

[
− E[ ˜̄Z0s] + E[ ˜̄Z1s]R

∗ + E[ ˜̄Z2s]
R∗

P ∗
− E[ ˜̄Z3s]

R∗2

2P ∗
− E[ ˜̄Z4s]R

∗2
]

EAPR(R∗, P ∗) = 1
T ∗

[
E[ ˜̄Z0r] + E[ ˜̄Z1r[R

∗ + E[ ˜̄Z2r]
R∗2

2P ∗
+ E[ ˜̄Z3r]R

∗2 + E[ ˜̄Z4r]
R∗3

P ∗

+E[ ˜̄Z5r]
R∗4

P ∗2

]
where T ∗ = 1−θ

Dr
R∗ + t0

When P is only Decision Variable

The necessary conditions for maximum value of EAPM(P) is d
dP

(EAPM) = 0

i.e., E[ ˜̄Z1m]
R

P 2
− 2E[ ˜̄Z3m]

R2

P 3
− E[ ˜̄Z4m]

R2

P 2
− E[ ˜̄Z6m]R2 = 0 (7.21)

which gives the optimum value of P, say P ∗∗.
If d2

dP 2 (EAPM) < 0 hold for P = P ∗∗ then EAPM(P ∗∗) is maximum.

Now
d2

dP 2
(EAPM)]at P=P ∗∗ < 0 givesE[ ˜̄Z1m]− 3E[ ˜̄Z3m]

R

P ∗∗
− E[ ˜̄Z4m]R < 0 (7.22)

Therefore, EAPM(P ∗∗) is maximum if the relation (7.22) hold and corresponding optimum
average profit of supplier and retailer are respectively
EAPS(P ∗∗) = 1

T

[
− E[ ˜̄Z0s] + E[ ˜̄Z1s]R + E[ ˜̄Z2s]

R
P ∗∗
− E[ ˜̄Z3s]

R2

2P ∗∗
− E[ ˜̄Z4s]R

2
]

EAPR(P ∗∗) = 1
T

[
E[ ˜̄Z0r] + E[ ˜̄Z1r]R + E[ ˜̄Z2r]

R2

2P ∗∗
+ E[ ˜̄Z3r]R

2 + E[ ˜̄Z4r]
R3

P ∗∗

+E[ ˜̄Z5r]
R4

P ∗∗2

]
where T = 1−θ

Dr
R + t0
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7.3.8 Integrated Approach

When both R and P are Decision Variables:
The necessary conditions for maximum value of EIAP (R,P ) are ∂

∂R
(EIAP ) = 0 and

∂
∂P

(EIAP ) = 0 which gives respectively

{
1− (1− θ)R

DrT

}{ 1

P
E[ ˜̄Z1] + E[ ˜̄Z2]

}
−
{

1 +
(1− θ)R

2DrT

}{R
P
E[ ˜̄Z3]

+2PRE[ ˜̄Z5] + 2RE[ ˜̄Z6]
}
− (1− θ)

DrT
E[ ˜̄Z0] +

{2R

P 2
− (1− θ)R2

DrTP 2

}
E[ ˜̄Z4]

+
{3R2

P
− (1− θ)R3

DrTP

}
E[ ˜̄Z7] +

{4R3

P 2
− (1− θ)R4

DrTP 2

}
E[ ˜̄Z8] = 0 (7.23)

and
[
E[ ˜̄Z1] + E[ ˜̄Z3]

R

2
+ 2E[ ˜̄Z4]

R

P
+ E[ ˜̄Z5]RP 2 + E[ ˜̄Z7]R2 + 2E[ ˜̄Z8]

R2

P

]
= 0 (7.24)

Solving (7.23) and (7.24), we can obtain the optimum value of R and P , say R∗ and P ∗.

If
{

∂2

∂R2 (EIAP )
}{

∂2

∂P 2 (EIAP )
}
−
{

∂2

∂P∂R
(EIAP )

}2

> 0, ∂2

∂R2 (EIAP ) < 0 and
∂2

∂P 2 (EIAP ) < 0 holds for R = R∗ and P = P ∗ then EIAP(R∗, P ∗) is maximum.

Now ∂2

∂R2 (EIAP )
]
at(R∗,P ∗)

< 0

i.e.,
2(1− θ)2

Dr
2T ∗2

E[ ˜̄Z0] +
2(1− θ)
DrT ∗

{(1− θ)R∗

DrT ∗
− 1
}{ 1

P
E[ ˜̄Z1] + E[ ˜̄Z2]

}
−
{

1 +
2(1− θ)2R∗2

Dr
2T ∗2P ∗

− 2(1− θ)R∗

DrT ∗P ∗

}
E[ ˜̄Z3] +

{ 2

P ∗2
+

2(1− θ)2R∗2

Dr
2T ∗

2

P ∗2

−4(1− θ)R∗

DrT ∗P ∗

}
E[ ˜̄Z4]−

{
2P ∗ +

2(1− θ)2P ∗R∗2

Dr
2T ∗2

− 4(1− θ)P ∗R∗

DrT ∗

}
E[ ˜̄Z5]

−
{

2 +
2(1− θ)2R∗2

Dr
2T ∗2

− 4(1− θ)R∗

DrT

}
E[ ˜̄Z6] +

{6R∗

P ∗
+

2(1− θ)2R∗3

Dr
2T ∗2P ∗

−6(1− θ)R∗2

DrT ∗P ∗

}
E[ ˜̄Z7] +

{12R∗2

P ∗2
+

2(1− θ)2R∗4

Dr
2T ∗2P ∗2

− 8(1− θ)R∗3

DrT ∗P ∗
2

}
E[ ˜̄Z8] < 0 (7.25)

and
∂2

∂P 2
(EIAP )

]
at(R∗,P ∗)

< 0

i.e.,
[
2E[ ˜̄Z1]

R∗

P ∗3
+ E[ ˜̄Z3]

R∗2

P ∗3
+ 6E[ ˜̄Z4]

R∗2

P ∗4
+ 2E[ ˜̄Z7]

R∗3

P ∗3
+ 6E[ ˜̄Z8]

R∗4

P ∗4

]
< 0 (7.26)

and
[{ ∂2

∂R2
(EIAP )

}{ ∂2

∂P 2
(EIAP )

}
−
{ ∂2

∂P∂R
(EIAP )

}2]
at(R∗,P ∗)

> 0 (7.27)
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Therefore, IAP(R∗, P ∗) is maximum if the relations (7.25), (7.26) and (7.27) holds and
corresponding optimum integrated average profit of the supply chain is

EIAP (R∗, P ∗) =
1

T ∗

[
E[ ˜̄Z0] + E[ ˜̄Z1]

R∗

P ∗
+ E[ ˜̄Z2]R∗ − Z3

R∗2

2P ∗
+ E[ ˜̄Z4]

R∗2

P ∗2

−E[ ˜̄Z5]P ∗R∗2 − E[ ˜̄Z6]R∗2 + E[ ˜̄Z7]
R∗3

P ∗
+ E[ ˜̄Z8]

R∗4

P ∗2

]
.

where T ∗ =
1− θ
Dr

R∗ + t0

When P is only Decision Variable:
The necessary conditions for maximum value of EIAP(P) is d

dP
(EIAP ) = 0

i.e., E[ ˜̄Z1] R
P 2 − E[ ˜̄Z3] R

2

2P 2 + 2E[ ˜̄Z4]R
2

P 3 + E[ ˜̄Z5]R2 − E[ ˜̄Z7]R
3

P 2 + 2E[ ˜̄Z8]R
4

P 3 = 0
which gives the optimum value of P, say P ∗∗.
If d2

dP 2 (EIAP ) < 0 hold for P = P ∗∗ then EIAP (P ∗∗) is maximum.
Now d2

dP 2 (EIAP )]at P=P ∗∗ < 0 gives

− 2E[ ˜̄Z1]
R

P ∗∗3
+ E[ ˜̄Z3]

R2

P ∗∗3
− 6E[ ˜̄Z4]

R2

P ∗∗4
− 2E[ ˜̄Z7]

R3

P ∗∗3
− 6E[ ˜̄Z8]

R4

P ∗∗4
< 0 (7.28)

Therefore, EIAP (P ∗∗) is maximum if the relation (7.28) hold and corresponding maximum
integrated average profit of the supply chain is

EIAP (P ∗∗) =
1

T

[
E[ ˜̄Z0] + E[ ˜̄Z1]

R

P ∗∗
+ Z2R− Z3

R2

2P ∗∗
+ E[ ˜̄Z4]

R2

P ∗∗2

−Z5P2R
2 − E[ ˜̄Z6]R2 + E[ ˜̄Z7]

R3

P ∗∗
+ E[ ˜̄Z8]

R4

P ∗∗2

]
.

7.4 Numerical Illustration

To illustrate the proposed production inventory model, we consider the following numerical
data in Table 7.1 and 7.2. The optimal values of the decision variables and corresponding
profits are given in Table 7.3 and 7.4. Also sensitivity analysis has been performed of the
profits, production rate (P ) and inventory level (R) of supplier with respect to different
parameters are shown in Figure 7.3 to Figure 7.12.
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Table 7.1: Values of different crisp parameters

Parameters Value Parameters Value Parameter Value Parameter Value

θ 0.11 rcm 2 Cs 40 S 335

x 20 sm 158 ws 90 W1 45

α 0.10 s′m 108 w′s 55 W2 16

β 0.44 sr 176 R1 16 a 51

γ 0.78 s′r 135 H 0.02 b 0.17

α1 20 Sc 0.35 G 10 D′r 35

β1 0.2 Dr 36

Table 7.2: Values of different fuzzy-rough parameters
Fu-Ro Fu-Ro Input Expected value

parameters value values value
˜̄hs near roughly(0.5) (.49, .50, .51, .52) with ([-.04,.04],[-.08,.08]) E[˜̄hs] .505
˜̄hm near roughly(1.7) (1.5, 1.6, 1.7, 1.8) with ([-0.2,0.2],[-0.4,0.4]) E[˜̄hm] 1.65
˜̄h′m near roughly(1.5) (1.35, 1.40, 1.50, 1.55) with ([-.18,.18],[-.36,.36]) E[ ˜̄h′m] 1.45
˜̄hr near roughly(1.6) (1.54, 1.6, 1.63, 1.67) with ([-.12,.12],[-.24,.24]) E[˜̄hr] 1.61
˜̄h′r near roughly(1.3) (1.15, 1.22, 1.3, 1.37) with ([-.11,.11],[-.22,.22]) E[ ˜̄h′r] 1.26

˜̄hrs near roughly(1.8) (1.67, 1.72, 1.80, 1.85) with ([-.13,.13],[-.26,.26]) E[˜̄hrs] 1.78
˜̄As near roughly(420) (416, 420, 425, 428) with ([-.30,.30],[-.60,.60]) E[ ˜̄As] 422.25
˜̄Am near roughly(500) (486, 495, 500, 510) with ([-.29,.29],[-.58,.58]) E[ ˜̄Am] 491.50
˜̄Ar near roughly(400) (395, 400, 408, 410) with ([-.35,.35],[-.70,.70]) E[ ˜̄Ar] 403.25
˜̄Ics near roughly(3) (2.5, 2.8, 3.0, 3.15) with ([-.3,.3],[-.6,.6]) E[ ˜̄Ics] 2.86
˜̄Icm near roughly(2) (1.9, 1.96, 2.0, 2.04) with ([-.21,.21],[-.42,.42]) E[ ˜̄Icm] 1.97

˜̄ctp near roughly(1.4) (1.36, 1.40, 1.43, 1.47) with ([-.14,.14],[-.28,.28]) E[˜̄ctp] 1.42
˜̄c′tp near roughly(1.0) (.90, .97, 1.0, 1.06) with ([-.01,.01],[-.02,.02]) E[ ˜̄c′tp] 0.98

where value of ˜̄hs is near roughly (0.5) = (.49, .50, .51, .52) with oscillation
([−.04, .04], [−.08, .08]) means that .49 ` ([.45, .53], [.41, .57]), .50 ` ([.46, .54], [.42, .58]),
.51 ` ([.47, .55], [.43, .59]) and .52 ` ([.48, .56], [.44, .60]).
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Table 7.3: Optimal result when P and R are decision variables

Approach Total profit EAPS EAPM EAPR R P

Stakelberg 5126.616 1543.341 1814.635 1656.160 3217.589 64.9821

Integrated 5176.606 1596.751 1872.695 1707.160 3189.629 69.8521

Table 7.4: Optimal result when P is decision variable and R = 3225

Approach Total profit EAPS EAPM EAPR P

Stakelberg 5012.614 1512.752 1714.346 1751.426 63.64570

Integrated 5049.634 1582.912 1759.146 1707.576 67.37870

Figure 7.3: Reliability parameter (α) vs P Figure 7.4: Reliability parameter (α) vs R

Figure 7.5: Reliability parameter vs profit Figure 7.6: Reliability parameter (α) vs IAP
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Figure 7.7: Defective rate (θ) vs R Figure 7.8: Defective rate (θ) vs APS

Figure 7.9: Defective rate (θ) vs IAP Figure 7.10: Defective rate (θ) vs APS, IAP

Figure 7.11: Screening rate (x) vs APS Figure 7.12: Screening rate (x) vs IAP
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7.4.1 Discussion
From Table 7.3 and 7.4, it is observed that profits under the integrated approach is greater than
the Stakelberg approach and hence the former approach is better than the later approach. The
sensitivity analysis in section 7.4 shows that with increase of the reliability parameter α, (i) the
profits of the supplier and retailer are slightly increasing (Figure 7.5), (ii) the values of P and
R are gradually increasing (Figure 7.3 & 7.4) but (iii) both profits of the manufacturer (APM)
and the integrated profit (IAP) are gradually decreasing (Figure 7.5 & 7.6). From Figure 7.7
to 7.10 it is also seen that the values of APS and IAP are decreasing but initial amount of
inventory level of supplier is increasing with increase of θ. It is also noted that the values of
APS and IAP increase with the screening rate (x) of the supplier.

7.5 Conclusion
This chapter develops a three layer supply chain production inventory model involving
supplier, manufacturer and retailer as the members of the chain who are responsible for
performing the raw materials into finished product and make them available to satisfy
customers’ demand in time. In comparing with the existing literature on the supply chain, the
followings are the main contributions in the proposed model:
Inspection cost is incurred during the production run time and manufacturer continuously
inspects as well as separates the perfect quality items, less perfect quality items, repairable
items which are transformed into perfect quality items after some rework, and rejected items.
Here, reworked cost is considered by the manufacturer to repair a certain percent of imperfect
quality items. Demand rate of customers for perfect quality items and less perfect quality
items are respectively assumed to be stock dependent and selling price dependent. Here
retailer have two showrooms PW1 and PW2 of finite capacities at busy market place and the
market demands of perfect and less perfect quality items are respectively met through the
showrooms PW1 and PW2. Retailer has a secondary warehouse SW of infinite capacity,
away from busy market place, to store the excess amount perfect quality items from where
the items are continuously transferred to the showroom. It is considered that the holding cost
per unit per unit time at SW is less than the holding cost at PW1 per unit per unit time. The
repairing costs of corrective and preventive maintenance should also be considered, as these
costs increase the unit production cost. Inventory and production decisions are made at the
supplier, manufacturer and retailer levels. Actually in this chapter, the coordination between
production and inventory decisions has been established across the supply chain so that
integrated average profit of the chain is maximum.
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Chapter 8

A fuzzy imperfect production inventory

model based on fuzzy differential and

fuzzy integral method

8.1 Introduction
The fuzzy set concept has been used to treat the uncertainty in the classical inventory model.
This set theory, originally introduced by Zadeh [239], provides a feasible approach to deal
with the fuzzy uncertainty problem. The considerable attention has been attracted to fuzzy
circumstance in the literature. For example, Park [164] used fuzzy inventory cost in economic
order quantity model. Chang [24] discussed how to obtain the economic production quantity,
when the quantity of demand is uncertain. Chen and Hsieh [29] established a fuzzy economic
production model to treat the inventory problem with all the parameters and variables being
fuzzy numbers. Hsieh [93], Lee and Yao [128], and Lin and Yao [137] also wrote some
papers about the fuzzy production model. Except these there exist many other papers such as
Das et al. [51] in which uncertainties have been solved using fuzzy set theory.

Traditional EPQ models assume that all items made are of perfect quality. However, in
real world manufacturing systems, due to manufacturing operator, machine-component
and/or other factors, generation of defective items is inevitable. It is more realistic to assume
that all industries produce a certain percent of imperfect quality items. Such a production
process is called imperfect production (cf. Salameh and Jaber [184], Yoo et al. [237]).
Among other researchers, Salameh and Jaber [184] developed an inventory model which
accounted for imperfect quality items using the EPQ/EOQ formulae. They assumed defective
items are sold as a single batch at the end of the total screening process. Moreover,
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Porteus [166] assumed that the probability of a shift from the ‘in-control’ state to the
‘out-of-control’ state has a given value for each production item. Rosenblatt and Lee [181]
proposed an EPQ model that deals with imperfect quality. They assumed that at some random
point in time the process might shift from an in-control to an out-of-control state, and a fixed
percentage of defective items are produced. Cheng [32] examined an economic order quantity
model with demand-dependent unit production cost and imperfect production processes.
Several researchers have applied fuzzy or rough sets theory to solve production inventory
problems. Recently, Chiu et al. [40], Jaber [100], Lin et al. [138], Chung and Hou [42],
Lee [129], Lo et al. [145], Das et al. [51] have been carried out to address the issues of
imperfect production and reduction of its corresponding quality costs. From the previous
researchers, we can find that some papers discussed fuzzy costs, fuzzy demand etc. but till
now no one has considered fuzzy defective rate, fuzzy time on which imperfect production to
be started. Therefore, to study Fuzzy Economic Production Quantity (FEPQ) model
considering the above lacunas with imperfect products which cannot be repaired is very
important in vague environment.

Recently, it is noted that most of the consumers are increasingly demanding good-quality
products. With a rise in consumer consciousness, providing defective products to customers
not only increases service and replacement costs, but it may also cause inestimable damage to
the credibility of the company. Regarding these imperfect systems, an understanding of the
relationship among production, inventory, inspection, and maintenance can assist a manager
to perform operation control and quality assurance in a more effective manner. In actual
production processes, the process begins in a controlled state, but it may change to an
out-of-control state as production proceeds, and some non-conforming items may appear.
The conditions of a production system are tracked through inspection to ensure that
consumers do not receive defective products. The purpose of the inspection is to determine
the state of the production system and of product quality. The quality costs must be balanced
with inspection costs when deciding on the frequency of the inspections to be performed.
Therefore, the schedule of the inspections is essential. Wang and Sheu [210] generalized the
model of Porteus [166] introducing a product inspection policy. Wang [214] extended Kim
and Hong’s [118] work considering a product inspection policy only at the end of the
production run, instead of full inspections during a production run.

The classical inventory models developed for constant demand rate can be applied to both
manufacturing and sales environment. In the case of certain consumer products, the
consumption rate may be influenced by the stock levels. This phenomenon induces some
researchers to consider stock dependent demand rate. The traditional literature dealing with
inventory model usually assumed the market demand to be constant, stock dependent, time
dependent and stochastic etc. in many real situations. However, it is very difficult to estimate
the probability distribution of market demand due to the lack of historical data. Given the
situations, they can only use linguistic terms, such as the market demand is about dM , but not
less than dL and not larger than dR, to describe the fuzzy market demand. In this case, the
demand quantity is approximately specified based on the experience. Some papers have dealt
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with this case by applying fuzzy theory. Petrovic and Vujosevic [165] first proposed a
newsboy-type problem with discrete fuzzy demand. Dutta et al. [67] presented a
single-period inventory problem in an imprecise and uncertain mixed environment, and
introduced demand as a fuzzy random variable. Zhen and Xiaoyu [242] considered the
multi-product newsboy problem with fuzzy demands under budget constraint. Kao and
Hsu [107] constructed a single-period inventory model with fuzzy demand. Li et al. [133]
established two single-period inventory models in fuzzy environment, one of which assuming
demand is stochastic while the holding and shortage costs are fuzzy, the other assuming the
costs are deterministic but the demand is fuzzy. Lee and Yao [128] discussed the production
inventory problems for fuzzy demand quantity. Taleizadeh et al. [201] extended an uncertain
EOQ model for joint replenishment strategy with incremental discount policy and fuzzy
rough demand.

Table 8.1: Summary of related literature for EPQ/EOQ models
Author(s) Imperfect Fuzzy Fuzzy time(τ̃ ) which Fuzzy Formulation Imprecise

production defective shifts in-control demand using FDE environment

rate to out-control rate

Park [164]
√ √

Chang [24]
√ √

Chen and Hsieh [29]
√ √

Lee and Yao [128]
√ √ √

Lin and Yao [137]
√ √

Salameh and Jaber [184]
√

Cheng [32]
√

Wang [214]
√ √

Dutta et al. [67]
√ √ √

Zhen and Xiaoyu [242]
√ √

Kao and Hsu [107]
√ √ √

Taleizadeh et al. [201]
√ √

Present model
√ √ √ √ √ √

In this chapter, an imperfect production model has been considered with fuzzy defective
rate. Here production starts with a constant production rate up to a variable time. At the
beginning of a production process, the system is assumed to be in a controlled state and perfect
items are produced. During production-run-time, the manufacturing process may shift to an
‘out-of-control’ state after certain time that follows a fuzzy number. In ‘out-of-control’ state,
a percent of produced items is defective. The defective items are sold at a single lot after
end of the production at a reduced cost. Then, two profit functions have been formulated and
optimized through some numerical illustrations.
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8.2 Notations and Assumptions

To formulate the proposed model, we have used the following notations and assumptions

8.2.1 Notations

The following notations are used throughout the chapter.
q1(t) : On hand inventory at any time t in crisp environment for perfect quality item.
q̃1(t) : On hand inventory at any time t in fuzzy environment for perfect quality item.
q2(t) : On hand inventory at any time t in crisp environment for imperfect quality item.
q̃2(t) : On hand inventory at any time t in fuzzy environment for imperfect quality item.
D : Demand rate of perfect quality items in crisp environment.
D̃ : Fuzzy demand rate of perfect quality items in fuzzy environment.
P : Production rate (P > D).
β̃ : Fuzzy percentage of imperfect quality items per unit time with its α-cut [βLα , β

R
α ].

τ̃ : Fuzzy time from which the production system shifts from ‘in-control’ state to the ‘out-
of-control’ state with its α-cut [τLα , τ

R
α ].

t1 : Duration of production run time.
cp : Production cost per unit item.
csr : Screening cost per unit item.
hc : Inventory holding cost per unit for perfect item in production center per unit time.
h′c : Inventory holding cost per unit for imperfect item in production center per unit time.
s : Selling price of perfect item per unit.
s′ : Selling price of imperfect item per unit.
T : Length of business period.
∼ : Symbol is used on the top of notations to represent fuzzy parameters.

8.2.2 Assumptions

The proposed model based on the following assumptions:

(i) The model is developed only for a single item manufacturer which produces the items
at the rate of P .

(ii) Practically, it is seen that any production concern initially produces items to be perfect
since all resources are fresh i.e., the production system initially is ‘in-control-state’.
After some times, the production system produces perfect items as well as imperfect
items also since with the increase of time, the manufacturing system gradually
breakdowns i.e., the system enters in out-of-control state. Therefore, the production
system may be either in-control state or out-of-controled state. In this proposed model,
it is assumed that the production system is initially being a controlled state upto time τ̃
which is consider as fuzzy after that the production system goes to ‘out-of-control’
state.
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(iii) Normally the rate of defectiveness is not be a constant, because it may vary in a
production system due to many factors such as production rate, machine component
etc. So it should be taken a uncertain quantity. In this proposed model it is assumed that
the defective rate (β̃) has been considered as fuzzy.

(iv) It is a single item and single period (T ) inventory model which is decision variable.

(v) Production rate (P ) is constant.

(vi) In practical business world, sometimes it is seen that the demand of a retailer changes
due to various factors according to his/her business policy. So in nature, it is vague
and imprecise. For this reason, it has been considered a fuzzy demand of the retailer
from the manufacturer. Now in fuzzy set theory [244], there are some standard fuzzy
numbers such as triangular, trapezoidal, parabolic, general etc. which are considered for
illustration.

(vii) All imperfect items which are produced in out-of-control state, are sold altogether at the
end of production period at a reduced price.

8.3 Mathematical Formulation of the Proposed Model

In this paper, we consider an imperfect production inventory problem in which production
starts at time t = 0 at the rate of P . Initially upto time τ̃ the system produces perfect item.
Then it produces both good and defective items during [τ̃ , t1]. At time t1 production stop. After
that, from the stock demand of the customer is fulfilled upto time T . According to assumptions
τ̃ , β̃ and D̃ are taken as fuzzy numbers. Due to existence of fuzzy parameters, the inventory
level at any time t is also fuzzy in nature. Since there exist productions of perfect items and
imperfect items, hence here two separate inventories have been considered.

8.3.1 Formulation for Perfect Quality Items

In this case, the initially stock of the product of perfect items is zero then it starts production
at the rate P . The system produces good quality items during [0, τ̃ ] and it produces both good
and defective items during [τ̃ , t1], τ̃ ∈ (0, t1). The total good items produced during [0, t1] are
used to meet the demand of perfect item upto time T . Production of the cycle stops at time t1.
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Figure 8.1: Pictorial representation of manufacturer’s inventory of perfect quality item

Under such consideration the inventory level of perfect item q̃1(t) at time t satisfies the
following differential equations:

dq̃1(t)

dt
=


P − D̃, 0 ≤ t ≤ τ̃

(P − D̃)− β̃P, τ̃ ≤ t ≤ t1
−D̃, t1 ≤ t ≤ T

(8.1)

subject to the conditions that, q̃1[0] = 0, q̃1[T ] = 0.
To solve the fuzzy differential equations (8.1) first, we find out the solution q1(t) in crisp
differential environment according to Chalco-Cano and Roman-Flores [19] is as follows

dq1(t)

dt
=


P −D, 0 ≤ t ≤ τ
(P −D)− βP, τ ≤ t ≤ t1
−D, t1 ≤ t ≤ T

(8.2)

subject to the conditions that, q1[0] = 0, q1[T ] = 0.
The solution of the above differential equations are

q1(t) =


(P −D)t, 0 ≤ t ≤ τ
(P −D)t+ βPτ − βPt, τ ≤ t ≤ t1
D(T − t), t1 ≤ t ≤ T

(8.3)

Lemma 8.1. Manufacturer’s production rate (P ), Demand rate (D), production time period

(t1) and business time period (T ) must satisfy the condition

(1− β)Pt1 + βPτ = DT (8.4)
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Proof. From the continuity condition of q1(t) at t = t1, the following is obtained

(P −D)t1 + βPτ − βPt1 = −D(t1 − T )

i.e., (1− β)Pt1 + βPτ = DT

Hence the proof.

As q(t) is continuous for t ≥ 0, the unique fuzzy solution of equation (8.1) according to
Chalco-Cano and Roman-Flores [19] is given by

q̃1(t) =


(P − D̃)t, 0 ≤ t ≤ τ̃

(P − D̃)t+ β̃P τ̃ − β̃P t, τ̃ ≤ t ≤ t1
D̃(T − t), t1 ≤ t ≤ T

(8.5)

with the condition (1− β̃)Pt1 + β̃P τ̃ = D̃T .

Theorem 8.1. If τ̃ be a fuzzy number then (i) t ≤ τLα for all α, provided that t ≤ τ̃ .

ii) t ≥ τRα for all α, provided that t ≥ τ̃ .

Proof. (i) Let t̃ and τ̃ be two fuzzy numbers and t̃ ≤ τ̃ . Then the α-cuts of t and τ must satisfy

[tLα, t
R
α ] ≤ [τLα , τ

R
α ], which implies that tLα ≤ τLα and tRα ≤ τRα .

But since t is precise so t = tLα = tRα . Then t ≤ τLα . Hence the proof.

(ii) Let t̃ and τ̃ be two fuzzy numbers and t̃ ≥ τ̃ . Then [tLα, t
R
α ] ≥ [τLα , τ

R
α ], which implies that

tLα ≥ τLα and tRα ≥ τRα .

But since t is precise so t = tLα = tRα . Then t ≥ τRα . Hence the proof.

Hence, α-cut of above equation (8.5) is given by

q̃1(t)[α] = [qL1 (α, t), qR1 (α, t)], (8.6)

where

qL1 (α, t) =


(P −DR

α )t, 0 ≤ t ≤ τLα
(P −DR

α )t+ PβLατ
L
α − PβRα t, τRα ≤ t ≤ t1

DL
α(T − t), t1 ≤ t ≤ T

and

qR1 (α, t) =


(P −DL

α)t, 0 ≤ t ≤ τRα
(P −DL

α)t+ PβRα τ
R
α − PβLα t, τLα ≤ t ≤ t1

DR
α (T − t), t1 ≤ t ≤ T
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Lemma 8.2. In fuzzy environment manufacturer’s production time period (t1) and business

time period (T ) must satisfy the condition either

i)
{

(1− βRα )P +DL
α −DR

α

}
t1 + PβLατ

L
α = DL

αT

or ii)
{

(1− βLα )P +DR
α −DL

α

}
t1 + PβRα τ

R
α = DR

αT .

Proof. From the continuity conditions of qL1 (α, t) and qR1 (α, t) at t = t1, the followings are

obtained respectively

i) (P −DR
α )t1 + PβLατ

L
α − PβRα t1 = DL

α(T − t1)

i.e.,
{

(1− βRα )P +DL
α −DR

α

}
t1 + PβLατ

L
α = DL

αT

or, ii) (P −DL
α)t1 + PβRα τ

R
α − PβLα t1 = DR

α (T − t1)

i.e.,
{

(1− βLα )P +DR
α −DL

α

}
t1 + PβRα τ

R
α = DR

αT

Now from Lemma 8.1, it is seen that there exist variabilities of t1 and T for crisp value of

β, τ and D. But in fuzzy environment, two relations are obtained. If t1 and T satisfy both

these two relations simultaneously, then there will be loss of variability of t1 and T . Therefore

to maintain variabilities of t1 and T , they must satisfy either
{

(1 − βRα )P + DL
α − DR

α

}
t1 +

PβLατ
L
α = DL

αT or
{

(1− βLα )P +DR
α −DL

α

}
t1 + PβRα τ

R
α = DR

αT . Hence the proof.

8.3.2 Formulation for Imperfect Quality Items

At the end of the screening process, the imperfect quality items are sold as a single lot. The
inventory level q̃2(t) at time t satisfies the following differential equation:

dq̃2(t)

dt
= β̃P, τ̃ ≤ t ≤ t1 (8.7)

subject to the condition that, q̃2[τ ] = 0.
According to Chalco-Cano and Roman-Flores [19], first find out the solution q2(t) of the crisp
differential equation

dq2(t)

dt
= βP, τ ≤ t ≤ t1 (8.8)

subject to the condition that, q2[τ̃ ] = 0.
The solution of the above differential equation is given by

q2(t) = βP (t− τ), τ ≤ t ≤ t1 (8.9)
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As q(t) is continuous for each t ≥ 0, the unique fuzzy solution (according to Chalco-Cano and
Roman-Flores [19] of equation (8.7) is given by

q̃2(t) = β̃P (t− τ̃), τ̃ ≤ t ≤ t1 (8.10)

Hence, α-cut of above equation (8.10) is given by

q̃2(t)[α] = [qL2 (α, t), qR2 (α, t)], (8.11)

where

qL2 (α, t) = PβLα (t− τRα ), τRα ≤ t ≤ t1, (8.12)
qR2 (α, t) = PβRα (t− τLα ), τLα ≤ t ≤ t1 (8.13)

8.3.3 The Profit Function of the Proposed Model
The total production cost (PC) in the production system during the cycle (0, T ) is given by

PC = cp

∫ t1

0

P dt = cpPt1

Total screening cost (SC) in the production system during the cycle (0, T ) is given by

SC = csr

∫ t1

0

P dt = csrPt1

The total set up cost in the production system during the cycle (0, T ) =Am

Theorem 8.2. Let f̃(x) be a bounded and closed-fuzzy-valued function defined on the closed

fuzzy real number system (<R/ ∼)R and f̃(x) be induced by f̃(x). Suppose that b̃ � ã and

there exists a fuzzy number ξ̃ such that ã � ξ̃ � b̃.

(i) If f̃(x) is non-negative as well as fLα (x) and fRα (x) be Riemann-integrable α-cut of f̃(x)

on [aRα , b
L
α] and [aLα, b

R
α ] respectively for all α then

(∫ b̃

ã

f̃(x) dx
)

[α] =
[ ∫ ξLα

aRα

fLα (x) dx+

∫ bLα

ξRα

fLα (x) dx,

∫ ξRα

aLα

fRα (x) dx+

∫ bRα

ξLα

fRα (x) dx
]

Proof. If there exists a fuzzy number ξ̃ such that ã � ξ̃ � b̃ and f̃(x) is Riemann-integrable

on [ã, b̃], for all α then

(∫ b̃

ã

f̃(x) dx
)

[α] =
(∫ ξ̃

ã

f̃(x) dx+

∫ b̃

ξ̃

f̃(x) dx,
)

[α] (8.14)
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Now,
( ∫ ξ̃

ã
f̃(x) dx

)
[α] =

[ ∫ ξLα
aRα
fLα (x) dx,

∫ ξRα
aLα
fRα (x) dx

]
and

( ∫ b̃
ξ̃
f̃(x) dx

)
[α] =

[ ∫ bLα
ξRα
fLα (x) dx,

∫ bRα
ξLα
fRα (x) dx

]
Therefore,

(∫ ξ̃

ã

f̃(x) dx
)

[α] +
(∫ b̃

ξ̃

f̃(x) dx
)

[α] =
[ ∫ ξLα

aRα

fLα (x) dx,

∫ ξRα

aLα

fRα (x) dx
]

+
[ ∫ bLα

ξRα

fLα (x) dx,

∫ bRα

ξLα

fRα (x) dx
]

⇒
(∫ ξ̃

ã

f̃(x) dx+

∫ b̃

ξ̃

f̃(x) dx
)

[α] =
[ ∫ ξLα

aRα

fLα (x) dx+

∫ bLα

ξRα

fLα (x) dx,

∫ ξRα

aLα

fRα (x) dx

+

∫ bRα

ξLα

fRα (x) dx
]

Hence the proof.

Theorem 8.3. Let f̃(x̃) be a bounded and closed-fuzzy-valued function defined on the closed

fuzzy real number system (<R/ ∼)R and f̃(x) be induced by f̃(x̃). Suppose that a � b and

there exists a fuzzy number ξ̃ such that a � ξ̃ � b.

(i) If f̃(x) is non negative and fLα (x) and fRα (x) are Riemann-integrable α-cut of f̃(x) on

[a, ξLα ] and [ξRα , b], respectively, for all α then

(∫ b

a

f̃(x) dx
)

[α] =
[ ∫ ξLα

a

fLα (x) dx+

∫ b

ξRα

fLα (x) dx,

∫ ξRα

a

fRα (x) dx+

∫ b

ξLα

fRα (x) dx
]
(8.15)

Proof. Similar proof of above theorem.

Now α-cut of the total holding cost (HC) in the production system during the cycle (0, T ) is
given by

HC[α] =
(
hm

∫ T

0

q̃1(t) dt+ h′m

∫ t1

τ̃

q̃2(t) dt
)

[α]

=
[
hm

∫ T

0

qL1 (t, α) dt+ h′m

∫ t1

τR
qL2 (t, α) dt, hm

∫ T

0

qL1 (t, α) dt+ h′m

∫ t1

τL
qR2 (t, α) dt

]
=

[
HCL

α , HC
R
α

]
(say),
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where

HCL
α = hm

∫ T

0

qL1 (t, α) dt+ h′m

∫ t1

τR
qL2 (t, α) dt

= hm

[ ∫ τL

0

qL1 (t, α) dt+

∫ t1

τR
qL1 (t, α) dt+

∫ T

t1

qL1 (t, α) dt
]

+ h′m

∫ t1

τR
qL2 (t, α) dt

=
hm
2

[
(P −DR

α ){t21 + (τLα )2 − (τRα )2}+ 2PβLατ
L
α (t1 − τRα )− PβRα {t21 − (τRα )2}

+DL
α(T − t1)2

]
+
h′m
2
P (t1 − τRα )2

HCR
α = hm

∫ T

0

qR1 (t, α) dt+ h′m

∫ t1

τLα

qR2 (t, α) dt

= hm

[ ∫ τRα

0

qR1 (t, α) dt+

∫ t1

τLα

qR1 (t, α) dt+

∫ T

t1

qR1 (t, α) dt
]

+ h′m

∫ t1

τLα

qR2 (t, α) dt

=
hm
2

[
(P −DL

α){t21 + (τRα )2 − (τLα )2}+ 2PβRα τ
R
α (t1 − τLα )− PβLα{t21 − (τLα )2}

+DR
α (T − t1)2

]
+
h′m
2
P (t1 − τLα )2

The α-cut of total revenue (SR) in the production system during the cycle (0, T ) is given by

SR[α] =
(
s

∫ T

0

D̃ dt+ s′β̃P (t1 − τ̃)
)

[α]

=
[
s

∫ T

0

DL
α dt+ s′βLαP (t1 − τRα ), s

∫ T

0

DR
α dt+ s′βRαP (t1 − τLα )

]
=

[
sDL

αT + s′βLαP (t1 − τRα ), sDR
αT + s′βRαP (t1 − τLα )

]
=

[
SRL

α, SR
R
α

]
(say),

where

SRL
α = s

∫ T

0

DL
α dt+ s′PβLα (t1 − τRα ) = sDL

αT + s′PβLα (t1 − τRα ),

SRR
α = s

∫ T

0

DR
α dt+ s′PβRα (t1 − τLα ) = sDR

αT + s′PβRα (t1 − τLα )

The α-cut of the total Profit (TP ) in the production system during the cycle (0, T ) is given by

T̃P [α] = [TPL
α (t1, T ), TPR

α (t1, T )](say),

where

TPL
α (t1, T ) =

1

T

[
SRL

α −HCR
α − PC − SC − Am

]
,

TPR
α (t1, T ) =

1

T

[
SRR

α −HCL
α − PC − SC − Am

]
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Finally, the model becomes:

Max TPL
α (t1, T ) =

1

T

[
SRL

α −HCR
α − PC − SC − Am

]
,

Max TPR
α (t1, T ) =

1

T

[
SRR

α −HCL
α − PC − SC − Am

]
such that: 0 < τRα < t1, 0 < t1 < T,

and
{

(1− βRα )P +DL
α −DR

α

}
t1 + PβLατ

L
α = DL

αT

or
{

(1− βLα )P +DR
α −DL

α

}
t1 + PβRα τ

R
α = DR

αT.

8.4 Solution Procedure
To get the optimum value of the production run time (t1), business period (T ) and average
profit in the proposed model, the following steps are necessary.

Step-1: Input the suitable values of crisp and fuzzy parameters of TPL
α (t1, T ) and TPR

α (t1, T ).

Step-2: Compute the left α-cut (τLα ) and right α-cut (τRα ) of fuzzy parameter τ̃ as follows:
(i) If τ̃ be TFN such as τ̃ = (τ0 − ∆1, τ0, τ0 + ∆2) then ταL = (τ0 − ∆1) + α∆1 and
ταR = (τ0 + ∆2)− α∆2.
(ii) If τ̃ be TrFN such as τ̃ = (τ0 − ∆1, τ0 − ∆2, τ0 + ∆3, τ0 + ∆4) then ταL = (τ0 −
∆1) + α(∆1 −∆2) and ταR = (τ0 + ∆4)− α(∆4 −∆3).
(iii) If τ̃ be PFN such as τ̃ = (τ0 −∆1, τ0, τ0 + ∆2) respectively then ταL = τ0 −

√
α∆1

and ταR = τ0 +
√
α∆2.

(iv) If τ̃ be GFN such that τ̃ = (τ0 −∆1, τ0 −∆2, τ0 + ∆3, τ0 + ∆4) then ταL = (τ0 −
∆1) +

√
α(∆1 −∆2) and ταR = (τ0 + ∆4)−

√
α(∆4 −∆3).

Similarly, compute left and right α-cuts of other two fuzzy parameters β̃ and D̃ for TFN,
TrFN, PFN and GFN.

Step-3: Maximize the profit TPL
α (t1, T ) and obtain the optimal values of t1, T , TPR

α (t1, T ) and
TPL∗

α (t1, T ) for different values of α using the standard LINGO software.

Step-4: Maximize the profit TPR
α (t1, T ) and obtain the optimal values of t1, T , TPL

α (t1, T ) and
TPR∗

α (t1, T ) for different values of α using the standard LINGO software.

Step-5: Maximize the both TPL
α (t1, T ) and TPR

α by Fuzzy Programming Technique (FPT) and
obtain the optimal values of t1, T and average profit for different values of α using the
standard LINGO software as follows:

Step-6: From the results of step-3 and step-4, the following pay off matrix can be constructed:(
TPL∗

α (t1, T ) TPR
α (t1, T )

TPL
α (t1, T ) TPR∗

α (t1, T )

)
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Step-7: From this pay off matrix, two values Uj and Lj are defined such that they are the upper
and lower bounds of the j-th objective for each j=1, 2 respectively. Here, Lj = higher
acceptable level of achievement, Uj = aspired level of achievement for maximization,
which are computed as follows:

U1 = max{TPL∗
α (t1, T )}, U2 = max{TPR

α (t1, T )}
L1 = min{TPL

α (t1, T )}, L2 = min{TPR∗
α (t1, T )}

Step-8: Then the membership functions µ1(TPL
α (t1, T )) and µ2(TPR

α (t1, T )) corresponding to
the objective functions of TPL

α (t1, T ) and TPR
α (t1, T ) are constructed linearly as

follows:

µ1(TPL
α (t1, T )) =


0, if TPL

α (t1, T ) ≤ L1
TPLα (t1,T )−L1

U1−L1
, if L1 ≤ TPL

α (t1, T ) ≤ U1

1, if TPL
α (t1, T ) ≥ U1

µ2(TPR
α (t1, T )) =


0, if TPR

α (t1, T ) ≤ L2
TPRα (t1,T )−L2

U2−L2
, if L2 ≤ TPR

α (t1, T ) ≤ U2

1, if TPR
α (t1, T ) ≥ U2

Step-9: Finally, according to the Zimmermann [244] method, the multi-objective programming
problem is reduced to the following single objective programming problem:

Max λ
such that
µ1(TPL

α (t1, T )) ≥ λ,

µ2(TPR
α (t1, T )) ≥ λ,

0 < τRα < t1, 0 < t1 < T, λ ∈ [0, 1],

and
{

(1− βRα )P +DL
α −DR

α

}
t1 + PβLατ

L
α = DL

αT

or
{

(1− βLα )P +DR
α −DL

α

}
t1 + PβRα τ

R
α = DR

αT.

8.5 Numerical Illustrations
To illustrate numerically the proposed model, according to Lemma 8.2 we have two relations{

(1− βRα )P +DL
α −DR

α

}
t1 + PβLατ

L
α = DL

αT

and {
(1− βLα )P +DR

α −DL
α

}
t1 + PβRα τ

R
α = DR

αT
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, one of which is taken to compute t1 and T optimizing objective functions. At first considering
the relation {

(1− βRα )P +DL
α −DR

α

}
t1 + PβLατ

L
α = DL

αT

the proposed model is optimized for the following examples and then the other relation

{
(1− βLα )P +DR

α −DL
α

}
t1 + PβRα τ

R
α = DR

αT

has been considered to get the optimum solution but in this case latter it has been shown that
this relation is not acceptable due to some in-feasibility of the solution.

Example 8.1. The following parametric values are used to illustrate the model:

Cp = $30, Csr = $2, Am = $5200, s = $59, s′ = $35, hm = $1.00, h′m = $0.50, P = 3380.
Here, fuzzy parameters are considered as triangular fuzzy number (TFN) and their different
values are given below. τ̃ = (τ0 − ∆1, τ0, τ0 + ∆2) = (2, 3, 5), ∆1 = 1, ∆2 = 0.5, β̃ =

(β0−σ1, β0, β0+σ2) = (0.07, 0.10, 0.15), σ1 = 0.03, σ2 = 0.05, D̃ = (D0−ρ1, D0, D0+ρ2) =
(2500, 2559, 2631), ρ1 = 59, ρ2 = 72. This example is solved using LINGO-12.0. Table 8.2,
8.3 represent the optimum results when TPL

α , TPR
α are maximized separately and Table 8.4

represent the optimum results when TPL
α and TPR

α are maximized simultaneously.
For the above parametric values, the optimum business time period (T ∗), optimum production
time period (t∗1), and profit interval ([TPL∗

α , TPR∗
α ]) are obtained. Obtained results for different

values of α are presented in Table 8.2, 8.3 and 8.4.

Table 8.2: Optimum results of Example 8.1 for maximizing TPL
α

α Production Business TPL∗
α TPR

α

period (t∗1) period (T ∗) (Max)

0.00 8.445339 9.452128 47447.09 69007.36

0.25 7.884611 9.066641 52386.18 68234.01

0.50 7.100508 8.402024 57183.69 67540.85

0.75 5.982998 7.315060 61904.18 66988.16

0.99 4.345648 5.555799 66499.80 66701.16
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Table 8.3: Optimum results of Example 8.1 for maximizing TPR
α

α Production Business TPL
α TPR∗

α

period (t∗1) period (T ∗) (Max)

0.00 10.71312 11.93943 47248.61 69111.75

0.25 9.064714 10.38858 52327.64 68270.08

0.50 7.526072 8.888575 57175.25 67546.87

0.75 5.976583 7.307580 61904.18 66988.16

0.99 4.332328 5.539977 66499.78 66701.17

Table 8.4: Optimum results of Example 8.1 for maximizing both TPL
α and TPR

α

α Production Business TPL∗
α TPR∗

α Average

period (t∗1) period(T ∗) (Max) (Max) profit

0.00 9.513103 10.62325 47397.64 69085.74 58241.69

0.25 8.454594 9.705132 52371.56 68261.07 60316.32

0.50 7.310260 8.641835 57181.58 67545.36 62363.47

0.75 5.982997 7.315060 61904.18 66988.16 64446.17

0.99 4.339744 5.548787 66499.79 66701.17 66600.48

As expected, the left and right optimum profits increases and decreases respectively with the
increase of α. At α = 0.99, the above profit values are almost same.

Example 8.2. Here, fuzzy parameters are considered as trapezoidal fuzzy number (TrFN) and

their different values are taken as.

τ̃ = (τ0−∆1, τ0−∆2, τ0 +∆3, τ0 +∆4) = (2, 2.5, 3.5, 5), ∆1 = 1.25, ∆2 = 0.75, ∆3 = 0.25,
∆4 = 1.75 β̃ = (β0−σ1, β0−σ2, β0 +σ3, β0 +σ4) = (0.07, 0.10, 0.13, 0.15), σ1 = 0.05, σ2 =

0.02, σ3 = 0.01, σ4 = 0.03, D̃ = (d0−ρ1, d0−ρ2, d0+ρ3, d0+ρ4) = (2500, 2549, 2571, 2631),
ρ1 = 65, ρ2 = 16, ρ3 = 6, ρ4 = 66. Other parametric values are same as in Example 8.1.
This example is solved using LINGO-12.0. Table 8.5, 8.6 represent the optimum results when
TPL

α , TPR
α are maximized separately and Table 8.7 represent the optimum results when TPL

α

and TPR
α are maximized simultaneously.
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Table 8.5: Optimum results of Example 8.2 for maximizing TPL
α

α Production Business TPL∗
α TPR∗

α

period (t∗1) period (T ∗) (Max)

0.00 8.445339 9.452128 47447.09 69007.36

0.25 8.211077 9.327867 50801.53 68435.14

0.50 7.869975 9.079349 54132.44 67864.09

0.75 7.394903 8.672050 57450.46 67305.73

0.99 6.772804 8.081556 60639.97 66795.06

Table 8.6: Optimum results of Example 8.2 for maximizing TPR
α

α Production Business TPL
α TPR∗

α

period (t∗1) period (T ∗) (Max)

0.00 10.71312 11.93943 47248.61 69111.75

0.25 9.666378 10.94183 50716.17 68484.49

0.50 8.696047 10.00548 54103.70 67882.37

0.75 7.772620 9.100049 57444.15 67310.16

0.99 6.907287 8.235475 60639.13 66795.72

Table 8.7: Optimum results of Example 8.2 for maximizing both TPL
α and TPR

α

α Production Business TPL∗
α TPR∗

α Average

period (t∗1) period(T ∗) (Max) (Max) profit

0.00 9.513103 10.62325 47397.64 69085.74 58241.69

0.25 8.909673 10.10263 50780.23 68472.17 59626.20

0.50 8.273025 9.531221 54125.26 67877.80 61001.53

0.75 7.581600 8.883601 57448.88 67309.05 62378.97

0.99 6.840087 8.158563 60639.76 66795.55 63717.66
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For the above parametric values, the optimum business time period (T ∗), optimum production
time period (t∗1), and profit interval ([TPL∗

α , TPR∗
α ]) are obtained. Obtained results for different

values of α are presented in Table 8.5, 8.6 and 8.7. As expected, the left and right optimum
profits increases and decreases respectively with the increase of α.

Example 8.3. In this example fuzzy parameters are considered as parabolic fuzzy number

(PFN) type and their different values are:

τ̃ = (τ0 − ∆1, τ0, τ0 + ∆2) = (2, 3, 5), ∆1 = 1, ∆2 = 2, β̃ = (β0 − σ1, β0, β0 + σ2) =

(0.07, 0.10, 0.15), σ1 = 0.03, σ2 = 0.05, D̃ = (D0 − ρ1, D0, D0 + ρ2) = (2500, 2559, 2631),
ρ1 = 59, ρ2 = 72. Other parametric values are same as in Example 8.1. This example is
solved using LINGO-12.0. Table8.8 and 8.9 represent the optimum results when TPL

α , TPR
α

are maximized separately and Table 8.10 represent the optimum results when TPL
α , TPR

α are
maximized simultaneously.

Table 8.8: Optimum results of Example 8.3 for maximizing TPL
α

α Production Business TPL∗
α TPR

α

period (t∗1) period (T ∗) (Max)

0.00 8.445339 9.452128 47447.09 69007.36

0.25 8.168350 9.274599 50114.31 68585.50

0.50 7.768098 8.975275 53218.01 68108.13

0.75 7.100508 8.402024 57183.69 67540.85

0.99 5.055331 6.336396 64752.49 66769.40

Table 8.9: Optimum results of Example 8.3 for maximizing TPR
α

α Production Business TPL
α TPR∗

α

period (t∗1) period (T ∗) (Max)

0.00 10.71312 11.93943 47248.61 69111.75

0.25 9.808184 11.09378 50005.78 68647.74

0.50 8.796376 10.13124 53172.85 68136.67

0.75 7.526072 8.888575 57175.25 67546.87

0.99 4.980989 6.248691 64752.15 66769.71
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Table 8.10: Optimum results of Example 8.3 for maximizing both TPL
α and TPR

α

α Production Business TPL∗
α TPR∗

α Average

period (t∗1) period(T ∗) (Max) (Max) profit

0.00 9.513103 10.62325 47397.64 69085.74 58241.69

0.25 8.951570 10.14348 50087.23 68632.21 59359.72

0.50 8.266637 9.535721 53206.74 68129.54 60668.14

0.75 7.310260 8.641835 57181.58 67545.36 62363.47

0.99 5.018012 6.292368 64752.40 66769.63 65761.02

For the above parametric values, the optimum business time period (T ∗), optimum production
time period (t∗1), and profit interval ([TPL

α , TP
R
α ]) are obtained. Obtained results for different

values of α are presented in Table 8.8, 8.9 and 8.10. As expected, the left and right optimum
profits increases and decreases respectively with the increase of α. At α = 0.99, the above
profit values are almost same.

Example 8.4. Here, fuzzy parameters are considered as general fuzzy number (GFN) and their

different values are given.

τ̃ = (τ0 −∆1, τ0 −∆2, τ0 + ∆3, τ0 + ∆4) = (2, 2.5, 3.5, 5), ∆1 = 1, ∆2 = 0.25, ∆3 = 0.75,
∆4 = 2, β̃ = (β0 − σ1, β0 − σ2, β0 + σ3, β0 + σ4) = (0.07, 0.10, 0.13, 0.15), σ1 = 0.05, σ2 =

0.02, σ3 = 0.01, σ4 = 0.03, D̃ = (d0−ρ1, d0−ρ2, d0+ρ3, d0+ρ4) = (2500, 2549, 2571, 2631),
ρ1 = 65, ρ2 = 16, ρ3 = 6, ρ4 = 66. Other parametric values are same as in Example-1. This
example is solved using LINGO-12.0. Table 8.11, 8.12 represent the optimum results when
TPL

α , TPR
α are maximized separately and Table 8.13 represent the optimum results when TPL

α ,
TPR

α are maximized simultaneously.
For the above parametric values, the optimum business time period (T ∗), optimum production
time period (t∗1), and profit interval ([TPL

α , TP
R
α ]) are obtained. Obtained results for different

values of α are presented in Table 8.11, 8.12 and 8.13.
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Table 8.11: Optimum results of Example 8.4 for maximizing TPL
α

α Production Business TPL∗
α TPR

α

period (t∗1) period (T ∗) (Max)

0.00 8.445339 9.452128 47447.09 69007.36

0.25 7.869975 9.079349 54132.44 67864.09

0.50 7.487523 8.755217 56881.46 67400.04

0.75 7.117747 8.415065 58990.51 67054.82

0.99 6.757742 8.066704 60706.47 66784.82

Table 8.12: Optimum results of Example 8.4 for maximizing TPR
α

α Production Business TPL
α TPR∗

α

period (t∗1) period (T ∗) (Max)

0.00 10.71312 11.93943 47248.61 69111.75

0.25 8.696047 10.00548 54103.70 67882.37

0.50 7.928822 9.254359 56872.92 67405.93

0.75 7.353021 8.682959 58988.00 67056.67

0.99 6.889372 8.217389 60705.66 66785.45

Table 8.13: Optimum results of Example 8.4 for maximizing both TPL
α and TPR

α

α Production Business TPL∗
α TPR∗

α Average

period (t∗1) period(T ∗) (Max) (Max) profit

0.00 9.513103 10.62325 47397.64 69085.74 58241.69

0.25 8.273025 9.531221 54125.26 67877.80 61001.53

0.50 7.704997 9.001196 56879.33 67404.46 62141.89

0.75 7.234143 8.547598 58989.88 67056.21 63023.05

0.99 6.823119 8.141546 60706.27 66785.29 63745.78
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As expected, the left and right optimum profits increases and decreases respectively with the
increase of α.

Example 8.5. When
{

(1−βLα )P +DR
α −DL

α

}
t1 +PβRα τ

R
α = DR

αT , the following parametric

values are used to illustrate the model:

Cp = $30, Csr = $2, Am = $5200, s = $55, s′ = $35, hm = $1.0, h′m = $0.50, P = 3380.
Here, fuzzy parameters are considered as triangular fuzzy number (TFN) and their different
values are given below. τ̃ = (τ0 − ∆1, τ0, τ0 + ∆2) = (2, 3, 5), ∆1 = 1, ∆2 = 2, β̃ =

(β0−σ1, β0, β0+σ2) = (0.07, 0.10, 0.15), σ1 = 0.03, σ2 = 0.05, D̃ = (D0−ρ1, D0, D0+ρ2) =
(2500, 2559, 2631), ρ1 = 59, ρ2 = 72. This example is solved using LINGO-12.0. Table
8.14,8.15 represent the optimum results when TPL

α , TPR
α are maximized separately.

Table 8.14: Optimum results of Example 8.5 for maximizing TPL
α

α Production Business TPL∗
α TPR

α

period (t1) period(T ) (Max)

0.00 1.904205 3.333382 72465.08 91202.27

0.25 1.992095 3.252411 70387.39 84903.91

0.50 1.834233 2.883574 68885.25 78970.41

0.75 1.735770 2.604554 67219.03 72486.40

0.99 4.184291 5.377229 66696.28 66897.66

Table 8.15: Optimum results of Example 8.5 for maximizing TPR
α

α Production Business TPL
α TPR∗

α

period (t1) period (T ) (Max)

0.00 1.904205 3.333382 72465.08 91202.27

0.25 1.992095 3.252411 70387.39 84903.91

0.50 1.834233 2.883574 68885.25 78970.41

0.75 1.468407 2.282920 67206.21 72582.51

0.99 4.169558 5.359706 66696.27 66897.67

Now from Table 8.14 and 8.15, it is observed that when α = 0.00 then the optimum profit
interval is [TPL

α , TP
R
α ] = [72465.08, 91202.27]. Again when α = 0.25 then the optimum
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profit interval is [TPL
α , TP

R
α ] = [70387.39, 84903.91]. But here [TPL

0.0, TP
R
0.0] ⊇

[TPL
0.25, TP

R
0.25] does not satisfied. This in-feasibility is also shown when α further is

increasing. Therefore this relation has no roll to give the optimum solution of the model.

8.5.1 Comparison between the Optimum Average Profit by Fisher’s t-

test

Comparison between the optimum average profit due to TFN and TrFN by Fisher’s t-test. In
the fuzzy EPQ model, two optimum average profit have been obtained using TFN and TrFN.
Now question is that does there exist any significance difference between these two values ?
If exists, then how much ? To get this answer, it can be tested that the null hypothesis H0:
AP TFN (mean of values of average profit for TFN) = AP TrFN (mean of values of average
profit for TrFN) against the alternative hypothesis H1: AP TFN 6= AP TrFN on the basis of the
results presented in Tables8.4 and 8.7. This hypothesis can be tested using t-distribution.
The test statistic is

t =
AP TFN − AP TrFN

s
√

(1/n1) + (1/n2)

which follows t-distribution with (n1 + n2 − 2) degrees of freedom, where

s2 =
n1s

2
TFN + n2s

2
TrFN

n1 + n2 − 2

Here n1 = 5, n2 = 5, AP TFN = 62393.63, AP TrFN = 60993.21, s2
TFN = 10866309.90,

s2
TrFN = 4695651.613. Therefore, degrees of freedom (n1+n2−2)=8 and value of t = 0.2840.

Since the evaluated value of t < the tabulated value of t0.05. we accept the null hypothesis H0

with 95% confidence limit and conclude that there is no significant difference between the
mean average profit (AP ) for TFN and TrFN.

8.5.2 Sensitivity Analysis

To study the sensitivity analysis of the proposed model with respect to key parameters, the
Example 8.1 has been considered. The optimum results of the model with the changes in the
parameters ∆1, ∆2, σ1, σ2, ρ1, ρ2, P and s are given in Table 8.16 taking α = 0.5.
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Table 8.16: Sensitivity analysis on Example 8.1 w.r.t. ∆1, ∆2, σ1, σ2, ρ1, ρ2, P and S
Parameter value Production business TPLα TPRα Average profit

period (t1) period (T )

0.75 7.250299 8.587478 57389.12 67422.17 62405.64

∆1 1.00 7.310260 8.641835 57181.58 67545.36 62363.47

1.25 7.361048 8.685704 56976.58 67665.90 62321.24

1.75 7.198704 8.514293 57409.15 67504.98 62457.07

∆2 2.00 7.310260 8.641835 57181.58 67545.36 62363.47

2.25 7.415203 8.761817 56956.63 67584.60 62270.62

0.02 7.229466 8.566165 57624.05 67683.21 62653.63

σ1 0.03 7.310260 8.641835 57181.58 67545.36 62363.47

0.04 7.375419 8.699629 56733.72 67410.27 62071.99

0.04 7.083671 8.430101 57728.50 67646.06 62687.28

σ2 0.05 7.310260 8.641835 57181.58 67545.36 62363.47

0.06 7.526995 8.839341 56620.66 67454.61 62037.63

55 7.317655 8.649237 57295.96 67535.26 62415.61

ρ1 59 7.310260 8.641835 57181.58 67545.36 62363.47

64 7.301025 8.632592 57038.64 67558.02 62298.33

67 7.300695 8.638115 57256.03 67460.07 62358.05

ρ2 72 7.310260 8.641835 57181.58 67545.36 62363.47

77 7.319873 8.645592 57106.98 67630.55 62368.77

3350 7.497850 8.775979 57266.24 67613.92 62440.08

P 3380 7.310260 8.641835 57181.58 67545.36 62363.47

3420 7.079061 8.478815 57070.02 67458.47 62264.24

54 7.310260 8.641835 44534.08 54570.36 49552.22

s 59 7.310260 8.641835 57181.58 67545.36 62363.47

64 7.310260 8.641835 69829.08 80520.36 64188.79

Now, from Table 8.16 the following features of the proposed model have been observed:
• When ∆1 increases, the production run time and business period also increase. But, the
average profit decreases with increasing of ∆1.
•When ∆2 increases, the production run time and business period increase. But, the average
profit decreases with increasing of ∆2.
• When σ1 increases, the production run time and business period also increase. But, the

212



8.5. NUMERICAL ILLUSTRATIONS

average profit decreases with increasing of σ1.
• When σ2 increases, the production run time and business period also increase. But, the
average profit decreases with increasing of σ2.
• When ρ1 increases, the production run time and business period also decrease. But, the
average profit increases with increasing of ρ1.
•When ρ2 increases, the production run time and business period also increases. But, average
profit increases with increasing of ρ2.
• When the production rate (P ) increases, the inventory increases as well as the production
run time and business period reduce. But, the average profit increases with the production rate.
•When selling price of perfect item per unit (s) increases, the production run time and business
period are not change. But, the average profit increases with the increasing of selling price (s).

8.5.3 Discussion

The optimum results of the proposed model are obtained from Table 8.4, 8.7,8.10 and 8.13
when the fuzzy numbers τ̃ , β̃, D̃ have been considered as TFN, TrFN, PFN and GFN in
Example 8.1, 8.2, 8.3 and 8.4 respectively. From these tables it is shown that when α increases
then (∆TPLα

∆α
) also increases but (∆TPRα

∆α
) decreases. Again, from Figure 8.2, it is observed that

the rate of increase left optimum profit (∆TPLα
∆α

) is more than rate of decrease of right optimum
profit (∆TPRα

∆α
). Hence forth, the average profit(AP ) i.e., 1

2
(TPL

α + TPR
α ) is not same for all α.

Ultimately, the average profit rises with the increase of α.

Figure 8.2: Graphical representation of average profit with α

From this Figure 8.2 it is also observed that the TFNs gives the maximum average profit
among others, i.e., the ordering of optimum average profit isAPTrFN ≤ APGFN ≤ APPFN ≤
APTFN where APFN indicates the optimum average profit for fuzzy number FN , though all
fuzzy numbers have same spread.
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8.6 Conclusion
The main contribution of this chapter is to develop a FEPQ model with fuzzy demand for
perfect quality items with inspection of imperfect items. In the production run-time, the
manufacturing system produces perfect items in the ”in-control” state. Many research papers
relating to the manufacturing process may shift to an ‘out-of-control’ state after certain time
that follows constant/random. But, first time a fuzzy production inventory model has been
developed, where the manufacturing process may shift to an ‘out-of-control’ state after
certain time that follows a fuzzy number. During ‘out-of-control’ state, the process starts to
produce defective items. The defective rate is considered as fuzzy number. Using fuzzy
differential equation and fuzzy Riemann integration, an approach has been proposed, where
α-cut of fuzzy profit is optimized to get optimal decision. It proposes a strategy for
maximizing profit in an fuzzy imperfect production. The model is optimized for the
production run time(t∗1), business period(T ∗) and profit interval. Here, four fuzzy numbers
TFN, TrFN, PFN, and GNF have been used to illustrate the model for fuzzy parameters.
Finally, Fuzzy Programming Technique(FPT) has been used to get the optimal solution.
These models are applicable in the factory like steel, plastic etc. The present models can be
extended to the rough, fuzzy-rough, random, fuzzy-random environment taking constant part
of screening cost, holding cost, set-up cost, etc.
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Chapter 9

GA approach for controlling GHG

emission from industrial waste in two

plant production and reproduction

inventory model with interval valued

fuzzy pollution parameters

9.1 Introduction
In an imperfect production process, 100% screening is required to identify perfect and
defective units. Defective units may be reworked in the same cycle along with the normal
production after some time from the initial commencement of production by engaging some
additional labour forces and machinery. But all of the defective units cannot be considered for
reworking. Some of the defective units should be avoided for rework as they may be of very
poor quality and will be expensive to repair. Therefore, a certain percentage of the defective
units may be considered for reworking and reworked items are assumed as good as new
products. Non-reworkable defective units are treated as rejected items. So many researchers
considered reworks in imperfect production sector and some of them are Hayek and
Salameh [97], Chiu [35], Chiu et al. [39], Liao et al. [136], Wee et al. [219], Taleizadeh et
al. [204], Wang [217] and others.

Generally, consumers dispose of the products after its use or at the end of the life-cycle of
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the product but recovery of the used products may be economically more attractive than
disposal. In classical logistic system, material and related information flow (forward flow) is
observed until the final products are delivered to the customer. But in reverse logistic system,
used and reusable parts are returned from the customers to the producer (backward flow).
Environmental consciousness forces companies to initiate such product recovery systems
with their disposal (metal, glass, paper). In this way, natural resources can be saved for the
future generations, so the firms can contribute to the sustainable development efforts. The
importance of reverse logistics has increased significantly in the last two decades for a variety
of legislative, environmental, and economic reasons (Fleischmann et al. [72]). Todays
customers are more educated and demanding, and tend to be less inclined to purchase
products that are not environmentally friendly. The growth of secondary markets emphasized
the importance of reverse logistics ( Tibben-Lembke [207]). In the last twenty four years, a
lot of research has been investigated on reverse logistics. Authors such as Carter and
Ellram [14], Jayaraman et al. [106], Rogers and Tibben-Lembke [176, 177],
Dowlatshahi [60], Guide [81], Stock and Mulki [198], and Guide and Van Wassenhove [82]
have described a broad range of reverse logistics systems and structures and analyzed a
variety of attendant reverse logistics problems. Implementation of reverse logistics especially
in product returns would allow not only for savings in inventory carrying cost, transportation
cost, and waste disposal cost due to returned products, but also for the improvement of
customer loyalty and future sales. In a broader sense, reverse logistics refers to the
distribution activities involved in product returns, source reduction, conservation, recycling,
substitution, reuse, disposal, refurnishment, repair and re-manufacturing. Recent reviews on
reverse logistics are provided by Ferguson and Toktay [71], Mitra [151, 152], Ahmed and
Jaber [4], Schulz [191], Xu [229], Hasanov et al. [91], Kim et al. [120, 121], Naeem et
al. [159], Chen and Abrishami [34], Ahiska and Kurtul [3], Schulz [191], Rogers et al. [179],
Ghosh and Dey [74] and others.

Rise in the temperature of earth, deterioration in Ozone layer, melting of glaciers,
numerous natural calamities, phase-shift in environmental clock are the various rays
converging at the point of alarm to nature or save environment. This alertness about saving
the nature and its resources and realization about environment has given considerable
attention to produce green Products in all fields worldwide. Along with producing green,
reuse and recycle of used products also has been promoted to save the environment as much
as possible.

Ever since the fuzzy set was proposed by Zadeh [239] fuzzy numbers have been widely
studied, developed and applied to various fields. In fuzzy set, the degree of membership
functions of the element in the universe is having a single value: either zero or one. Many
times specialists are uncertain about the values of the membership of an element in a set.
Hence, it is better to represent the values of the membership of an element in a set by
intervals of possible real numbers instead of real numbers. An interval-valued fuzzy set on a
universe X is a mapping from X to fall closed sub-intervals of the real interval [0, 1]. This
type of fuzzy sets has been intensively investigated, not only its theoretical aspects, but also
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its numerous applications. As the parameters relating to the environmental pollution due to
industrial waste are not fixed in nature so, in this model, we take them as interval valued
fuzzy number.

This chapter deals with the combined effect of manufacturing and re-manufacturing for
two types of quality items (item-I and item-II) produced in two different plants (plant-I and
plant-II) in the same premises under single management system over a known-finite time
horizon with consideration of environment pollution control through industrial waste
management. Three types of inventories are involved in this network. The manufactured and
re-manufactured items are stored in the first and second inventories. The used items returned
from the market and rejected defective units are together collected in the third inventory for
raw materials required for re-manufacturing process. The objective of this research is to
propose a manufacturing/re-manufacturing policy that would minimize the uses of natural
resource as raw materials and minimizes the environmental pollution from the used and
non-reworkable defective units by industrial waste management considering pollution
parameters as interval-valued fuzzy numbers.

9.2 Notations and Assumptions
The following notations and assumptions have been considered to develop the model:

9.2.1 Notations
The following notations are used throughout the chapter.
q1i(t) : Inventory level of better quality item of ith cycle at time t in plant-I.
q2i(t) : Inventory level of less better quality item of ith cycle at time t in plant-II.
q3i(t) : Inventory level of the returned and non reworkable item of ith cycle at time t.
q4i(t) : Inventory level of disposal item of ith cycle at time t.
β1 : Fraction of the better quality item in plant-I.
β2 : Fraction of the less better quality items in plant-II.
δ1 : Fraction of the re-workable item in plant-I.
δ2 : Fraction of the re-workable item in plant-II.
P1 : Production rate per unit time of 1st cycle in pant-I.
D1 : Demand rate in each cycle of plant-I.
t1 : Production time in each cycle which is considered as a decision variable.
T : Total time length of each cycle.
n : Total number of cycle.
k : Number of consecutive cycles in which the returned items from a cycle is considered.
cp : Production cost per unit item per unit time in plant-I.
c′p : Production cost per unit item per unit time in plant-II.
csr : Screening cost per unit item per unit time in plant-I.
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c′sr : Screening cost per unit item per unit time in plant-II.
rc : Reworked cost per unit item per unit time in plant-I.
r′c : Reworked cost per unit item per unit time in plant-II.
As : Set-up cost per cycle in plant-I.
A′s : Set-up cost per cycle in plant-II.
hc : Holding cost per unit item per unit time in plant-I.
h′c : Holding cost per unit item per unit time in plant-II.
h′′c : Holding cost per unit item per unit time in the row material processing unit.
s : Selling price per unit item per unit time in plant-I.
s′ : Selling price per unit item per unit time of plant-II.
cw : Water pollution cost per unit .
cg : Cost to control GHG emission per unit .
ct : Transportation cost per unit to transport the disposal unit for landfills.
ERg : Emission rate of GHG in landfills.
Q4 : Total disposal items.
P2i : Production rate of ith cycle in plant-II, where P2i = λP2(i−1) = λi−1P2

with P21 = P2.
D2i : Demand rate of ith cycle in plant-II, where D2i = µD2(i−1) = µi−1D2 with

D21 = D2.
αijD1 : Rate of return of item-I in plant-I collected from the market for j-th cycle

when total time horizon consists of i-th cycles (j = 1, 2, . . . , i) and where we
take αii = α1 and αij−1 = αijh such that

∑i
j=1 αij = α1

hi−1
h−1

, h > 1.
α′iiD1 : Rate of return of item-I in plant-I collected from the market from the time

period [(i − 1)T, (i − 1)T + t1] during [(i − 1)T + t1, iT ], where we take
α′ii=α

′
1 ,i = 1, 2, . . . , n.

βijD2i : Rate of return of item-II in plant-II collected from the market for j-th cycle
when total time horizon consists of i-th cycles (j = 1, 2, . . . , i) and where we
take βii = α2 andβij−1 = βijh1 such that

∑i
j=1 βij = α2

hi1−1

h1−1
, h1 > 1.

β′i,i−1D2i : Rate of return of item-II items in plant-II collected from the market from the
time period [(i− 2)T + t1, (i− 1)T ] during [(i− 1)T, (i− 1)T + t1], where
we take β′i,i−1=α′2, i = 2, 3, . . . , n.

εp1w : Percentage of water pollution per cycle per unit production per unit time pro-
duce from plant-I when production rate is P1, where we take εp1w =εwP

η1w−1
1 ,

εw > 0, η1w > 1.
εp1g : Percentage of GHG emission per cycle per unit production per unit time pro-

duce from plant-I when production rate is P1, where we take εp1g = εgP
η1g−1
1 ,

εg > 0, η1g > 1.
εp2w : Percentage of water pollution per cycle per unit production per unit time

produce from plant-II when production rate is P2i, where we take εp2w =
εwP

η2w−1
2i , εw > 0, η2w > 1.

εp2g : Percentage of GHG emission per cycle per unit production per unit time
produce from plant-II when production rate is P2i, where we take εp2g =

εgP
η2g−1
2i , εg > 0, η2g > 1.
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9.3. MATHEMATICAL FORMULATION OF THE PROPOSED MODEL

9.2.2 Assumptions
The following assumptions have been made to developed the model.

(i) It is an imperfect production and reproduction inventory model in finite time horizon for
two types of items (Item-I and Item-II).

(ii) Item-I is produced with raw materials from natural sources in plant-I and Item-II is pro-
duced in plant-II (re-manufacturing process) where the used and non-reworkable defec-
tive items are the raw materials. Also we assume that item-II is of less quality than the
item-I.

(iii) The manufacturer produced mixture of perfect and defective (imperfect) quality items.
Hence, the manufacturer decides to sale the perfect quality item after sorting the items
in the inventory. So in this chapter, it is assumed that during the production period, the
screening process has been occurred simultaneously which greater than demand rate.

(iv) Water pollution and GHG emission to the environment during production in plant-I and
plant-II have been considered. Also we consider GHG emission from the disposal units
(Industrial Solid waste) produced from both the plants and used items.

(v) n, k, λ and t1 are decision variable.

(vi) The production rate and demand rate of 1st cycle of plant-I and plant-II are constant.

9.3 Mathematical Formulation of the Proposed Model

Figure 9.1: Schematic representation of the proposed model
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We have considered an imperfect manufacturing system that produces perfect quality as well as
imperfect quality items in plant-I and re-manufacturing of non-reworkable and returned items
in plant-II with screening of defective units in both plants. Some imperfect quality products are
reworked immediately at a cost to restore it to the original quality. For the development of this
model, we assume that there are n cycles during the finite time horizon T. Here, non-reworkable
items and returned items which are used items collected from the market are remanufactured.
Before re-manufacturing, some collected non-reworkable items and returned items not to be
in a position for re-manufacturing are disposed off at the rate of (1− γ)%. This configuration
is presented in Figure 9.1.

9.3.1 Formulation for Plant-I

For ith cycle: (i = 1, 2, . . . , n)
In this case, the initial stock of the each cycle is zero and starts production with rate P1. As
production and reworking continues, inventory begins to pile up continuously after meeting
demand with rate D1. Production of ith cycle stops at time (i−1)T + t1 and restarts at time iT
for next cycle. Each cycle ends with zero inventory. It then repeats itself. Our problem may
be precisely defined as follows. The differential equation of the item-I in the ith cycle during

Figure 9.2: Pictorial representation of inventory situation of the integrated model
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[(i− 1)T, iT ] (i = 1, 2, . . . , n) is given by

dq1i

dt
=

{
β1P1 + δ1(1− β1)P1 −D1, (i− 1)T ≤ t ≤ (i− 1)T + t1
−D1, (i− 1)T + t1 ≤ t ≤ iT

(9.1)

with q1i[(i− 1)T ] = 0 and q1i[iT ] = 0.
The solution of the above differential equation is

q1i(t) =

{
[β1P1 + δ1(1− β1)P1 −D1][t− (i− 1)T ], (i− 1)T ≤ t ≤ (i− 1)T + t1
D1(iT − t), (i− 1)T + t1 ≤ t ≤ iT

From continuity condition at t = (i− 1)T + t1, we have

[β1 + δ1(1− β1)]P1t1 = D1T (9.2)

The total holding cost of plant-I is given by

THC1 =
n∑
i=1

hc[

∫ (i−1)T+t1

(i−1)T

q1(t)dt+

∫ iT

(i−1)T+t1

q1(t)dt]

=
nhc
2

[{β1 + δ1(1− β1)}P1t
2
1 +D1(T 2 − 2Tt1)]

Amount of water pollution in each production cycle in plant-I=εp1w P1t1.
Cost incurred for water pollution in plant-I= cwεp1w (nP1t1) = ncwεwP

η1w
1 t1.

Amount of GHG emission in each production cycle in plant-I = εp1g P1t1.
Cost of GHG emission control in plant-I=cgεp1g (nP1t1) = ncgεgP

η1g
1 t1.

The total cost of the plant-I over the time horizon is

TCp1 = n
{
cp + rcδ1(1− β1) + csr

}
P1t1 + THC1 + nAs + ncwεwP

η1w
1 t1 + ncgεgP

η1g
1 t1

The total sales revenue from plant-I during (0, nT ) is given by

TSRp1 =
n∑
i=1

s

∫ iT

(i−1)T

D1dt = nsD1T

9.3.2 Formulation for plant-II
For ith cycle:(i = 1, 2, . . . , n)
In this case, the initial stock of the ith cycle is zero and starts production with rate P2i at time
(i− 1)T + t1. As production with screening and reworking continues, inventory begins to pile
up continuously after meeting demand with rate D2i and deterioration. Production of ith cycle
stops at time iT . The accumulated inventory of ith cycle is just sufficient enough to account
for demand and deterioration over the interval [iT, iT + t1]. Production restarts at time iT + t1
for next cycle. The cycle ends with zero inventory. It then repeats itself. Our problem may be
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precisely defined as follows.
The differential equation of the item-II for ith cycle during [(i− 1)T + t1, iT + t1] is given by

dq2i

dt
=

{
β2P2i + δ2(1− β2)P2i −D2i, (i− 1)T + t1 ≤ t ≤ iT
−D2i, iT ≤ t ≤ iT + t1

(9.3)

with q2i[(i− 1)T + t1] = 0 and q2i[iT + t1] = 0.
The solution of the above differential equation is

q2i(t) =

{
[β2P2i + δ2(1− β2)P2i −D2i][t− (i− 1)T − t1], (i− 1)T + t1 ≤ t ≤ iT
D2i(iT + t1 − t), iT ≤ t ≤ iT + t1

From continuity condition at t = iT , we have

[β2 + δ2(1− β2)](T − t1)P2i = D2iT (9.4)

The total production cost of plant-II during (t1, nT + t1) is given by

TPC2 =
n∑
i=1

c′p

∫ iT

(i−1)T+t1

P2i dt = c′p(T − t1)
n∑
i=1

P2i = c′p(T − t1)P2
λn − 1

λ− 1

The total screening cost of plant-II during (t1, nT + t1) is given by

SC2 =
n∑
i=1

c′sr

∫ iT

(i−1)T+t1

P2i dt = c′sr(T − t1)
n∑
i=1

P2i = c′sr(T − t1)P2
λn − 1

λ− 1

The total reworked cost of plant-II during (t1, nT + t1) is given by

RWC2 =
n∑
i=1

r′c

∫ iT

(i−1)T+t1

δ2(1− β2)P2i dt = r′cδ2(1− β2)(T − t1)P2
λn − 1

λ− 1

The total holding cost of plant-II during (t1, nT + t1) is given by

THC2 =
n∑
i=1

h′c[

∫ iT

(i−1)T+t1

q2i(t) dt+

∫ iT+t1

iT

q2i(t) dt]

=
h′c
2

[
{β2 + δ2(1− β2)}(T − t1)2

n∑
i=1

P2i + (2t1T − T 2)
n∑
i=1

D2i

]
=

h′c
2

[
{β2 + δ2(1− β2)}(T − t1)2P2

λn − 1

λ− 1
+ (2t1T − T 2)D2

µn − 1

µ− 1

]
Amount of water pollution in ith production cycle in plant-II =εp2w P2i(T − t1).
Cost incurred for water pollution in plant-II= cwεw(T − t1)

∑n
i=1 P

η2w
2i .

Amount of GHG emission in ith production cycle in from plant-II =εp2g P2i(T − t1).
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Cost incurred for GHG emission control in plant-II= cgεg(T − t1)
∑n

i=1 P
η2g
2i .

The total cost of the plant-II during (t1, nT + t1) is

TCPp2 = TPC2 +RWC2 + TSC2 + THC2 + nA′s +
(
cwεw

n∑
i=1

P η2w
2i + cgεg

n∑
i=1

P
η2g
2i

)
The total sales revenue of plant-II during (t1, nT + t1) is given by

TSRp2 =
n∑
i=1

s′
∫ iT+t1

(i−1)T+t1

D2i dt = s′T

n∑
i=1

D2i = s′TD2
µn − 1

µ− 1

9.3.3 Formulation for Raw Material Processing Unit of Plant-II
For 1st cycle:
The differential equation in the raw material processing unit during [0, T ] is given by

dq31

dt
=

{
γ1[α11D1 + (1− δ1)(1− β1)P1], 0 ≤ t ≤ t1
γ1[(α′11 + α11)D1 + β11D21 + (1− δ2)(1− β2)P21]− P21, t1 ≤ t ≤ T

(9.5)

with q31(0) = 0 and q31(T ) = 0.
The solution of the above differential equation is

q31(t) =

{
γ1[α1D1 + (1− δ1)(1− β1)P1]t, 0 ≤ t ≤ t1[
γ1{α′1D1 + α1D1 + α2D2 + (1− δ2)(1− β2)P2} − P2

]
(t− T ), t1 ≤ t ≤ T

From continuity condition at t = t1, we have
γ1[α1D1+(1−δ1)(1−β1)P1]t1 =

[
γ1{α′1D1+α1D1+α2D2+(1−δ2)(1−β2)P2}−P2

]
(t1−T )

The holding cost in raw material processing unit for first cycle is given by

HC31 = h′′c

∫ t1

0

q31(t) dt+ h′′c

∫ T

t1

q31(t) dt

=
h′′c
2

[
γ1

{
α1D1(2Tt1 − T 2) + (1− δ1)(1− β1)P1t

2
1 − (α′1D1 + α2D2)(t1 − T )2

}
+
{

1− γ1(1− δ2)(1− β2)
}
P2(t1 − T )2

]
For 2nd cycle :
The differential equation in the raw material processing unit during [T, 2T ] is given by

dq32

dt
=

 γ1[(α21 + α22)D1 + (1− δ1)(1− β1)P1 + (β21 + β
′
21)D21], T ≤ t ≤ T + t1

γ1[(α21 + α22 + α′22)D1 + β21D21 + β22D22

+(1− δ2)(1− β2)P22]− P22, T + t1 ≤ t ≤ 2T
(9.6)

with boundary conditions q32[T ] = 0 and q32[2T ] = 0
The solution of the above differential equation is

q32(t) =


γ1[(α21 + α1)D1 + (1− δ1)(1− β1)P1 + (β21 + α′2)D2](t− T ), T ≤ t ≤ T + t1[
γ1{α21D1 + α1D1 + α′1D1 + β21D21 + α2D22

+(1− δ2)(1− β2)P22} − P22

]
(t− 2T ), T + t1 ≤ t ≤ 2T
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From continuity condition at t = T + t1, we have

γ1[α1D1 + (1− δ1)(1− β1)P1 + α21D1 + α′2D2 + α2D2]t1 =[
γ1{α′1D1 + α1D1 + α2D22 + (1− δ2)(1− β2)P22 + α21D1 + β21D21} − P22

]
(t1 − T )

The holding cost in raw material processing unit is given by

HC32 = h′′c

∫ T+t1

T

q32(t) dt+ h′′c

∫ 2T

T+t1

q32(t) dt

=
h′′c
2
γ1

[
{α1D1 + α21D1 + α2D2}(2Tt1 − T 2) + {α′2D2 + (1− δ1)(1− β1)P1}t21

]
+
h′′c
2

[
{1− γ1(1− δ2)(1− β2)}P22 − γ1(α′1D1 + β21D2)

]
(t1 − T )2

For ith cycle (i = 3, 4, . . . , k):
The differential equation in the raw material processing unit during [(i− 1)T, iT ] is given by

dq3i

dt
=


γ1

[∑i
j=1 αijD1 + (1− δ1)(1− β1)P1

+
∑i−2

j=1 βijD2j + {βi(i−1) + β′i(i−1)}D2(i−1)

]
, (i− 1)T ≤ t ≤ (i− 1)T + t1

γ1

[
{
∑i

j=1 αij + α
′
ii}D1 +

∑i−1
j=1 βijD2j

+βiiD2i + (1− δ2)(1− β2)P2i]− P2i, (i− 1)T + t1 ≤ t ≤ iT

(9.7)

with q3i[(i− 1)T ] = 0 and q3i[iT ] = 0
The solution of the above differential equation is

q3i(t) =



γ1

[∑i
j=1 αijD1 + (1− δ1)(1− β1)P1 +

∑i−2
j=1 βijD2j

+βi(i−1)D2(i−1) + β′i(i−1)D2(i−1)

]
[t− (i− 1)T ], (i− 1)T1 ≤ t ≤ (i− 1)T + t1[

γ1

{∑i
j=1 αijD1 + α

′
iiD1 +

∑i−1
j=1 βijD2j + βiiD2i

+(1− δ2)(1− β2)P2i

}
− P2i

]
(t− iT ), (i− 1)T + t1 ≤ t ≤ iT

From continuity condition at t = (i− 1)T + t1, we have
γ1

[
α1D1 + α2D2i + α′2D2(i−1) +

∑i−1
j=1 αijD1 +

∑i−2
j=1 βijD2j + (1 − δ1)(1 − β1)P1

]
t1 =[

γ1

{
α1D1+α2D2i+α

′
iiD1+

∑i−1
j=1 αijD1+

∑i−1
j=1 βijD2j+(1−δ2)(1−β2)P2i

}
−P2i

]
(t1−T )

Holding cost of raw material processing unit for ith cycle (i = 3, 4, . . . , k) is given by

HC3i = h′′c

∫ (i−1)T+t1

(i−1)T

q3i(t) dt+ h′′c

∫ iT

(i−1)T+t1

q3i(t) dt

=
h′′c
2
γ1

[{
α1D1 + α2D2i +

i−1∑
j=3

αijD1 +
i−2∑
j=3

βijD2j

}
(2Tt1 − T 2) +

{
α′2D2(i−1)

+(1− δ1)(1− β1)P1

}
t21 − γ1

{
α′1D1 + βi,i−1D2(i−1)

}
(t1 − T )2

]
+
h′′c
2

{
1− γ1(1− δ2)(1− β2)

}
P2i(t1 − T )2
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Holding cost of raw material processing unit for (k − 2) cycles is given by

HCN =
k∑
i=3

HC3i

=
h′′c
2
γ1

[{
(k − 2)α1D1 + α2D2

µk−2 − 1

µ− 1
+

k∑
i=3

i−1∑
j=3

αijD1 +
k∑
i=3

i−2∑
j=3

βijD2j

}
(2Tt1 − T 2)

+
{ k∑

i=3

α′2D2(i−1) + (k − 2)(1− δ1)(1− β1)P1

}
t21

]
+
h′′c
2

[
− γ1

{
(k − 2)α′1D1

+
k∑
i=3

βi,i−1D2(i−1)

}
+
{

1− γ1(1− δ2)(1− β2)
}
P2
λk−2 − 1

λ− 1

]
(t1 − T )2

For ith cycle (i = k + 1, k + 2, . . . , n):
The differential equation in the raw material processing unit during [(i− 1)T, iT ] is given by

dq3i

dt
=


γ1

[∑i
j=i−k+1 αijD1 + (1− δ1)(1− β1)P1

+
∑i−2

j=i−k+1 βijD2j + {βi(i−1) + β
′
i,i−1}D2(i−1)

]
, (i− 1)T ≤ t ≤ (i− 1)T + t1

γ1

[
{
∑i

j=i−k+1 αij + α′ii}D1 +
∑i−1

j=i−k+1 βijD2j

+βiiD2i + (1− δ2)(1− β2)P2i]− P2i, (i− 1)T + t1 ≤ t ≤ iT

(9.8)

with q3i[(i− 1)T ] = 0 and q3i[iT ] = 0
The solution of the above differential equation is

q3i(t) =


γ1

[∑i
j=i−k+1 αijD1 + (1− δ1)(1− β1)P1 +

∑i−2
j=i−k+1 βijD2j

βi(i−1)D2(i−1) + β
′
i,i−1D2(i−1)

]
[t− (i− 1)T ], (i− 1)T ≤ t ≤ (i− 1)T + t1[

γ1

{∑i
j=i−k+1 αijD1 + α′iiD1 +

∑i−1
j=i−k+1 βijD2j + βiiD2i

+(1− δ2)(1− β2)P2i

}
− P2i

]
(t− iT ), (i− 1)T + t1 ≤ t ≤ iT

From continuity condition at t = (i− 1)T + t1,
γ1

[
α1D1 +α2D2i+α

′
2D2(i−1) +

∑i−1
j=i−k+1 αijD1 +

∑i−2
j=i−k+1 βijD2j+(1−δ1)(1−β1)P1

]
t1 =[

γ1

{
(α1+α′1+

∑i−1
j=i−k+1 αij)D1+α2D2i+

∑i−1
j=i−k+1 βijD2j+(1−δ2)(1−β2)P2i

}
−P2i

]
(t1−

T )
Holding cost of raw material processing unit for ith cycle (i = k+ 1, k+ 2, . . . , n) is given by

HC ′3i = h′′c

∫ (i−1)T+t1

(i−1)T

q3i(t)dt+ h′′c

∫ iT

(i−1)T+t1

q3i(t)dt

=
h′′c
2
γ1

[{
α1D1 + α2D2i +

i−1∑
j=i−k+1

αijD1 +
i−2∑

j=i−k+1

βijD2j

}
(2Tt1 − T 2)

+
{
β
′

i,i−1D2(i−1) + (1− δ1)(1− β1)P1

}
t21 − γ1

{
α′1D1 + βi,i−1D2(i−1)

}
(t1 − T )2

]
+
h′′c
2

{
1− γ1(1− δ2)(1− β2)

}
P2i(t1 − T )2
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Holding cost in raw material processing unit for (n− k) cycles is given by

HCN ′ =
n∑

i=k+1

HC ′3i

=
h′′c
2
γ1

[{
(n− k)α1D1 + α2D2

µn−k − 1

µ− 1
+

n∑
i=k+1

i−1∑
j=i−k+1

αijD1

+
n∑

i=k+1

i−2∑
j=i−k+1

βijD2j

}
(2Tt1 − T 2

)
+
{

(n− k)(1− δ1)(1− β1)P1

+
n∑

i=k+1

β
′

i,i−1D2(i−1)

}
t21 + (n− k)α′1D1(t1 − T )2

]
+
h′′c
2

[
− γ1

{
(n− k)α′1D1

+
n∑

i=k+1

βi,i−1D2(i−1)

}
+
{

1− γ1(1− δ2)(1− β2)
}
P2
λn−k − 1

λ− 1

]
(t1 − T )2

Therefore, total holding cost in raw material processing unit is given by

THC3 = HC31 +HC31 +HCN +HCN ′ (9.9)

9.3.4 Formulation of Disposal Units
For 1st cycle:
The differential equation in the disposal units during [0, T ] is given by

dq41

dt
=

{
(1− γ1)[α11D1 + (1− δ1)(1− β1)P1], 0 ≤ t ≤ t1
(1− γ1)[α′11D1 + α11D1 + β11D21 + (1− δ2)(1− β2)P21], t1 ≤ t ≤ T

Q41 = (1− γ1)
{
α1D1 + (1− δ1)(1− β1)P1

}
t1

+(1− γ1)
{
α
′

11D1 + α1D1 + α2D2 + (1− δ2)(1− β2)P2

}
(T − t1)

= (1− γ1)
[
α1D1T + (1− δ1)(1− β1)P1t1

+
{
α′1D1 + α2D2 + (1− δ2)(1− β2)P2

}
(T − t1)

]
For 2nd cycle :
The differential equation in the the disposal units during [T, 2T ] is given by

dq42

dt
=


(1− γ1)[α21D1 + α22D1 + (1− δ1)(1− β1)P1

+β21D21 + β
′
21D21], T ≤ t ≤ T + t1

(1− γ1)[α21D1 + α22D1 + α′22D1 + β21D21

+β22D22 + (1− δ2)(1− β2)P22], T + t1 ≤ t ≤ 2T
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Q42 = (1− γ1)
{
α21D1 + α22D1 + (1− δ1)(1− β1)P1 + β21D21 + β

′

21D21

}
t1

+(1− γ1)
{

(α21 + α22 + α′22)D1 + β21D21 + β22D22 + (1− δ2)(1− β2)P22

}
(T − t1)

= (1− γ1)
[{
α1D1 + α2D2 + α21D1

}
T +

{
α′2D2 + (1− δ1)(1− β1)P1

}
t1

+
{
α′1D1 + (1− δ2)(1− β2)P22

}
(T − t1)

]
For ith cycle (i = 3, 4, . . . , k):
The differential equation in the the disposal units during [(i− 1)T, iT ] is given by

dq4i

dt
=



(1− γ1)
[∑i

j=1 αijD1 + (1− δ1)(1− β1)P1

+
∑i−2

j=1 βijD2j + βi(i−1)D2(i−1) + β′i(i−1)D2(i−1)

]
, (i− 1)T ≤ t ≤ (i− 1)T + t1

(1− γ1)
[∑i

j=1 αijD1 + α
′
iiD1 +

∑i−1
j=1 βijD2j

+βiiD2i + (1− δ2)(1− β2)P2i

]
, (i− 1)T + t1 ≤ t ≤ iT

Q4i = (1− γ1)
[
α1D1 + α2D2i + α′2D2(i−1) +

i−1∑
j=1

αijD1

+
i−2∑
j=1

βijD2j + (1− δ1)(1− β1)P1

]
t1 + (1− γ1)

[
α1D1 + α2D2i + α′1D1

+
i−1∑
j=1

αijD1 +
i−1∑
j=1

βijD2j + (1− δ2)(1− β2)P2i

]
(T − t1)

= (1− γ1)
[{
α1D1 + α2D2i +

i−1∑
j=1

αijD1 +
i−2∑
j=1

βijD2j

}
T +

{
(1− δ1)(1− β1)P1

+α′2D2(i−1)

}
t1 +

{
α′1D1 + βi,i−1D2(i−1) + (1− δ2)(1− β2)P2i

}
(T − t1)

]
For ith cycle (i = k + 1, k + 2, . . . , n):
The differential equation in the the disposal units during [(i− 1)T, iT ] is given by

dq4i

dt
=



(1− γ1)
[∑i

j=i−k+1 αijD1 + (1− δ1)(1− β1)P1

+
∑i−2

j=i−k+1 βijD2jβi(i−1)D2(i−1) + β
′
i,i−1D2(i−1)

]
, (i− 1)T ≤ t ≤ (i− 1)T + t1

(1− γ1)
[∑i

j=i−k+1 αijD1 + α′iiD1

+
∑i−1

j=i−k+1 βijD2j + βiiD2i + (1− δ2)(1− β2)P2i

]
, (i− 1)T + t1 ≤ t ≤ iT
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Q4i = (1− γ1)
[
α1D1 + α2D2i + α′2D2(i−1) +

i−1∑
j=i−k+1

αijD1

+
i−2∑

j=i−k+1

βijD2j + (1− δ1)(1− β1)P1

]
t1 + (1− γ1)

[
α1D1 + α2D2i + α′1D1

+
i−1∑

j=i−k+1

αijD1 +
i−1∑

j=i−k+1

βijD2j + (1− δ2)(1− β2)P2

]
(T − t1)

= (1− γ1)
[{
α1D1 + α2D2i +

i−1∑
j=i−k+1

αijD1 +
i−2∑

j=i−k+1

βijD2j

}
T +

{
α′2D2(i−1)

+(1− δ1)(1− β1)P1

}
t1 +

{
α′1D1 + βi,i−1D2(i−1) + (1− δ2)(1− β2)P2

}
(T − t1)

]
Q4 = Total disposal amount during [0, nT]

= Q41 +Q42 +
k∑
i=3

Q4i +
n∑

i=k+1

Q4i

= (1− γ1)
[
nα1D1T + n(1− δ1)(1− β1)P1t1 +

{
α2D2

µn−1 − 1

µ− 1

+
k∑
i=3

i−1∑
j=1

αijD1 +
n∑

i=k+1

i−1∑
j=i−k+1

αijD1 +
k∑
i=3

i−1∑
j=1

βijD2j +
n∑

i=k+1

i−2∑
j=i−k+1

βijD2j

}
T

+t1

n∑
i=2

α′2D2(i−1) +
{
nα′1D1 +

n∑
i=3

α′2D2(i−1) + (1− δ2)(1− β2)P2
λn − 1

λ− 1

}
(T − t1)

]
Transportation cost to transport the disposal amount Q4 for landfill= ctQ4.
Total GHG emission from landfill= ERgQ4.
Total cost to control GHG emission from landfill= cgERgQ4.

9.4 Objectives of the Proposed Model
The total profit of the system is given by

TP = TSRp1 + TSRp2 − TCp1 − TCp2 − THC3 − cgERgQ4 − ctQ4

Total GHG emission from the system is given by

Zg = nεgP
η1g
1 t1 + εg(T − t1)

n∑
i=1

P
η2g
2i + ERgQ4

Lemma 9.1. For 0 < α1 < 1, h > 1 and positive integer k, the following relation holds:

α1(hk − 1) ≤ (h − 1), i = 1, 2, . . . , n − k + 1. and α1(hn−i+1 − 1) ≤ (h − 1), i =

n− k + 2, . . . , n− 1.
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Now
k+i−1∑
r=i

αri = α1
hk − 1

and
n∑
r=i

αri = α1
hn−i+1 − 1

Since we consider the return of the items from a cycle to at most k consecutive cycles, so we

must have∑k+i−1
r=i αriD < D, i = 1, 2, . . . , n− k + 1 and

∑n
r=i αriD < D, i = n− k + 2, . . . , n− 1

i.e.,
∑k+i−1

r=i αri < 1, i = 1, 2, . . . , n− k + 1 and
∑n

r=1 αri < 1, i = n− k + 2, . . . , n− 1

i.e., α1
hk−1
h−1

< 1, i = 1, 2, . . . , n− k + 1 and α1
hn−i+1−1

h−1
< 1, i = n− k + 2, . . . , n− 1

i.e., α1(hk − 1) < (h − 1), i = 1, 2, . . . , n − k + 1 and α1(hn−i+1 − 1) < (h − 1), i =

n− k + 2, . . . , n− 1

Hence the proof.

Lemma 9.2. For 0 < α2 < 1, h′ > 1 and positive integer k, the following relation holds:

α2(h′k − 1) ≤ (h′ − 1), i = 1, 2, . . . , n − k + 1 and α2(h′n−i+1 − 1) ≤ (h′ − 1), i =

n− k + 2, . . . , n− 1.

Proof. Similar to Lemma 9.1.

Lemma 9.3. For positive integer k, 0 < α1, α2 < 1, and h, h′ > 1 then optimal value of k

is given by k = min{[X1], [X2]}, where X1 =
log(1+h−1

α1
)

log h
, X2 =

log(1+h′−1
α2

)

log h′
and [ ] denote the

greatest integer function.

Proof. From Lemma 9.1, we get

α1(hk − 1) < (h− 1) i.e., α1 <
(h− 1)

(hk − 1)
, i = 1, 2, . . . , n− k + 1. (9.10)

and α1(hn−i+1 − 1) < (h− 1) i.e., α1 <
(h− 1)

(hn−i+1 − 1)
, i = n− k + 2, . . . , n− 1 (9.11)

Substituting i = (n− k + 2), (n− k + 3), . . . , (n− 2), (n− 1) in (9.11), we get respectively

α1 <
(h− 1)

(hk−2 − 1)
, α1 <

(h− 1)

(hk−3 − 1)
, . . . , α1 <

(h− 1)

(h3 − 1)
, α1 <

(h− 1)

(h2 − 1)
(9.12)
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Proof. αriD = Return rate of items from rth cycle to the ith cycle.

h− 1
, h > 1, i = n− k + 2, . . . , n− 1 (see Appendix F).

h− 1
, h > 1, i = 1, 2, . . . , n − k + 1 (see AppendixF).
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Since (h−1)
(hk−1)

< (h−1)
(hk−2−1)

< (h−1)
(hk−3−1)

< · · · < (h−1)
(h2−1)

, so from (9.10), we gate

α1 <
(h−1)
(hk−1)

i.e., k < X1, where X1 = 1
log h

log(1 + h−1
α1

)

Again from Lemma 9.2, we get

α2(h′k − 1) < (h′ − 1) i.e., α2 <
(h′ − 1)

(h′k − 1)
, i = 1, 2, . . . , n− k + 1 (9.13)

and α2(h′n−i+1 − 1) < (h′ − 1) i.e., α2 <
(h′ − 1)

(h′n−i+1 − 1)
, i = n− k + 2, . . . , n− 1 (9.14)

Substituting i = (n− k + 2), (n− k + 3), . . . , (n− 2), (n− 1) in (9.14), we get respectively

α2 <
(h′ − 1)

(h′k−2 − 1)
, α2 <

(h′ − 1)

(h′k−3 − 1)
, . . . , , α2 <

(h′ − 1)

(h′3 − 1)
, α2 <

(h′ − 1)

(h′2 − 1)
(9.15)

Since (h′−1)
(h′k−1)

< (h′−1)
(h′k−2−1)

< (h′−1)
(h′k−3−1)

< · · · < (h′−1)
(h′2−1)

, so from (9.14), we get

α2 <
(h′−1)
(h′k−1)

i.e., k < X2, where X2 = 1
log h′

log(1 + h′−1
α2

)

Since k < X1, k < X2 and k is positive integer, so the optimal value of k is min{[X2], [X2]}.

Hence the proof.

Lemma 9.4. If k1 = β1 +δ1(1−β1) and k2 = β2 +δ2(1−β2) then the positive real parameters

α1, α2, β1, β2, δ1, δ2, D1, D2, P1, P2 satisfying the following relations D1

P1
< k1, D2

P2
< k2 and

D1

k1P1
+ D2

k2P2
= 1

Proof. From equation (9.1), we get

β1P1 + δ1(1− β1)P1 −D1 > 0 i.e., {β1 + δ1(1− β1)}P1 > D1 i.e., D1

P1
< k1

For i = 1, we have from equation (9.3),

β2P2 + δ2(1− β2)P2 −D2 > 0 i.e., {β2 + δ2(1− β2)}P2 > D2 i.e., D2

P2
< k2

From equation (9.2), we get

{β1 + δ1(1− β1)}P1t1 = D1T i.e., k1P1t1 = D1T i.e., t1
T

= D1

k1P1

For i = 1, we have from equation (9.4), we get

{β2 + δ2(1 − β2)}P2(T − t1) = D2T i.e., k2P2(T − t1) = D2T i.e., 1 − t1
T

= D2

k2P2
i.e.,

1− D1

k1P1
= D2

k2P2
i.e., D1

k1P1
+ D2

k2P2
= 1. Hence the proof.

Lemma 9.5. If the positive real parameters λ and µ satisfying the following relations P2i =

λP2(i−1), D2i = µD2(i−1), i = 1, 2, . . . , k then λ = µ holds.
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Proof. From the continuity condition (9.4), we get

{β2 + δ2(1− β2)}P2i(T − t1) = D2iT , i = 1, 2, . . . , n

For i = 1, k2(1− t1
T

)P2 = D2, where k2 = {β2 + δ2(1− β2)}

Also k2(T − t1)λi−1P2 = µi−1D2T , i = 2, 3, . . . , k

⇒ (λ
µ
)i−1D2 = D2 ⇒ (λ

µ
)i−1 = 1, i = 1, 2, . . . , k

⇒ λ = µ. Hence the proof.

Lemma 9.6. P2 and λ satisfying the following relations:

(i) {1 − γ1(1 − δ2)(1 − β2)}P2 >
γ1
λk−1 [α1D1

∑k
i=1 h

i−1 + α′1D1α2D2

∑k
i=1 h

i−1
1 µk−1] when

λ ≥ 1 + α1D1h+α2D2h1
(α1+α′1)D1

and (ii) {1 − γ1(1 − δ2)(1 − β2)}P2 < γ1[α1D1 + α′1D1 + α2D2] when

λ ≤ 1 +
α1D1hk−1+α2D2hk1

{(1+h+h2+···+hk−1)α1+α′1}D1
.

Proof. From equation (9.5), we get

γ1{α′11D1 + α11D1 + β11D21 + (1− δ2)(1− β2)P21} − P21 < 0

i.e., {1− γ1(1− δ2)(1− β2)}P2 > γ1{α′1D1 + α1D1 + α2D2}

i.e., MP2 > g1, where M = {1− γ1(1− δ2)(1− β2)} and g1 = γ1{α′1D1 + α1D1 + α2D2}.

From equation (9.6), we get

γ1{α21D1 + α22D1 + α′22D1 + β21D21 + β22D22 + (1− δ2)(1− β2)P22} − P22 < 0

i.e., {1− γ1(1− δ2)(1− β2)}P2 >
γ1
λ
{α1D1

∑2
i=1 h

i−1 + α′1D1 + α2D2

∑2
i=1 h

i−1
1 µ2−i}

i.e., MP2 > g2, where g2 = γ1
λ
{α1D1

∑2
i=1 h

i−1 + α′1D1 + α2D2

∑2
i=1 h

i−1
1 µ2−i}.

Put i = 3 in equation (9.7), we get

γ1{
∑3

j=1 α3jD1 + α′33D1 +
∑2

j=1 β3jD3j + β33D2 + (1− δ2)(1− β2)P23} − P23 < 0

i.e., {1− γ1(1− δ2)(1− β2)}P2 >
γ1
λ2
{α1D1

∑3
i=1 h

i−1 + α′1D1 + α2D2

∑3
i=1 h

i−1
1 µ3−i}

i.e., MP2 > g2, where g3 = γ1
λ2
{α1D1

∑3
i=1 h

i−1 + α′1D1 + α2D2

∑3
i=1 h

i−1
1 µ3−i}.

Proceeding in the way, if we put i = k in equation (9.7) we get

MP2 > gk where gk = γ1
λk−1{α1D1

∑k
i=1 h

i−1 + α′1D1 + α2D2

∑k
i=1 h

i−1
1 µk−i}.

Put i = k + 1 in equation (9.7), we get

γ1{
∑k+1

j=2 α(k+1)jD1 + α′(k+1)(k+1)D1 +
∑k

j=2 β(k+1)jD2j + β(k+1)(k+1)D2(k+1) + (1− δ2)(1−

β2)P2(k+1)} − P2(k+1) < 0
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i.e., MP2 > g(k+1), where g(k+1) = γ1
λ1λ(k+1){α1D1

∑k
i=1 h

i−1 + α′1D1} +
γ1α2D2

λ(k+1) ( µ
λ1

){
∑k

i=1 h
i−1
1 µk−i − µk−2(µ− µ1)}.

Put i = k + 2 in equation (9.7), we get

γ1{
∑k+2

j=3 α(k+2)jD1 + α′(k+2)(k+2)D1 +
∑k+1

j=3 β(k+2)jD2j + β(k+2)(k+2)D2(k+2) + (1− δ2)(1−

β2)P2(k+2)} − P2(k+2) < 0

i.e., MP2 > g(k + 2), where g(k + 2) = γ1
λ21λ

(k−1)
{α1D1

∑k
i=1 h

i−1 + α′1D1} +

γ1α2D2

λ(k−1)
( µ
λ1

)2[
∑k

i=1 h
i−1
1 µk−i − µk−3{h1(µ− µ1) + (µ2 − µ2

1)}].

Proceeding in the way, if we put i = n in equation (9.7) we get

MP2 > gn where gn = γ1
λn−k1 λk−1

{α1D1

∑k
i=1 h

i−1 + α′1D1} +

γ1α2D2

λ(k−1)
( µ
λ1

)n−k{
∑k

i=1 h
i−1
1 µk−i − µ2k−n−1

∑n−k
i=1 h

n−k−i
1 (µi − µi1)}.

Case-I: When λ ≥ 1 + α1D1h+α2D2h1
(α1+α′1)D1

then we have

g1 ≤ g2 ≤ g3 ≤ · · · ≤ gk−1 ≤ gk ≥ gk+1 ≥ gk+2 ≥ · · · ≥ gn

Therefore gk = max{g1, g2, . . . , gn}

Hence gk is maximum when λ ≥ 1 + α1D1h+α2D2h1
(α1+α′1)D1

Here MP2 > g1, MP2 > g2, . . . , MP2 > gn gives MP2 > max{g1, g2, . . . , gn}

⇒ MP2 > gk when λ ≥ 1 + α1D1h+α2D2h1
(α1+α′1)D1

⇒ {1 − γ1(1 − δ2)(1 − β2)}P2 >
γ1
λk−1 [α1D1

∑k
i=1 h

i−1 + α′1D1 + α2D2

∑k
i=1 h

i−1
1 µk−1]

when λ ≥ 1 + α1D1h+α2D2h1
(α1+α′1)D1

. Hence the proof.

Case-II: when λ ≤ 1 +
α1D1hk−1+α2D2hk1

{(1+h+h2+···+hk−1)α1+α′1}D1
then we have

gn ≤ gn−1 ≤ · · · ≤ gk+1 ≤ gk ≥ gk−1 ≥ gk−2 ≥ · · · ≥ g1

Therefore gk = min{g1, g2, . . . , gn}

Hence gk is minimum when λ ≤ 1 +
α1D1hk−1+α2D2hk1

{(1+h+h2+···+hk−1)α1+α′1}D1

Here MP2 > g1, MP2 > g2, . . . , MP2 > gn gives MP2 > min{g1, g2, . . . , gn}

⇒ MP2 > g1 when λ ≤ 1 +
α1D1hk−1+α2D2hk1

{(1+h+h2+···+hk−1)α1+α′1}D1

⇒ {1 − γ1(1 − δ2)(1 − β2)}P2 < γ1[α1D1 + α′1D1 + α2D2] when

λ ≤ 1 +
α1D1hk−1+α2D2hk1

{(1+h+h2+···+hk−1)α1+α′1}D1
. Hence the proof.
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9.4.1 Model in Crisp Environment
Maximize TP
Minimize Zg
subject to the conditions,

[β1P1 + δ1(1− β1)P1]t1 = D1T (9.16)[
β2 + δ2(1− β2)

]
(T − t1)P2i = D2iT, i = 1, 2, . . . , n. (9.17)

α1(hk − 1) < (h− 1), i = 1, 2, . . . , n− k + 1 (9.18)
α1(hn−i+1 − 1) < (h− 1), i = n− k + 2, . . . , n− 1. (9.19)
α2(h′k − 1) < (h′ − 1), i = 1, 2, . . . , n− k + 1 (9.20)
α2(h′n−i+1 − 1) < (h′ − 1), i = n− k + 2, . . . , n− 1 (9.21)
n, k, λ, t1 > 0

9.4.2 Model in Fuzzy Environment
Here we take the parameters εg, εw and ERg as interval valued fuzzy number. Then the above
problem in fuzzy environment is
Maximize T̃P = TSRp1 + TSRp2 − T̃Cp1 − T̃Cp2 − THC3 − cgẼRgQ4 − ctQ4

Minimize Z̃g = nε̃gP
η1g
1 t1 + ε̃g(T − t1)

∑n
i=1 P

η2g
2i + ẼRgQ4

subject to, the conditions stated above in (9.16) to (9.21), where
T̃Cp1 = n

{
cp + rcδ1(1− β1) + csr

}
P1t1 + THC1 + nAs + ncw ε̃wP

η1w
1 t1 + ncg ε̃gP

η1g
1 t1

T̃Cp2 = TPC2 +RWC2 + TSC2 + THC2 + nA′s + cw ε̃w(T − t1)
∑n

i=1 P
η2g
2i

+cg ε̃g(T − t1)
∑n

i=1 P
η2g
2i .

Taking ε̃w = [ε̃Lw, ε̃
R
w], ε̃g = [ε̃Lg , ε̃

R
g ], ẼRg = [ẼR

L

g , ẼR
R

g ], we have

T̃Cp1 = [T̃C
L

p1, T̃C
R

p1], T̃Cp2 = [T̃C
L

p2, T̃C
R

p2], Z̃g = [Z̃L
g , Z̃

R
g ]. (see Appendix F)

Then the above multi-objective fuzzy interval valued problem can be stated as
Maximize T̃P = [T̃P

L
, T̃P

R
]

Minimize Z̃g = [Z̃L
g , Z̃

R
g ]

subject to the conditions stated in (9.16) to (9.21), where
T̃P

L
= TSRp1 + TSRp2 − T̃C

R

p1 − T̃C
R

p2 − THC3 − cgẼR
R

g Q4 − ctQ4,

T̃P
R

= TSRp1 + TSRp2 − T̃C
L

p1 − T̃C
L

p2 − THC3 − cgẼR
L

gQ4 − ctQ4.

The interval valued multi-objective problem is transformed into following:
Maximize T̃P = ω1T̃P

L
+ (1− ω1)T̃P

R
, 0 < ω1 < 1

Minimize Z̃g = ω2z̃
L
g + (1− ω2)z̃Rg , 0 < ω2 < 1

subject to, the conditions stated in (9.16) to (9.21) (see Appendix F).
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Equivalent Crisp Model
Using Lemma (2.3), above fuzzy multi-objective problem is transformed into crisp
multi-objective problem:
Maximize E[T̃P ] = ω1E[T̃P

L
] + (1− ω1)E[T̃P

R
], 0 < ω1 < 1

Minimize E[Z̃g] = ω2E[Z̃L
g ] + (1− ω2)E[Z̃R

g ], 0 < ω2 < 1
subject to, the conditions stated in (9.16) to (9.21). (see Appendix F).

9.5 Numerical Illustration
The proposed model of the production and reproduction inventory system has been developed
with the help of following numerical example in this section. The values of the parameters
of the model, considered in these numerical examples are not elected from any real life case
study, but these values have been seems to be realistic. The example have been solved to find
optimal values of n, k, λ, t1 and T along with the optimal expected total profit of the system.
To illustrate the solution, we consider an inventory system with the following input data:
Crisp input data: β1 = 0.89, β2 = 0.85, δ1 = 0.74, δ2 = 0.75, γ1 = 0.81, α1 = 0.09,
α2 = 0.11, α′1 = 0.08, α′2 = 0.07, h = 1.05, h = 1.07, η1g = 1.02, η2g = 1.09, η1w = 1.06,
η2w = 1.08, cg = 1.05, cw = 1.02, cp = 19.0, c′p = 15.0, ct = 0.62, hc = 1.50, h′c = 1.40,
h′′c = 1.30, As = 120.0, A′s = 130.0, csr = 0.40, c′sr = 0.50, rc = 1.10, r′c = 1.20, s = 38.0,
s′ = 36.0, P1 = 56, P2 = 51, D1 = 29, D2 = 26.
Fuzzy input data: ε̃Lg = (0.75, 0.76, 0.78), ε̃Rg = (0.79, 0.81, 0.82), ε̃Lw = (0.68, 0.69, 0.70),

ε̃Rw = (0.70, 0.71, 0.73), ẼR
L

g = (0.02, 0.03, 0.05), ẼR
R

g = (0.06, 0.08, 0.09).
Applying the solution procedure, the optimal solution given in the following Table 9.1.

Table 9.1: Optimal result of the illustrated model when ρ = 0.4, w1 = 0.3, w2 = 0.6

Number of Number of conse- λ Production Time length of Expected total Expected GHG

cycle (n) cutive cycles (k) time t1 each cycle (T ) profit (E[T̃P ]) emission (E[Z̃g])

8 3 1.3135 3.5250 6.6122 29658.1329 1213.7692

• Table 9.1 shows that the optimal production time of each cycle is 3.5250 unit, time length of
each cycle is 6.6122 unit, expected total profit is 29658.1329 unit and expected GHG emission
1213.7692 unit.

9.5.1 Sensitivity Analysis
Using the same data as that in above Example, we next study the sensitivity of the optimal
production time of each cycle, time length of each cycle, expected total profit and expected
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GHG emission to change the values of the different parameters associated with the model. The
computational results are reported in the following Table 9.2, 9.3 and 9.4.

Table 9.2: Sensitivity analysis of E[T̃P ] and E[Z̃g] w.r.t. β1, β2

Parameters Production time Time length of each cycle Expected total profit Expected GHG emission

(β1, β2) (t1) (T ) (E[T̃P ]) (E[Z̃g])

β1 = 0.86, β2 = 0.83 3.5128 6.5931 28514.7215 1426.3527

β1 = 0.89, β2 = 0.85 3.5250 6.6122 29658.1329 1213.7692

β1 = 0.92, β2 = 0.87 3.5364 6.6414 30142.1276 1134.5192

• Table 9.2 shows that when the fraction of the better quality item β1 and β2 in plant-I and
plant-II are respectively increases, expected total profit (E[T̃P ]) increase and expected GHG
emission (E[Z̃g]) decrease.

Table 9.3: Sensitivity analysis of E[T̃P ] and E[Z̃g] w.r.t. δ1, δ2, rc, r′

Parameters Reworked cost Production Time length of Expected total Expected GHG

(δ1, δ2) (rc, r′c) time (t1) each cycle (T ) profit (E[T̃P ]) emission (E[Z̃g])

δ1 = 0.70, δ2 = 0.72 rc = 1.05, r′c = 1.10 3.5250 6.5813 28564.2143 1328.2314

δ1 = 0.74, δ2 = 0.75 rc = 1.10, r′c = 1.20 3.5250 6.6122 29658.1329 1213.7692

δ1 = 0.77, δ2 = 0.78 rc = 1.22, r′c = 1.34 3.5250 6.7529 31041.3597 1159.4237

δ1 = 0.82, δ2 = 0.85 rc = 1.45, r′c = 1.50 3.5250 6.7684 30219.0425 1046.2139

• Table 9.3 shows that when the reworked rate and average reworked cost (δ1, rc) and (δ2, r′c)
in plant-I and plant-II are respectively simultaneously increase, initially expected total profit
(E[T̃P ]) increases, after that expected total profit (E[T̃P ]) decrease due to some portion of
defective item to be reworked with a minimum rework cost and rest portion of defective item to
be reworked with a large amount rework cost. Also expected GHG emission (E[Z̃g]) decrease.
So any manufacturer company can find the optimal reworked rate from this study.

Table 9.4: Sensitivity analysis of E[T̃P ] and E[Z̃g] w.r.t. γ1, c′p
Parameters Production time Time length of each cycle Expected total profit Expected GHG emission

(γ1, c′p) (t1) (T ) (E[T̃P ]) (E[Z̃g])

γ1 = 0.76, c′p = 12 3.5214 6.5834 28746.5823 1347.8479

γ1 = 0.81, c′p = 15 3.5250 6.6122 29658.1329 1213.7692

γ1 = 0.84, c′p = 19 3.5276 6.6371 31254.8579 1140.2584

γ1 = 0.89, c′p = 24 3.5295 6.6497 28521.2314 1047.1725
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• Table 9.4 shows that when percentage of amount of disposal unit (1− γ1) decreases and the
corresponding raw material producing cost per unit (cp) simultaneously increases, initially the
expected total profit (E[T̃P ]) increases, after that the expected total profit (E[T̃P ]) decreases.
Because at first increasing raw material producing cost per unit more increasing the amount
of raw material unit. As a result, the expected total profit (E[T̃P ]) increases. But latter,
though raw material producing cost per unit increases, the amount of raw material unit does not
increase as much as previous due to more defectiveness. Also expected GHG emission (E[Z̃g])
decrease.So from this study, any manufacturer company can find the optimal percentage of
amount of disposal unit and the corresponding raw material producing cost per unit.

9.6 Conclusion
This chapter focused on the combined effect of imperfect production and reproduction over
finite time horizon. Both the manufactured and re-manufactured used items are returned from
the market and some portion of them are used as raw-materials for the re-manufacturing
process to save the natural resources for future and protect environment from pollution by the
used items after the end of their life cycle. Some portion of non-reworkable defective units
from both the plants is also used as raw-materials of plant-II for the same purpose. Generally,
the items produced in re-manufacturing process are less quality than the items produced in
normal manufacturing process. So with respect to quality measure, two types of items are
produced in manufacturing (plant-I) and re-manufacturing process (plant-II). In the proposed
model, we maximized the expected total profit from both the plants and simultaneously
minimized the GHG emission from the industrial waste during production and from the used
and non-reworkable defective units by industrial waste management. Our main aim of this
model is to minimize the disposal cost by minimizing the disposal amount (ISW) from both
the plants so that GHG emission is less to the environment. Here, we consider the parameters
relating to the environmental pollution due to industrial waste as interval valued fuzzy
number since they are not fixed by nature. Finally, a numerical example has been illustrated
to study the feasibility of the model. Also sensitivity analysis has been carried out to draw
some managerial insights of the model.
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Chapter 10

Multi-item EPQ model with learning

effect on imperfect production over

fuzzy-random planning horizon1

10.1 Introduction

It is more reasonable to describe some parameters as fuzzy variables due to unreliability and
scarcity of historical data. Analogous to chance-constrained programming with stochastic
parameters, in a fuzzy environment it is assumed that some constraints may be satisfied with
a least optimistic and/or pessimistic level (i.e., here the ‘chance’ is represented by either by
‘possibility’ or ‘necessity’ see Charnes and Cooper [27, 28] ). Zadeh [240], Dubois and
Prade [61,62] first introduced the necessity and possibility constraints which are very relevant
to real-life decision-making problems and presented the process of defuzzification for these
constraints. Recently, Das et al. [51] developed an integrated model with a new type of fuzzy
credit period. But, till now, no one has considered the imprecise parameter of the
probability density function of random time horizon and the expressions are converted
into a deterministic by using possibility, necessity and credibility measures following Liu
and Iwamura [140].

Normally, production inventory models are developed in an infinite planning horizon
because it is assumed that the production-inventory process including thevarious inventory
parameters, demand, etc., remain constant over the time horizon. In reality, it is not so due to

1This model published in Journal of ManagementAnalytics, (2016), DOI

10.1080/23270012.2016.1217755, Taylor & Francis.
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several reasons such as variation in inventory costs, changes in product specifications and
designs, technological changes due to environmental conditions, availability of product, etc.
Moreover, for seasonal products like fruits, vegetables, warm garments, etc., the business
period cannot be infinite. Das et al. [51], Palanivel & Uthayakumar [162] and many others
have supported this idea. Again, the assumption of a finite planning horizon is not appropriate
if it is fixed (in crisp nature); for seasonal products, it fluctuates in every season depending
upon the environment effect. Moon and Yun [155] considered this type of horizon with
exponential distribution for an economic order quantity (EOQ) model. Then, a lot of research
work has been done in this field by several researchers (see Roy et al. [182]). But none has
considered a multi-item multi-cycle imperfect production inventory model with
reworking in fuzzy random environment.

In real-world manufacturing systems, due to reliability and/or other factors, the
generation of defective items is inevitable. Practically, these defective items sometimes can
be reworked at a cost to make perfect-quality items. Schrady [190] was the first researcher
who concentrated on rework and remanufacturing processes. Khouja [114] considered direct
rework for the economic lot sizing and delivery scheduling problem (ELDSP). Teunter [205]
developed an EPQ models with rework in two policies. Widyadana and Wee [224] developed
an EPQ model with multiple production setups and rework. Hence, many studies (cf. Chiu
and Chiu [37], Chiu et al. [40], Jaber [100], Jamal et al., [104], Rahim and Ben-Daya [170],
Taleizadeh et al. [202]) have been carried out to address the issues of imperfect production
and reduction of its corresponding quality costs. In this chapter, the rework of the
imperfect product has been made, but on a certain percentage of defective amount.

In financial market, the effect of time value of money and inflation in todays financial
market is well established. Due to high inflation, the economic situation of most countries
may change rigorously, and so, it is not possible to ignore the effect of inflation, because
inflation causes the purchasing power of money to decline sharply. In this direction, some
remarkable work has been done by Chandra and Bahner [23], Ray and Chaudhuri [173],
Chen [31], Chung and Lin [43], and Yang [231]. Dey, Mondal and Maity [57] discussed a
two-storage inventory problem with dynamic demand under inflation and time-value of
money.

According to Dutton and Thomas [69], defect (imperfect quality) levels are high in a firm
may devote additional effort to investigate the cause of defects and this leads to additional
knowledge of the process which, in turn, increases both quality and productivity. Jaber et
al. [101] showed that the fraction of imperfect quantity (defective items) reduces due to the
learning knowledge of the system. Konstantaras et al. [123] observed an EOQ model for
imperfect quality items with shortages under the learning of inspection. Inspection of several
learning curve model (cf. Balkhi [7]) leads to complete an EPQ model with shortages and
learning inspection over a learning random planing horizon. This chapter extends the model
of Manna et al. [148] by assuming stock dependent demands of the items, shortages, learning
effect on imperfect production rate in fuzzy random environment. But, till now, none has
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considered the learning knowledge to reduce the defective rate as well as to increase the
production cost, screening cost in imperfect production inventory model. Summary of
related literature for multi-item EOQ/EPQ models with shortage is shown in Table 10.1.

Table 10.1: Summary of related literature for multi-item EOQ/EPQ models with shortage
Author(s) EOQ Learning Inflation Shortage Demand Uncertain Multi

and year /EPQ effect allow rate environment -item

Roy et al. [182] EOQ No No No stock dependent Yes No

Yang et al. [231] EOQ No No Yes stock dependent No No

Taleizadeh et al. [202] EPQ No No No uniform No No

Dey et al. [57] EOQ No Yes No dynamic No No

Moon & Yun [155] EOQ No No No constant No No

Dutton & Thomas [69] - Yes No - - - -

Jaber et al. [101] EPQ Yes No - No No No

Chen [31] EOQ No Yes Yes time proportional No

Chung & Lin [43] EOQ No Yes No - Yes Yes

Schrady [190] EPQ No No No constant No No

Khouja [114] EPQ No No No constant No No

Widyadana & Wee [224] EPQ No No No constant No Yes

Chiu & Chiu [37] EPQ No No Yes - No No

Chiu et al. [40] EPQ No No No - No Yes

Manna et al. [148] EPQ No Yes No promotional No Yes

Present model EPQ Yes Yes Yes, make stock dependent Yes(Fuzzy Yes

an effect and Stochastic)

on demand

So, in spite of all these developments in imperfect EPQ models, there are still some lacunas.
Making the model more realistic, the main contributions in this chapter are
• The time horizon of the imperfect production inventory model is considered to be randomly
distributed following the exponential distribution with an imprecise parameter.
• The production process is defective in nature, the rate of defective units is reduced due to
the learning effect of the employer, and the defective units are reworked at a constant rate.
• The model is formulated with an imprecise space constraint which is defuzzyfied using
possibility, necessity and credibility measures.
• The model maximizes the expected profit in different uncertainty measurements following a
simulating genetic algorithm (GA).
• Finally, the model is illustrated through a numerical example for different levels of
possibility, necessity and credibility measures. The obtained results are verified through
sensitivity analysis.
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10.2 Notations and assumptions
The proposed model have been developed on the basis of following notations and
assumptions:

10.2.1 Notations
The following notations have been used to develop the chapter (for the j-th item).
qji (t) : On hand inventory of ith cycle at time t for perfect quality, (i = 1, 2, ...., N j).
qjL(t) : On hand inventory of last cycle at time t for perfect quality.
Sj(t) : Shortage for perfect quality items.
Qj : Maximum inventory level.
P j : Production rate.
Dj : Demand rate of customers.
T j : Duration of a complete cycle.
tj1 : Duration of production in each cycle.
tj2 : Duration of exhaust of inventory in each cycle.
αj : Increasing learning parameter.
βj : Decreasing learning parameter.
θje−(i−1)αj : Defective rate of items in ith cycle.
δj : Percentage of disposal from imperfect quality items.
cjpe

(i−1)βj : Production cost per unit in ith cycle.
cjsre

(i−1)βj : Screening cost per unit item in ith cycle.
rjc : Average reworking cost per unit item.
hjc : The inventory holding cost per unit time for perfect quality.
sj : Selling price per unit for perfect quality.
N j : Number of fully accommodated cycles to be made during the prescribed time horizon.
M : Total number of items.
ρj : Space required for storing unit jth item.
W̃ : Total space available in the system (fuzzy parameter).
R : Difference between inflation rate and time value of money.
H : The length of time horizon.

10.2.2 Assumptions
The proposed model based on the following assumptions:

(i) In this production system, multiple items are produced with imperfect quality also, the
perfect quality items are directly ready for sale and imperfect quality items are reworked
to make as good as perfect.

(ii) Demand rate (Dj) of jth items (j = 1, 2, ....,M ) is assumed to be depend on the
displayed stock level, which is of the form:

Dj(qj) =

{
aj + bjqj(t), qj(t) ≥ 0
aj − bjSj(t), qj(t) ≤ 0

(10.1)
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where, aj and bj are positive constants.

(iii) The time horizonH is finite and randomly distributed. Here, it is assumed thatH follows
an exponential distribution with the following probability density function (p.d.f )

f̃(h) =

{
λ̃e−λ̃h , h ≥ 0
0 , otherwise

(10.2)

where λ̃(> 0), is an imprecise parameter, E[λ̃] = λ̄ and h is the real value of H .

(iv) The time horizon completely accommodates first N j cycles and end during (N j + 1)th
cycle.

(v) Lead time is negligible and stock-out is allowed, where the customers in stock out period
are bulk away.

(vi) The initial and terminal inventory levels in each cycle are zero.

(vii) The effects of inflation and time value of money have been considered.

(viii) The manual inspection of the process reduces the defective rate of the items due to
learning effect of the inspectors. This higher learning effect influence the decision maker
to charge more production cost and screening cost to the next cycle.

(viii) After occurring shortage, due to substitute item, the customer will not wait in the stock
out period. So, the shortage during stock out period is not back logging.

10.3 Mathematical Formulation of the Proposed Model

In the development of the model, we consider that there are N j full cycles during the random
time horizon H . In this case, the initial stock of the cycle is zero and it starts production
with rate P j . As the production continues screening and reworking, the inventory begins to
pile up continuously after meeting the demand with the rate Dj . Production and reworking
of the cycle stop at time tj1 and restart at time T j . The quantity received at (i − 1)T j is used
partly to meet the accumulated back-orders in the previous cycle. The inventory at (i − 1)T j

gradually reduces to zero at (i − 1)T j + tj2. Also in this production process, both perfect and
imperfect quality items are produced. The production process is 100% screened during the
production run time. The perfect quality items are ready for sell. When the imperfect items
are found, some imperfect quality products (which are reworkable at a minimum cost ) are
continuously reworked during the production run time to make as perfect and restore its to the
original quality. The employees learning effort reduce the defective rate θj and influence the
decision maker to increase the production and screening cost to the next cycle.
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10.3.1 Formulation for ith (1 ≤ i ≤ N j) Cycle for jth Item

Figure 10.1: Logistic diagram of inventory model for first N j cycles

The differential equation to describe the inventory level qj(t) in the interval [(i − 1)T j, (i −
1)T j + tj2] is given by

dqj(t)

dt
=

{
{1− δjθje−(i−1)αj}P j −Dj, (i− 1)T j ≤ t ≤ (i− 1)T j + tj1
−Dj, (i− 1)T j + tj1 ≤ t ≤ (i− 1)T j + tj2

=

{
{1− δjθje−(i−1)αj}P j − aj − bjqj(t), (i− 1)T j ≤ t ≤ (i− 1)T j + tj1
−aj − bjqj(t), (i− 1)T j + tj1 ≤ t ≤ (i− 1)T j + tj2

where δj is the disposal part of the defective units θjP je−(i−1)αj in the ith cycle, this unit is
reduced with every shipment in conformance with learning parameter αj .
The variation of inventory level qj(t) over the time interval [(i− 1)T j, (i− 1)T j + tj2] satisfies
the conditions qj[(i− 1)T j] = 0 and qj[(i− 1)T j + tj2] = 0.
During the time interval [(i − 1)T j + tj2, iT

j], the demand rate is Dj(Sj) = aj − bjSj(t) and
this period is the shortage period. Hence the shortage level Sj(t) is governed by the following
differential equation:

dSj(t)

dt
= aj − bjSj(t), [(i− 1)T j + tj2, iT

j]

subject to the conditions that, Sj[(i− 1)T j + tj2] = 0.

The solution of the above differential equations are

qj(t) =


1
bj

{
{1− δjθje−(i−1)αj}P j − aj

}[
1

−e−bj{t−(i−1)T j}
]
, (i− 1)T j ≤ t ≤ (i− 1)T j + tj1

−aj

bj

[
1− e−bj{t−(i−1)T j−tj2}

]
, (i− 1)T j + tj1 ≤ t ≤ (i− 1)T j + tj2
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and Sj(t) =
aj

bj

[
1− e−bj{t−(i−1)T j−tj2}

]
, [(i− 1)T j + tj2, iT

j]

The present value of production cost of the ith cycle is given by

PCj
i = cjpe

(i−1)βj
∫ (i−1)T j+tj1

(i−1)T j
P je−Rt dt =

cjp
R
P j(1− e−Rt

j
1)e−(i−1)(RT j−βj)

The term e(i−1)βj increases the production cost from the next cycle with increasing learning
rate βj and the term e−Rt reduce the present cost with inflation rate R.
Present value of screening cost of the ith cycle is given by

SCj
i = cjsre

(i−1)βj
∫ (i−1)T j+tj1

(i−1)T j
P je−Rt dt =

cjsr
R
P j(1− e−Rt

j
1)e−(i−1)(RT j−βj)

Present value of reworked cost of the ith cycle is given by

RCj
i = rjc

∫ (i−1)T j+tj1

(i−1)T j
(1− δj)θjP je−(i−1)αje−Rt dt

=
1

R
rjc(1− δj)θjP je−(i−1)αj

{
1− e−Rt

j
1

}
e−R(i−1)T j

Present value of holding cost of the inventory for the ith cycle is given by

HCj
i = hjc

[ ∫ (i−1)T j+tj1

(i−1)T j
qj(t)e−Rt dt+

∫ (i−1)T j+tj2

(i−1)T j+tj1

qj(t)e−Rt dt
]

=
hjc
bj

{
(1− δjθje−(i−1)αj)P j − aj

}[1− e−Rt
j
1

R
− 1− e−(R+bj)tj1

R + bj

]
e−(i−1)RT j

−h
j
ca
j

bj

[ 1

R
(e−Rt

j
1 − e−Rt

j
2)− eb

jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

]
e−R(i−1)T j

Present value of shortage cost of the ith cycle is given by

SHj
i = cjsh

∫ iT j

(i−1)T j+tj2

Sj(t)e−Rt dt

= cjsh
aj

bj

[ 1

R
(e−Rt

j
2 − e−RT j)− eb

jtj2

R + bj
{e−(R+bj)tj2 − e−(R+bj)T j}

]
e−R(i−1)T j

Present value of sales revenue for the ith cycle is given by

SRj
i = sj

∫ (i−1)T j+tj2

(i−1)T j
Dje−Rt dt = sj

∫ (i−1)T j+tj2

(i−1)T j
{aj + bjqj(t)}e−Rt dt

= sjaj
[ 1

R
(1− e−Rt

j
1) +

eb
jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

]
e−R(i−1)T j

+sj
{

(1− δjθje−(i−1)αj)P j − aj
}[1− e−Rt

j
1

R
− 1− e−(R+bj)tj1

R + bj

]
e−(i−1)RT j
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Total profit after completing first N j fully accommodated cycles is given by

TP (tj1, T
j) =

Nj∑
i=1

[
SRj

i − PC
j
i − SC

j
i −RC

j
i −HC

j
i − SH

j
i

]
=
[{
sjP j − hjc

bj
(P j − aj)

}(1− e−Rt
j
1)

R
− (sj − hjc

bj
)(P j − aj){1− e

−(R+bj)tj1}
R + bj

+(sjaj − hjca
j

bj
)
eb
jtj2

R + bj

{
e−(R+bj)tj1 − e−(R+bj)tj2

}
+

cjsha
jeb

jtj2

bj(R + bj)

{
e−(R+bj)tj2 − e−(R+bj)T j

}
+
hjca

j

Rbj
e−Rt

j
1 − (hjc + cjsh)a

j

Rbj
e−Rt

j
2 +

cjsha
j

Rbj
e−RT

j
]1− e−RNjT j

1− e−RT j

−
(cjp + cjsr)

R
P j(1− e−Rt

j
1)

1− e−(RT j−βj)Nj

1− e−(RT j−βj) −
[
rjc(1− δj)θjP j

{1− e−Rt
j
1

R

}
+(sj − hjc

bj
)δjθjP j

{1− e−Rt
j
1

R
− 1− e−(R+bj)tj1

R + bj

}]1− e−(αj+RT j)Nj

1− e−(αj+RT j)

Since f̃(h) is the p.d.f of the planning horizon H , therefore the expected total profit from the
N j complete cycles is given by,

˜E[TP (tj1, T
j)] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
TP (tj1, T

j)f̃(h) dh

=
[{
sjP j − hjc

bj
(P j − aj)

}(1− e−Rt
j
1)

R
− (sj − hjc

bj
)(P j − aj){1− e

−(R+bj)tj1}
R + bj

+(sjaj − hjca
j

bj
)
eb
jtj2

R + bj

{
e−(R+bj)tj1 − e−(R+bj)tj2

}
+

cjsha
jeb

jtj2

bj(R + bj)

{
e−(R+bj)tj2 − e−(R+bj)T j

}
+
hjca

j

Rbj
e−Rt

j
1 − (hjc + cjsh)a

j

Rbj
e−Rt

j
2 +

cjsha
j

Rbj
e−RT

j
] e−λ̃T

j

1− e−(R+λ̃)T j

−
(cjp + cjsr)

R
P j(1− e−Rt

j
1)

e−λ̃T
j

1− e−(RT j+λ̃T j−βj)
−
[
rjc(1− δj)θjP j

{1− e−Rt
j
1

R

}
+(sj − hjc

bj
)δjθjP j

{1− e−Rt
j
1

R
− 1− e−(R+bj)tj1

R + bj

}] e−λ̃T
j

1− e−(αj+RT j+λ̃T j)

10.3.2 Formulation for Last Cycle
The differential equations describing the inventory level qj(t) in the interval [N jT j, (N j +
1)T j] are given by,

dqj(t)

dt
=

{
(1− δjθje−Njαj)P j −Dj, N jT j ≤ t ≤ N jT j + tj1
−Dj, N jT j + tj1 ≤ t ≤ N jT j + tj2

=

{
(1− δjθje−Njαj)P j − aj − bjqj(t), N jT j ≤ t ≤ N jT j + tj1
−aj − bjqj(t), N jT j + tj1 ≤ t ≤ N jT j + tj2
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subject to the conditions that, qj[N jT j] = 0 and qj[N jT j + tj2] = 0.

During the time interval [(N jT j + tj2, (N
j + 1)T j], the demand rate Dj = aj − bjSj(t) and

this period is the shortage period. Hence the shortage level Sj(t) is governed by the following
differential equation:

dSj(t)

dt
= aj − bjSj(t)

subject to the conditions that, Sj[N jT j + tj2] = 0.

The solution of the above differential equation is

qj(t) =


1
bj

{
(1− δjθje−Njαj)P j − aj

}[
1− e−bj{t−NjT j}

]
, N jT j ≤ t ≤ N jT j + tj1

−aj

bj

[
1− e−bj{t−NjT j−tj2}

]
, N jT j + tj1 ≤ t ≤ N jT j + tj2

and Sj(t) =
aj

bj

[
1− e−bj{t−NjT j−tj2}

]
, [N jT j + tj2, iT

j]

In last cycle, for simplicity we consider three cases only depending upon the cycle length. Let
h be the real value corresponding to the random variable H .

Case-I: when N jT j ≤ h ≤ N jT j + tj1

Figure 10.2: Logistic diagram of inventory model for case-I

Present value of production cost of the last cycle is given by,

PCj
L1

= cjpe
Njβj

[ ∫ h

NjT j
P je−Rt dt

]
=
cjp
R
P jeN

jβj(e−RN
jT j − e−Rh)
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Present value of screening cost of the last cycle is given by,

SCj
L1

= cjsre
Njβj

[ ∫ h

NjT j
P je−Rt dt

]
=
cjsr
R
P jeN

jβj(e−RN
jT j − e−Rh)

Present value of reworked cost of the last cycle is given by,

RCj
L1

= rjc

[ ∫ h

NjT j
(1− δj)θjP je−N

jαje−Rt dt
]

=
rjc(1− δj)θjP je−N

jαj

R

{
e−RN

jT j − e−Rh
}

Present value of sales revenue for the last cycle is given by

SRj
L1

= sj
∫ h

NjT j
Dje−Rt dt = sj

∫ h

NjT j
{aj + bjqj(t)}e−Rt dt

=
sjaj

R
(e−RN

jT j − e−Rh) + sj{(P j − aj)− δjθjP je−N
jαj}

[ 1

R
(e−RN

jT j − e−Rh)

+
eb
jNjT j

R + bj

{
e−(bj+R)NjT j − e−(bj+R)h

}]
Present value of holding cost of the inventory for the last cycle is given by,

HCj
L1

= hjc

[ ∫ h

NjT j
qj(t)e−Rt dt

]
=

hjc
bj
{(P j − aj)− δjθjP je−N

jαj}
[ 1

R
(e−RN

jT j − e−Rh)

+
eb
jNjT j

R + bj

{
e−(bj+R)NjT j − e−(bj+R)h

}]
Case-II: when N jT j + tj1 ≤ h ≤ N jT j + tj2

Figure 10.3: Logistic diagram of Inventory Model for case-II
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Present value of production cost of the last cycle is given by,

PCj
L2

= cjpe
Njβj

∫ NjT j+tj1

NjT j
P je−Rt dt =

cjp
R
P j(1− e−Rt

j
1)e−(RT j−βj)Nj

Present value of screening cost of the last cycle is given by,

SCj
L2

= cjsre
Njβj

∫ NjT j+tj1

NjT j
P je−Rt dt =

cjsr
R
P j(1− e−Rt

j
1)e−(RT j−βj)Nj

Present value of reworked cost of the last cycle is given by,

RCj
L2

= rjc

∫ NjT j+tj1

NjT j
(1− δj)θjP je−N

jαje−Rt dt

=
rjc
R

(1− δj)θjP j(1− e−Rt
j
1)e−(RT j+αj)Nj

Present value of holding cost of the inventory for the last cycle is given by,

HCj
L2

= hjc

[ ∫ NjT j+tj1

NjT j
qj(t)e−Rt dt+

∫ h

NjT j+tj1

qj(t)e−Rt dt
]

=
hjc
bj

{
(1− δjθje−Njαj)P j − aj

}[ 1

R

(
1− e−Rt

j
1

)
− 1

R + bj

{
1− e−(R+bj)tj1

}]
e−RN

jT j

−h
j
ca
j

bj

[ 1

R

{
e−R(NjT j+tj1) − e−Rh

}
− eb

j(NjT j+tj2)

R + bj

{
e−(R+bj)(NjT j+tj1) − e−(R+bj)h

}]
Present value of sales revenue for the last cycle is given by

SRj
L2

= sj
[ ∫ NjT j+tj1

NjT j
Dje−Rt dt+

∫ h

NjT j+tj1

Dje−Rt dt
]

=
sjaj

R
(e−RN

jT j − e−Rh)

+sj
{

(1− δjθje−Njαj)P j − aj
}[ 1

R

(
1− e−Rt

j
1

)
− 1

R + bj

{
1− e−(R+bj)tj1

}]
e−RN

jT j

−sjaj
[ 1

R

{
e−R(NjT j+tj1) − e−Rh

}
− eb

j(NjT j+tj2)

R + bj

{
e−(R+bj)(NjT j+tj1) − e−(R+bj)h

}]
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Case-III: when N jT j + tj2 ≤ h ≤ (N j + 1)T j

Figure 10.4: Graphical Representation of inventory model for case-III

Present value of production cost of the last cycle is given by,

PCj
L3

= cjpe
Njβj

∫ NjT j+tj1

NjT j
P je−Rt dt =

cjp
R
P j(1− e−Rt

j
1)e−(RT j−βj)Nj

Present value of screening cost of the last cycle is given by,

SCj
L3

= cjsre
Njβj

∫ NjT j+tj1

NjT j
P je−Rt dt =

cjsr
R
P j(1− e−Rt

j
1)e−(RT j−βj)Nj

Present value of reworked cost of the last cycle is given by,

RCj
L3

= rjc

∫ NjT j+tj1

NjT j
(1− δj)θjP je−N

jαje−Rt dt

=
rjc
R

(1− δj)θjP je−N
jαj(1− e−Rt

j
1)e−(RT j+αj)Nj

Present value of holding cost of the inventory for the last cycle is given by,

HCj
L3

= hjc

[ ∫ NjT j+tj1

NjT j
qj(t)e−Rt dt+

∫ NjT j+tj2

NjT j+tj1

qj(t)e−Rt dt
]

=
hjc
bj

{
(1− δjθje−Njαj)P j − aj

}[1− e−Rt
j
1

R
− 1− e−(R+bj)tj1

R + bj

]
e−RN

jT j

−h
j
ca
j

bj

[ 1

R
(e−Rt

j
1 − e−Rt

j
2)− eb

jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

]
e−RN

jT j
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Present value of sales revenue for the last cycle is given by,

SRj
L3

= sj
[ ∫ NjT j+tj1

NjT j
Dje−Rt dt+

∫ NjT j+tj2

NjT j+tj1

Dje−Rt dt
]

= sjaj
[ 1

R
(1− e−Rt

j
1) +

eb
jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

]
e−RN

jT j

+sj
{

(1− δjθje−Njαj)P j − aj
}[1− e−Rt

j
1

R
− 1− e−(R+bj)tj1

R + bj

]
e−RN

jT j

Present value of shortage cost for the last cycle is given by,

SHj
3 = cjsh

∫ h

NjT j+tj2

Sj(t)e−Rt dt

=
cjsha

j

bj

[ 1

R
(e−R(NjT j+tj2) − e−Rh)− eb

j(NjT j+tj2)

R + bj
{e−(R+bj)(NjT j+tj2) − e−(R+bj)h}

]
Expected production cost for the last cycle is given by,

Ẽ[PCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
PCj

Lf̃(h) dh

=
cjpP

j

R{1− e−(RT j+λ̃T j−βj)}

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

]
Expected screening cost for the last cycle is given by,

Ẽ[SCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
SCj

Lf̃(h) dh

=
cjsrP

j

R{1− e−(RT j+λ̃T j−βj)}

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

]
Expected reworked cost for the last cycle is given by,

Ẽ[RCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
RCj

Lf̃(h) dh

=
rjc(1− δj)θjP j

R{1− e−{(R+λ̃)T j+αj}}

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

]
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Expected holding cost for the last cycle is given by,

Ẽ[HCj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
HCj

Lf̃(h) dh

=
hjc
bj

{ (P j − aj)
{1− e−(R+λ̃)T j}

− δjθjP j

{1− e−{(R+λ̃)T j+αj}}

}[ 1

R
(1− e−λ̃t

j
1) +

1

R + bj
(1− e−λ̃t

j
1)

− λ̃

R(λ̃+R)
{1− e−(R+λ̃)tj1} − λ̃

(R + bj)(λ̃+R + bj)
{1− e−(R+bj+λ̃)tj1}

+
{ 1

R
(1− e−Rt

j
1)− 1

R + bj
{1− e−(R+bj)tj1}

}
(e−λ̃t

j
1 − e−λ̃T j)

]
− hjca

j

bj{1− e−(R+λ̃)T j}

[e−Rtj1
R

(e−λ̃t
j
1 − e−λ̃t

j
2)− λ̃

R(λ̃+R)
(e−(R+λ̃)tj1 − e−(R+λ̃)tj2)

− eb
jt2

R + bj

{
e−(R+bj)tj1(e−λ̃t

j
1 − e−λ̃t

j
2)− λ̃

(λ̃+R + bj)
{e−(R+bj+λ̃)tj1 − e−(R+bj+λ̃)tj2}

}
+
{ 1

R
(e−Rt

j
1 − e−Rt

j
2)− eb

jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

}
(e−λ̃T

j − e−λ̃t
j
2)
]

Expected sales revenue from the last cycle is given by,

Ẽ[SRj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
SRj

Lf̃(h) dh

=
sjP j

R

{ 1

1− e−(R+λ̃)T j
− δjθj

1− e−{(R+λ̃)T j+αj}

}[
(1− e−λ̃t

j
2)− λ̃

λ̃+R
{1− e−(R+λ̃)tj2}

]
+sj

{ (P j − aj)
1− e−(R+λ̃)T j

− δjθjP j

1− e−{(R+λ̃)T j+αj}

}[ 1

R + bj
(1− e−λ̃t

j
1) +

{ 1

R
(1− e−Rt

j
1)

− λ̃{1− e−(λ̃+R+bj)tj1}
(R + bj)(λ̃+R + bj)

− 1

R + bj
{1− e−(R+bj)tj1}

}
(e−λ̃t

j
1 − e−λ̃T j)

]
− sjaj

1− e−(R+λ̃)T j

[e−Rtj1
R

(e−λ̃t
j
1 − e−λ̃t

j
2)− λ̃

R(λ̃+R)
(e−(R+λ̃)tj1 − e−(R+λ̃)tj2)

− eb
jt2

R + bj

{
e−(R+bj)tj1(e−λ̃t

j
1 − e−λ̃t

j
2)− λ̃

(λ̃+R + bj)
{e−(R+bj+λ̃)tj1 − e−(R+bj+λ̃)tj2}

}
+
{ 1

R
(e−Rt

j
1 − e−Rt

j
2)− eb

jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

}
(e−λ̃T

j − e−λ̃t
j
2)
]
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Expected shortage cost for the last cycle is given by,

Ẽ[SHj
L] =

∞∑
Nj=0

∫ (Nj+1)T j

NjT j
SHj

Lf̃(h) dh

=
cjsha

j

bj{1− e−RT je−λ̃T j}

[{ 1

R
− 1

R + bj

}
(e−λ̃t

j
2 − e−λ̃T j)e−Rt

j
2

+
λ̃ebt

j
2

(R + bj)(R + λ̃+ bj)

{
e−(R+λ̃+bj)tj2 − e−(R+λ̃+bj)T j

}
− λ̃

R(R + λ̃)

{
e−(R+λ̃)tj2 − e−(R+λ̃)T j

}]
Expected total profit from last cycle is given by,

˜E[TP j
L(tj1, T

j)] = Ẽ[SRj
L]− Ẽ[PCj

L]− Ẽ[SCj
L]− Ẽ[RCj

L]− Ẽ[HCj
L]− Ẽ[SHj

L]

10.3.3 Objective of the Proposed Model

The expected total profit from the complete time horizon is given by,

Ẽ[TP ] =
M∑
j=1

˜E[TP j(tj1, T
j)] +

M∑
j=1

˜E[TP j
L(tj1, T

j)] (10.3)

subject to the space constraint:

M∑
j=1

ρjQj ≤ W̃ (10.4)

Then for predefined confidence levels µ (for objective function) and µ1 (for constraint function)
the deterministic problem (followed Liu and Iwamura [140]) is:

Maximize Z (10.5)

subject to Pos

(
Ẽ[TP ] ≤ Z

)
≥ µ and Pos

( M∑
j=1

ρjQj ≤ W̃
)
≥ µ1

or Nec

(
Ẽ[TP ] ≤ Z

)
≥ µ and Nec

( M∑
j=1

ρjQj ≤ W̃
)
≥ µ1

or Cr

(
Ẽ[TP ] ≤ Z

)
≥ µ and Cr

( M∑
j=1

ρjQj ≤ W̃
)
≥ µ1
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which is equivalent to

Maximize Z (10.6)

subject to
Z − E[TP ]min

E[TP ]mid − E[TP ]min
≥ µ and

M∑
j=1

ρjQj ≤ Wmax − µ1(Wmax −Wmid)

or
E[TP ]max − Z

E[TP ]max − E[TP ]mid
≤ 1− µ and

∑M
j=1 ρ

jQj −Wmin

Wmid −Wmin

≤ 1− µ1

or
1

2

(
Z − E[TP ]min

E[TP ]mid − E[TP ]min
+

Z − E[TP ]mid
E[TP ]max − E[TP ]mid

)
≥ µ

and
1

2

(
Wmax −

∑M
j=1 ρ

jQj

Wmax −Wmid

+

∑M
j=1 a

jQj −Wmin

Wmid −Wmin

)
≥ µ1

10.4 Solution Procedure

To determine the feasible solution for the decision variables tj1, T j (j=1, 2) of the above fuzzy
model, the fuzzy simulation based genetic algorithm (FSGA) have been used which described
in section 2.4.5. To implementing FSGA we set the following parametric values:
POPSIZE=500, PCROSS=0.3, PMUT=0.2, MAXGEN=2000.

10.5 Numerical Illustration

A company manufactures its productions at a rate of 55 units and 60 units per unit time with
the defectiveness 15% and 12% respectively. The rework system recoveries 84% and 82%
of the defective units for 1st and 2nd item respectively. Due to learning effect the company
reduces 12% and 11% of the defectiveness from one to another cycle respectively. The per
unit selling price of the items are $92 and $90 respectively. The difference between inflation
rate and time value of money is R = 0.10. The different costs of the items are given in Table
10.2.

Table 10.2: Values of different type of cost parameters

Production cost Screening cost Rework cost Holding cost Shortage cost

(cjp) (cjsr) (rjc) (hjc) (cjsh)

Item-1 $30 $1.5 $ 5 $2.1 $ 2.5

Item-2 $28 $1.4 $4 $2.5 $2.0
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The input values of the demand parameters and parameters relative to defectiveness in appro-
priate unit are given in Table 10.3.

Table 10.3: Values of different type of other parameters

Parameters aj bj θj δj ρj βj

Item-1 40 0.1 0.15 0.16 1.4 0.010

Item-2 43 0.12 0.1 0.16 1.6 0.012

The imprecise parameters are taken as: λ̃ = [0.095, 0.102, 0.112], W̃ = [45, 50, 55]. The
problem is to determine the optimal policies under different management system. For the
empirical parametric values the optimum results are obtained by using simulation based FSGA
and presented in the following tables.

Table 10.4: Optimum results of illustrated model for possibility measure

Possibility Item tj1 tj2 T j Qj Ẽ[TP ] Z

measure (unit) (unit) (unit) (unit) ($)

µ = 0.8 Item-1 1.12 1.51 3.51 14.65 [9406.00, 9683.77, 9966.69] 0.99

µ1 = 0.9 Item-2 1.16 1.58 3.65 14.45

µ = 0.6 Item-1 1.06 1.43 3.17 13.91 [8286.36, 8549.99, 8818.21] 0.98

µ1 = 0.9 Item-2 1.27 1.72 4.95 15.74

Table 10.5: Optimum results of illustrated model for credibility measure

Credibility Item tj1 tj2 T j Qj Ẽ[TP ] Z

measure (unit) (unit) (unit) (unit) ($)

µ = 0.8 Item-1 1.09 1.47 5.84 14.28 [8230.24, 8510.60, 8791.57] 0.98

µ1 = 0.9 Item-2 1.96 2.62 4.97 23.22

µ = 0.6 Item-1 1.17 1.58 3.97 15.27 [6967.86, 7209.59, 7455.51] 0.98

µ1 = 0.9 Item-2 1.14 1.55 4.94 14.22
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Table 10.6: Optimum results of illustrated model for necessity measure

Necessity Item tj1 tj2 T j Qj Ẽ[TP ] Z

measure (unit) (unit) (unit) (unit) ($)

µ = 0.8 Item-1 1.01 1.36 4.75 13.29 [6333.46, 6559.85, 6788.76] 0.98

µ1 = 0.9 Item-2 1.19 1.62 4.37 14.81

µ = 0.6 Item-1 1.18 1.59 5.92 15.39 [5804.19, 6028.78, 6256.18] 0.99

µ1 = 0.9 Item-2 1.12 1.52 4.22 13.99

The results in Tables 10.4, 10.5 and 10.6 show the optimum production run-times, cycle times
as well as ordered quantities for two different items. From these tables, we conclude that:
• From Table 10.4, 10.5 and 10.6 one can see that the level of uncertainty has a similar effect
in each management, i.e., as the level of uncertainty decreases profit is also decrease.
• Table 10.4 and 10.5 show that the level of uncertainty has a reverse impact on maximized
parameter Z.

10.5.1 Sensitivity Analysis

The change in the values of system parameters can take place due to uncertainties and dynamic
market conditions in any decision-making (DM) situation. In order to examine the impacting
of these changes in the values of parameters, the sensitivity analysis will be of great help in a
decision-making process.

Table 10.7: Sensitivity analysis of Ẽ[TP ] w.r.t. R
R Ẽ[TP ] in possibility Ẽ[TP ] in credibility Ẽ[TP ] in necessity

0.06 [10966.1, 11347.9, 11740.8] [9390.19, 9731.67, 10082.99] [8018.71, 8326.32, 8641.49]

0.08 [9010.91, 9314.41, 9624.25] [7597.33, 7871.85, 8152.04] [6367.76, 6618.99, 6874.18]

0.10 [7980.17, 8236.59, 8497.19] [6683.14, 6917.93, 7156.52] [5551.88, 5769.92, 5990.40]

0.12 [7231.85, 7453.19, 7677.48] [6040.58, 6245.64, 6453.47] [4998.76, 5191.72, 5386.38]

0.14 [6655.50, 6849.79, 7046.32] [5558.11, 5740.12, 5924.31] [4595.77, 4769.11, 4943.81]
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There is a noticeable deviation in expected total profit in each measures (possibility, necessity
and credibility) as the difference between inflation and time value money moves away.
Increasing the difference between inflation and time value money (R), the average profit can
be decreased.

Table 10.8: Sensitivity analysis of Ẽ[TP ] w.r.t. α1 and α2

Increasing learning parameter Ẽ[TP ] in possibility Ẽ[TP ] in credibility Ẽ[TP ] in necessity

α1 = 0.08, α2 = 0.07 [6126.71, 6342.33, 6558.57] [5882.73, 6099.00, 6316.64] [4261.45, 4444.06, 4626.99]

α1 = 0.10, α2 = 0.09 [6935.75, 7179.69, 7426.70] [6894.24, 7134.68, 7377.87] [4906.56, 5112.13, 5319.06]

α1 = 0.12, α2 = 0.11 [7961.99, 8218.09, 8478.36] [7922.75, 8196.29, 8470.05] [5546.78, 5764.69, 5985.03]

α1 = 0.14, α2 = 0.13 [6719.87, 6968.22, 7221.63] [6295.96, 6539.69, 6787.63] [5010.66, 5218.97, 5429.10]

α1 = 0.16, α2 = 0.15 [6133.87, 6369.00, 6609.38] [5948.81, 6184.67, 6425.04] [4699.96, 4896.02, 5093.10]

Table 10.8 shows the optimal results of the expected total profit in different managements for
different values of the learning parameters α1 and α2. This table shows that the expected total
profit is concave with respect to the learning effect parameters, i.e., at initial increment of
learning effect reduce the defectiveness of the items and increase the profit, but after a certain
level of that increment, the learning effect reduce the defectiveness as well as increases the
production cost and screening cost.

Figure 10.5: Variations of θ1 and θ2 effects on Q1, Q2 and ETP

Finally, from the Figure 10.5 it is concluded that there is a decrease (increase) in the stock
amounts Q1 and Q2 as well as expected total profit when the rate of defective rates θ1 and θ2

are increased (decreased).
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10.5.2 Practical Implications
A manufacturing system may be illustrated as follows: Let a mobile phone company produce
two types of mobiles with different features, having a random length of business period for a
lot of items. At the time of production, a few defective units (e.g. scratched, disordered shape,
etc.) are repaired to sell at the market. Each item has a different demand rate depending on
the displayed amount. The company has a space capacity, say about 500 acres, which appears
in an imprecise sense. The supporting staff of the company gathers experience to reduce the
defectiveness of the mobile phones. The decision managers of the company decide how much
of each item to produce, and what will be the length or frequency of the production cycle. For
such a real-life problem, the present model can be implemented. The solved model gives a
managerial insight to the decision maker of any newly established company where more than
one item is produced.

10.6 Conclusion
In this chapter, a production-lot sizing model has been presented that incorporates some
realistic features in a imperfect production system. In practice, the production processes of a
manufacturer are not perfect. Hence, a production system produces some perfect and some
defective items. The production inventory model has been developed over a random planning
horizon with fuzzy parameters. The modern soft computing method of genetic algorithm
based on simulation process investigates the optimal solution of the model. This chapter
suggests the optimal time period, production period and ordered quantity as well as the effect
of the learning parameters for different measures such as possibility, necessity and credibility.
So, from this study, the following conclusions can be drawn:

(i) The expected profit in an optimistic sense is larger than that in the pessimistic sense.

(ii) More production run time implies a higher quantity of maximum inventory, and profit.

(iii) When increasing the difference between inflation and the time value of money, the aver-
age profit can be decreased.

(iv) The initial increment of the learning effect reduces the defectiveness of the items and
increases the expected profit. But after a certain level of that increment, expected profit
decreases due to more increases in the production cost and screening cost.
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Chapter 11

Two layers supply chain imperfect

production inventory model with fuzzy

credit period, time and production rate

dependent imperfectness

11.1 Introduction
In today’s highly competitive business world, the supply chain management (SCM) is a vital
issue for manufacturers, retailers and customers. It is a methodology to improve the business
performance. As a result, Supply Chain Management (SCM) is in the form to enhance the
revenue and to reduce operational costs, to improve flow of supplies, to reduction delays of
production and increase customer satisfaction. Researchers as well as practitioners in
manufacturing industries have given importance to develop inventory control problems in
supply chain management. Adoption of supply chain management practices in industries has
steadily increased since the 1980s. However, Manna et al. [147], Munson and
Rosenblatt [157], Yang and Wee [230], Khouja [117], Yao et al. [234], Chaharsooghi et
al. [16], Wang et al. [216] and others provided excellent review on supply chain management
literature. These articles define the concept, principals, nature and development of SCM and
indicate that there is an intense research being conducted around the world in this field.

In present business culture, usually a supplier offers a permissible delay in payments to a
manufacturer, a manufacturer offers a permissible delay in payments to a retailer and a retailer
offers a permissible delay in payments to customers, known as trade credit period, in paying for

259



CHAPTER 11. TWO LAYERS SUPPLY CHAIN IMPERFECT PRODUCTION
INVENTORY MODEL WITH FUZZY CREDIT PERIOD, TIME AND PRODUCTION

RATE DEPENDENT IMPERFECTNESS

purchasing cost, which is a very common business practice. Suppliers often offer trade credit
as a marketing strategy to increase sales and reduce on hand stock level. Once a trade credit
has been offered, the amount of period that the retailer’s capital tied up in stock is reduced,
and that leads to a reduction in the retailer’s holding cost of finance. In addition, during trade
credit period, the retailer can accumulate revenues by selling items and by earning interests.
As a matter of fact, retailers, especially small businesses which tend to have a limited number
of financing opportunities, rely on trade credit as a source of short-term funds. In this research
field, Goyal [78] was the first who established an EOQ model with a constant demand rate
under the condition of permissible delay in payments. Chung and Liao [46] studied a lot-
sizing problem under a supplier’s trade credit depending on the retailer’s order quantity. Abad
et al. [2] developed a seller-buyer model under permissible delay in payments by game theory
to determine the optimal unit price with trade credit period, considering that the demand rate
is a function of the retail price. Recently Das et al. [51] developed an integrated model under
trade credit policy. Summary of related literature for multi-retailer EOQ/EPQ models with
credit period is shown in Table 11.1.

Table 11.1: Summary of related literature for EPQ/EOQ models with Credit period
Author(s) EOQ Defective rate Demand rate Environment Credit period Retailer

/EPQ depend on /Agent

Abad & Jaggi [2] EOQ - Price sensitive Crisp Decision variables Single

Annadurai &

Uthayakumar [6] EOQ Random Stochastic lead-time Stochastic - Single

Chaharsooghi et al. [16] EPQ - Stochastic lead-time Stochastic Crisp (fixed) Multiple

Chang et al. [26] EOQ - Fuzzy random-lead time Fuzzy-stochastic - Single

Chung & Liao [46] EOQ Constant Constant Crisp Crisp (fixed) Single

Das et al. [51] EPQ Constant Constant Fuzzy Crisp and fuzzy Multiple

Datta & Pal [52] EOQ - Stock level Crisp - Single

Dey et al. [56] EOQ - Dynamic Fuzzy - Single

Jaber et al. [103] EOQ Random Constant Stochastic - Single

Khouja [117] EPQ - Constant Crisp - Multiple

Manna et al. [147] EPQ Constant Stock level Fuzzy - Single

Panda & Maiti [163] EPQ - Price dependent Fuzzy - Single

Yang & Wee [230] EPQ - Constant Stochastic - Multiple

Present model EPQ Production rate Stock and Fuzzy-stochastic Bi-level with Multiple

& time dependent credit linked fuzzy & crisp

In recent years, the green house effect and global warming have gained much attention
due to strong and more frequent extreme weather events. In every developing countries, there
is a scope of measuring and maintaining such carbon-emission. Benjaafar et al. [9] first
presented a series of model formulations that illustrate how carbon emission considerations
can be incorporated in to decision-making problem. Dye and Yang [70] study a deteriorating
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inventory system under various carbon emissions policies.

Uncertainty of the parameters in a decision making is a well established phenomenon in
recent years. Estimation of such parameters in the objective functions using traditional
econometric methods is not always possible due to the insufficient historical data, especially
for newly launched products. Generally, nature of uncertainties can be classified into three
major groups such as random (stochastic), fuzzy (imprecise) and rough (approximation).
Several research works on fuzzy inventory problem [26, 56] have been done in the existing
literature. Panda et al. [163] extended the single period inventory problem in a multi-product
manufacturing system under chance and imprecise constraints. Chang [25] developed an
EOQ model with fuzzy defective rate and demand. Recently Manna et al. [147] and Das et
al. [51] considered different imprecise parameters in their supply chain models.

This chapter considers a manufacturer-retailer-customer supply chain model involving bi-
level trade credit and random carbon emission. In this chapter, a two-echelon supply chain
system with several markets, by taking the imperfect production process is considered. Here,
we establish a bi-level trade credit model to enhance the demand of the customers, which
actually is a Stackelberg model with the customer’s satisfaction and whole system being the
leader in the management. Here,we introduce an integrated production-inventory model with
rework policy. Here, the manufacturer offers trade credit period to retailer and as well as
retailer offers trade credit to the customers. Here, both the credit periods are fuzzy in nature
and the model is defuzzified using the expression of expectation. The demand of the customers
is considered as stock dependent.

11.2 Notations and Assumptions
The following notations and assumptions have been used to develop the proposed model:

11.2.1 Notations
The following notations have been used to develop the model.
qm(t) : Inventory level of the manufacturer at any time t of perfect quality items.
qir(t) : Inventory level of the ith retailer at any time t of perfect quality items.
n : Number of retailers.
P : Production rate in units, P > D.
θ : Rate of produced defective item which depend on time and production rate.
η̂ε : Rate of carbon emissions associated per unit produce item, a random variable.
η̂γ : Rate of carbon emissions associated per unit rework item, a random variable.
η̂ρ : Rate of carbon emissions associated per unit disposal item, a random variable.
g(η) : The probability density function of η̂, η ∈ [0, 1).
δ : Percentage of rework of defective units per unit time.
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dir : Demand rate of perfect quality items of the ith retailer.
dic : Demand rate of perfect quality items of the customers from ith retailer.
D : Selling rate of perfect quality items of the manufacturer, where D =

∑n
i=1 d

i
r.

t1 : Production run-time in one period.
t2 : Manufacturer business period.
T i : Time at which the selling season ends for ith retailer.
M̃ : Imprecise credit period offered by the the manufacturer to the retailers.
N i : Credit period offered by the ith retailer to the customers, 0 < N i < M̃ .
Iem : Rate of interest per year earned manufacturer from retailer.
Ier : Rate of interest per year earned retailer from customer.
sc : Screening cost per unit item.
Am : Set up cost of manufacturer, Am = Am0 + Am1P

k, k > 0.
hm : Holding cost per unit for per unit time for perfect item in manufacturer.
hir : Holding cost per unit for per unit time of perfect quality items of the ith retailer.
rcm : Reworking cost per unit for manufacturer.
cp : Production cost per unit.
ec : Cost per unit carbon emission.
cd : Disposal cost per unit.
sm : Selling price per unit of perfect quality items for manufacturer.
Air : Set up cost of the ith retailer.
sir : Selling price per unit of perfect quality items of the ith retailer sir ∈

[smin, smax].

11.2.2 Assumptions
The following assumptions have been used to develop the model.

(i) Manufacturer produces a mixture of perfect and imperfect quality items. Some portion
of imperfect items are reworked and transformed into a perfect quality items.

(ii) The defective rate is not constant, it increased with time and production rate. So, the
defective rate depend on time and production rate, it is defined as follows: θ = β +
λP + ξt, where β, λ and ξ are positive constants as well as taken suitable values.

(iii) The demand rate of the customers depend on displayed stock/inventory of the item and
credit period offered them. i.e., dic = dic0 + dic1e

µN i
+ di1q

i
r(t), dic0 > 0, dic1 > 0, di1 >

0, µ > 0.

(iv) The production-project might involve rolling out clean energy technologies or soaking
up carbon emission from the production, that need to include in a production problem
as a carbon emission cost.

(v) Set up cost of manufacturer has been considered as production rate dependent.

262



11.3. MATHEMATICAL FORMULATION OF THE PROPOSED MODEL

(vi) It is assumed that the fuzzy credit period (M̃ ) offered by supplier must be within
replenishment period (T ), i.e., M̃ < T .

(vii) The ith retailer provide a down-stream credit period (N i) to his / her customers, where
N i < M̃ .

11.3 Mathematical Formulation of the Proposed Model

We consider a manufacturing system which produces both perfect and imperfect item in each
production run at a rate (1 − θ)P and θP respectively. Among the imperfect item few items
are repaired at a rate δθP portion We consider a manufacturing system which produces the lot
size Q in each production run, with constant production and demand rates denoted by p, and d,
respectively. In these process of production, screening and repaired unavoidable carbons are
emission at a rate ηε, ηρ and ηγ respectively. The fresh units are transported to several market
with their individual demand along with an imprecise trade credit M̃ . The retailers sold the
units in their respective markets as per customers demand dic(t) = dic0 + dic1e

µiN i
+ di1q

i
r(t).

Here it necessary to mention that the demand depend on the displayed stock of the retailer and
the credit period N i offered to the customers. Such supply chain inventory model is derived to
formulate different cost expression.

Figure 11.1: The flow of the produce items of the integrated model
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11.3.1 Formulation of the Manufacturer
The rate of change of inventory level of manufacturer for perfect quality items can be
represented by the following differential equations:

dqm
dt

=

{
P −D − (1− δ)(β + λP + ξt)P, 0 ≤ t ≤ t1
−D, t1 ≤ t ≤ t2

with boundary conditions qm(0) = 0, qm(t2) = 0.
The solution of above differential equations are given by

qm(t) =

{
{P −D − (1− δ)(β + λP )P}t− (1− δ) ξ

2
Pt2, 0 ≤ t ≤ t1

−D(t− t2), t1 ≤ t ≤ t2

Lemma 11.1. The manufacturer’s production time length (t1) and production rate (P ) must

satisfy the condition t2 = 1
D
{P − (1− δ)(β + λP )P}t1 − (1− δ) ξP

2D
t21.

Proof. From the continuity conditions of qm(t) at t = t1, the following is obtained,

{P −D − (1− δ)(β + λP )P}t1 − (1− δ) ξ
2
Pt21 = −D(t1 − t2)

⇒ Pt1 − (1− δ)(β + λP )Pt1 − (1− δ) ξ
2
Pt21 = Dt2

⇒ t2 = 1
D
{P − (1− δ)(β + λP )P}t1 − (1− δ) ξP

2D
t21

Inventory holding cost for perfect items is:

HCM = hm

[ ∫ t1

0

qm(t) dt+

∫ t2

t1

qm(t) dt
]

= hm

[ ∫ t1

0

{
{P −D − (1− δ)(β + λP )P}t− (1− δ)ξ

2
Pt2
}
dt−

∫ t2

t1

D(t− t2) dt
]

=
hm
2

[
{P −D − (1− δ)(β + λP )P}t21 − (1− δ)ξ

3
Pt31 +D(t1 − t2)2

]
Production cost for the manufacturer= cpPt1.
Inspection cost = scPt1.
Reworking cost for manufacture = rcm

∫ t1
0
δ(β + λP + ξt)P dt = rcmδ

(
β + λP + ξ

2
t1

)
Pt1

Revenue of perfect quality items for the manufacturer = smdrt2.
Disposal cost during (0, t2) = cd(1− δ)

(
β + λP + ξ

2
t1

)
Pt1

The total amount of carbon emissions during the production run time can be calculated
as follows:

CE(t1) = η̂ε
∫ t1

0

P dt+ η̂γ
∫ t1

0

δ(β + λP + ξt)P dt+ η̂ρ
∫ t1

0

(1− δ)(β + λP + ξt)P dt

= η̂εPt1 +
{
η̂γδ + η̂ρ(1− δ)

}(
β + λP +

ξ

2
t1

)
Pt1

264
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The expected carbon emission cost during the production run time is given by

E[CE(t1; η̂)] = ec

[
E[η̂ε]Pt1 +

{
E[η̂γ]δ + E[η̂ρ](1− δ)

}(
β + λP +

ξ

2
t1

)
Pt1

]

Expected total profit E[Πm(t1)] of manufacturer during the period (0, T )

is given by

E[Πm(t1; η̂)] = smDt2 − (cp + sc + ecE[η̂ε])Pt1 − (rcm + ecE[η̂γ])δ
(
β + λP +

ξ

2
t1

)
Pt1

−(cd + ecE[η̂ρ])(1− δ)
(
β + λP +

ξ

2
t1

)
Pt1 − Am

−hm
2

[
{P −D − (1− δ)(β + λP )P}t21 − (1− δ)ξ

3
Pt31 +D(t1 − t2)2

]

11.3.2 Formulation of the ith Retailer

The ith retailer receives his/her required quantity per unit time dir from the manufacturer and
fulfill the customers’ demand rate dic. Those retailer start their business on or before the
production run time t1, pay r portion of the price amount payable initially and the remaining
(1 − r) portion pay at the end of his/her business period. But those retailer’s arrive after the
production run time t1, pay the total amount at their business starting time. They pay the
initial amount by getting loan from a bank at the rate of interest of Ip per year. Every
retailer’s earns interest at the rate of Ie by depositing sales revenue continuously. The
inventory level qir(t) for the ith retailer’s is governed by the following differential equation:

dqir(t)

dt
=

{
(dir − dic), 0 ≤ t ≤ t2
−dic, t2 ≤ t ≤ T i

with boundary conditions qir(0) = 0 and qir(T
i) = 0.

The customer demand is dic(t) = dic0 + dic1e
µiN i

+ di1q
i
r(t) = di0 + di1q

i
r(t),

where di0 = dic0 + dic1e
µN i . Therefore the solutions of above differential equations are given by

qir(t) =


(dir−di0)

di1
(1− e−di1t), 0 ≤ t ≤ t2

−d
i
0

di1
[1− e−di1(t−T i)], t2 ≤ t ≤ T i

Lemma 11.2. The retailer time length of inventory (T i) is given by

T i = t2 + 1
di1
log{1 +

(dir−di0)

di0
(1− e−di1t2)}
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Proof. From the continuity conditions of qir(t) at t = t2, we have
(dir−di0)

di1
(1− e−di1t2) = −di0

d1
{1− e−d1(t2−T i)}

⇒ (dir − di0)(1− e−di1ti2) = −di0{1− e−d
i
1(ti2−T i)}

⇒ e−d
i
1(t2−T i) = 1 +

(dir−di0)

di0
(1− e−di1t2)

⇒ T i = t2 + 1
di1
log{1 +

(dir−di0)

di0
(1− e−di1t2)}

Holding cost of the ith retailer is given by

HCRi = hir

[ ∫ t2

0

qir(t) dt+

∫ T i

t2

qir(t) dt
]

= hir

[(dir − di0)

di1

{
t2 +

1

di1
(e−d

i
1t2 − 1)

}
− di0
di1

{
(T i − t2) +

1

di1
{1− e−di1(t2−T i)}

}]
Holding cost (HCR) for all retailers’ is given by

HCR =
n∑
i=1

hir

[(dir − di0)

di1

{
t2 +

1

di1
(e−d

i
1t2 − 1)

}
− di0
di1

{
(T i − t2) +

1

di1
{1− e−di1(t2−T i)}

}]
Sales revenue from perfect quality items of the ith retailer is given by

SRRi = sir

[ ∫ t2

0

(di0 + di1q
i
r(t)) dt+

∫ T

t2

(di0 + di1q
i
r(t)) dt

]
= sir

[
di0t2 + (dir − di0)

{
t2 +

1

di1
(e−d

i
1t2 − 1)

}
− di0
di1
{1− e−di1(t2−T i)}

]
= sir

[
dirt2 +

(dir − di0)

di1
(e−d

i
1t2 − 1)− di0

di1
{1− e−di1(t2−T i)}

]
All retailers’ total sales revenue (SRR) is given by

SRR =
n∑
i=1

sir

[
dirt2 +

(dir − di0)

di1
(e−d

i
1t2 − 1)− di0

di1
{1− e−di1(t2−T i)}

]
All retailers’ total purchase cost (PCR) is given by

PCR =
n∑
i=1

smd
i
rt2

Here it is assumed that the retailer’s trade credit period offered by the manufacturer is M and
that of customer’s offered by the retailer is N i (where N i < M ). The retailer is charged by
the manufacturer, an interest at the rate of Ip per year per unit for the unpaid amount after the
delay period and can earn an interest at the rate of Ie (Ie > Ip) per year per unit for the amount
sold during the period (N i,M ) respectively. Depending on the cycle times of the retailer and
offering as well as receiving credit periods, three different cases may arise, which have been
discussed separately.
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Case-I: when N i < M < t2 < T i

Figure 11.2: Total interest earned and paid representation when N i < M < t2 < T i

Interest paid by the ith retailer (IP i
1),

IP i
1 = smIp

∫ T i

M

qir(t) dt

= smIp

[ ∫ t2

M

qir(t) dt+

∫ T i

t2

qir(t) dt
]

= smIp

[(dir − di0)

di1

{
(t2 −M) +

1

di1
(e−d

i
1t2 − e−di1M)

}
−d

i
0

di1

{
(T i − t2) +

1

di1
{1− e−di1(t2−T i)}

}]
Interest earned by the ith retailer (IEi

1),

IEi
1 = sirIe

[
(T i −N i)

∫ N i

0

dic(t) dt+ (T i −M)

∫ M

N i

(M − t)dic(t) dt

+(T i − t2)

∫ t2

M

(t2 − t)dic(t) dt+

∫ T i

t2

(T i − t)dic(t) dt
]

= sirIe

[
(T i −N i)

{
di0N

i + (dir − d0)
{
N +

1

di1
(e−d

i
1N

i − 1)
}}

+(T i −M)
{dir

2
(M −N i)2 − (M −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1M)
}

+(T i − t2)
{dir

2
(M − t2)2 − (t2 −M)

e−d
i
1M

di1
+

1

(di1)2
(e−d

i
1M − e−di1t2)

}
+
di0
di1

(T i − t2)e−d
i
1(t2−T i) +

di0
(di1)2

{1− e−di1(t2−T i)}
]
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All retailers’ total interest payable (IP1) is expressed as

IP1 =
n∑
i=1

smIp

[(dir − di0)

di1

{
(t2 −M) +

1

di1
(e−d

i
1t2 − e−di1M)

}
−d

i
0

di1

{
(T i − t2) +

1

di1
{1− e−di1(t2−T i)}

}]
All retailers’ total interest earned (IE1) is obtained as

IE1 =
n∑
i=1

sirIe

[
(T i −N i)

{
di0N

i + (dir − d0)
{
N +

1

di1
(e−d

i
1N

i − 1)
}}

+(T i −M)
{dir

2
(M −N i)2 − (M −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1M)
}

+(T i − t2)
{dir

2
(M − t2)2 − (t2 −M)

e−d
i
1M

di1
+

1

(di1)2
(e−d

i
1M − e−di1t2)

}
+
di0
di1

(T i − t2)e−d
i
1(t2−T i) +

di0
(di1)2

{1− e−di1(t2−T i)}
]

Therefore, all retailers’ total profit is given by

Π(1)
r (t1) = SRR− PCR−HCR− IP1 + IE1 −

n∑
i=1

Air

So, the total profit (ITP) for this case of the integrated system is written as
E[ITP1(t1; η̂)] = E[Π(t1; η̂)] + Π

(1)
r (t1)

Case-II: when N i < t2 < M < T i

Interest paid by the retailer (IP i
2),

IP i
2 = smIp

∫ T i

M

qir(t) dt

= smIp

∫ T i

M

−d
i
0

di1
[1− e−di1(t−T i)] dt

=
di0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
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Figure 11.3: Total interest earned and paid representation when N i < t2 < M < T i

Interest earned by the retailer (IEi
2),

IEi
2 = sirIe

[
(T i −N i)

∫ N i

0

dic(t) dt+ (T i − t2)

∫ t2

N i

(t2 − t)dic(t) dt

+(T i −M)

∫ M

t2

(M − t)dic(t) dt+

∫ T i

M

(T i − t)dic(t) dt
]

= sirIe

[
(T i −N i)

{
di0N

i + (dir − di0)
{
N i +

1

di1
(e−d

i
1N

i − 1)
}}
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{dir

2
(ti2 −N i)2 − (t2 −N i)

e−d
i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1t2)
}

+(T i −M)
{di0
di1

(M − t2)e−d
i
1(t2−M) +

di0
(di)2

1

{1− e−di1(t2−M)}
}

+
di0
di1

(T i −M)e−d
i
1(M−T i) +

d0

(di1)2
{1− e−di1(M−T i)}

]
All retailers’ total interest payable (IP2) is expressed as

IP2 =
n∑
i=1

di0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
All retailers’ total interest earned (IE2) is obtained as

IE2 =
n∑
i=1

sirIe

[
(T i −N i)

{
dirN

i +
(dir − di0)

di1
(e−d

i
1N

i − 1)
}

+ (T i − ti2)
{dir

2
(ti2 −N i)2

−(t2 −N i)
e−d

i
1N

i

di1
+

1

(di1)2
(e−d

i
1N

i − e−di1t2)
}

+ (T i −M)
{di0
di1

(M − t2)e−d
i
1(t2−M)

+
di0

(di)2
1

{1− e−di1(t2−M)}
}

+
di0
di1

(T i −M)e−d
i
1(M−T i) +

d0

(di1)2
{1− e−di1(M−T i)}

]
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Therefore, all retailers’ total profit is given by

Π(2)
r (t1) = SRR− PCR−HCR− IP2 + IE2 −

n∑
i=1

Air

So, the total profit (ITP) for this case of the integrated system is written as
E[ITP2(t1; η̂)] = E[Π(t1; η̂)] + Π

(2)
r (t1)

Case-III: when t2 < N i < M < T i

Interest paid by the retailer (IP i
3),

IP i
3 = smIp

∫ T i

M

qir(t) dt

= smIp

∫ T i

M

−d
i
0

di1
[1− e−di1(t−T i)] dt

=
d0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]

Figure 11.4: Total interest earned and paid representation when t2 < N i < M < T i

Interest earned by the retailer (IEi
3),

IEi
3 = sirIe

[
(T i −N i)

{∫ t2

0

dic(t) dt+

∫ N i

t2

dic(t) dt
}

+

∫ T i

N i

(T i − t)dic(t) dt
]

= sirIe

[
(T i −N i)

{
di0N

i + (dir − di0){t2 +
1

di1
(e−d

i
1t2 − 1)} − di0

{
(N i − t2)

+
1

di1
{1− e−di1(t2−N i)}

}}
+
di0
di1

(T i −N i)e−d
i
1(N i−T i) +

di0
(di1)2

{1− e−di1(N i−T i)}
]
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All retailers’ total interest payable (IP3) is expressed as

IP3 =
n∑
i=1

d0smIp
di1

[ 1

di1
{e−di1(M−T i) − 1} − (T i −M)

]
All retailers’ total interest earned (IE3) is obtained as

IE3 =
n∑
i=1

sirIe

[
(T i −N i)

{
di0N

i + (dir − di0){t2 +
1

di1
(e−d

i
1t2 − 1)} − di0

{
(N i − t2)

+
1

di1
{1− e−di1(t2−N i)}

}}
+
di0
di1

(T i −N i)e−d
i
1(N i−T i) +

di0
(di1)2

{1− e−di1(N i−T i)}
]

Therefore, all retailers’ total profit is given by

Π(3)
r (t1) = SRR− PCR−HCR− IP3 + IE3 −

n∑
i=1

Air

So, the total profit (ITP) for this case of the integrated system is written as
E[ITP3(t1; η̂)] = E[Π(t1; η̂)] + Π

(3)
r (t1)

11.3.3 Objective of the Proposed Model

The integrated total profit (ITP) for this case of the integrated system is written as
E[ITP3(t1; η̂)] = E[Π(t1; η̂)] + Π

(3)
r (t1)

When manufacturer and retailers’ have decided to share resources to undertake mutually
beneficial cooperation, the joint total profit which is a function of t1 can be obtained by
maximized E[ITP (t1; η̂)] and is given by

Maximize E[ITP (t1; η̂)] =


E[ITP1(t1; η̂)] = E[Πm(t1; η̂)] + Π

(1)
r (t1), if N i < M < t2 < T i

E[ITP2(t1; η̂)] = E[Πm(t1; η̂)] + Π
(2)
r (t1), if N i < t2 < M < T i

E[ITP3(t1; η̂)] = E[Πm(t1; η̂)] + Π
(3)
r (t1), if t2 < N i < M < T i

11.3.4 Model with Fuzzy Credit Period

If we assume that the manufacturer gives an opportunity to all the retailers’ by offering a fuzzy
credit period (M̃ ). Here, the credit period M̃ is represented in form of triangular fuzzy number.
So due to fuzzy credit period (M̃ ), the optimum value of integrated profit function ITP (t1)

will be different for various values of M̃ with some degree of belonging ness. Therefore in
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such situation, the profit function will be fuzzy in nature and is denoted by ĨTP (t1; M̃, η̂),
where

E[ĨTP (t1; M̃, η̂)] =


E[ĨTP

(1)
(t1; M̃, η̂)] = E[Πm(t1; η̂)] + Π̃

(1)
r (t1; M̃), if N i < M̃ < t2 < T i

E[ĨTP
(2)

(t1; M̃, η̂)] = E[Πm(t1; η̂)] + Π̃
(2)
r (t1; M̃), if N i < t2 < M̃ < T i

E[ĨTP
(3)

(t1; M̃, η̂)] = E[Πm(t1; η̂)] + Π̃
(3)
r (t1; M̃), if t2 < N i < M̃ < T i

The imprecise expression of E[ĨTP
(1)

(t1; M̃, η̂)], E[ĨTP
(2)

(t1; M̃, η̂)] and

E[ĨTP
(3)

(t1; M̃, η̂)] are given below:

E[ĨTP
(1)

(t1; M̃, η̂)] = sm
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{1− e−di1(t2−T i)}

]
−

n∑
i=1

smd
i
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E[ĨTP
(2)
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11.4 Solution Procedure
The optimum values production time (t1) and expected total profit for the fuzzy stochastic
model are obtained through algorithm.

Step1 : For the random variable ‘η̂’ with p.d.f ‘g(η)’ evaluate the expected value of integrated

total profit ĨTP
(1)

(t1; M̃, η̂), ĨTP
(2)

(t1; M̃, η̂) and ĨTP
(3)

(t1; M̃, η̂) using the

definition E[ĨTP
(1)

(t1; M̃, η̂)] =
∫∞
−∞ ĨTP

(1)
(t1; M̃, η)g(η) d(η), Similarly obtained

E[ĨTP
(2)

(t1; M̃, η̂)] and E[ĨTP
(3)

(t1; M̃, η̂)].

Step2 : For a given triangular fuzzy number (TFN) M̃ = (M − ∆1,M,M + ∆2), the fuzzy

expressions of ˜
EITP

(1)

M̃
= E[ĨTP (1)] =

(
EITP

(1)
l , EITP

(1)
m , EITP

(1)
r

)
,

˜
EITP

(2)

M̃
= E[ĨTP (2)] =

(
EITP

(2)
l , EITP

(2)
m , EITP

(2)
r

)
and

˜
EITP

(3)

M̃
= E[ĨTP (3)] =

(
EITP

(3)
l , EITP

(3)
m , EITP

(3)
r

)
are obtained using fuzzy

extension principal.

Step3 : Then from the fuzzy expressions E[ĨTP
(1)

(t1; M̃, η̂)], E[ĨTP
(2)

(t1; M̃, η̂)] and

E[ĨTP
(3)

(t1; M̃, η̂)] obtained the centroid values CEITP (1) = C[
˜

EITP
(1)

M̃
],

CEITP (2) = C[
˜

EITP
(2)

M̃
] and CEITP (3) = C[

˜
EITP

(3)

M̃
] respectively, using the

definition presents in § 4, which is the process of defuzzification.

Step4 : Finally, maximized each CEITP (1)(t1), CEITP (2)(t1) and CEITP (3)(t1) with
respect to the decision variable t1 by using LINGO Solver 12.0 for particular input data.

11.5 Numerical Illustrations
In this section, we illustrate some numerical examples to study the feasibility of the proposed
imperfect production inventory model.

Example 11.1. we consider a production-inventory supply chain model with the following

characteristics:

P = 42 units, β1 = 0.10, λ = 0.001, ξ = 0.02, ∆1 = 0.01, ∆2 = 0.02, δ = 0.70, cp=$32
per unit, csr = $2 per unit, rcm = $10 per unit, cd=$5 per unit, hm = $4 per unit per unit
time, h(1)

r = $4.5 per unit per unit time, h(2)
r = $4.8 per unit per unit time, A(m0)

r = $140,
A

(m1)
r = $130, A(1)

r = $140, A(2)
r = $130, sm = $140 per unit, s(1)

r = $260 per unit,
s

(2)
r = $250 per unit, ec = $2.5 per unit, smin = $220, smax = $280, d(1)

r = 17 unit, d(2)
r = 18
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unit, d(1)
c0 = 9.84 unit, d(2)

c0 = 9.54 unit, d(1)
c1 = 1.8, d(2)

c1 = 3, d(1)
1 = 7, d(2)

1 = 6, µ(1) = 7,
µ(2) = 6. The carbon-emission rates ηε, ηγ , ηρ for production process, rework process and
disposal units respective followed a Beta distribution with parameters v, w i.e., the p.d.f. of η
is

g(η) =

{
ηv−1(1−η)w−1

β(v,w)
, 0 ≤ η ≤ 1

0, otherwise

E[η̂ε] = v
v+w

, E[η̂γ] = v(v+1)
(v+w)(v+w+1)

, E[η̂ρ] = v(v+1)(v+2)
(v+w)(v+w+1)(v+w+2)

for ε = 1, γ = 2 and ρ = 3.
For v = 8, w = 3; E[η̂ε] = 0.727, E[η̂γ] = 0.545 and E[η̂ρ] = 0.419 numerical computation,
we consider applying the proposed computational algorithm yields the results shown in Table
11.2 for different cases.

Table 11.2: Optimal results of illustrated model when θ = β + λP + ξt

Cases Retailers’ credit Manufacturer credit Production Period of Period of Expected

period (N1, N2) period (M̃ ) time t1 Manufacturer Retailers’ Profit

Case-I (0.12, 0.10) (0.19, 0.20, 0.22) 0.528 0.605 (0.734, 0.730) 4178.54

Case-II (0.12, 0.10) (0.69, 0.70, 0.72) 0.531 0.610 (0.739, 0.732) 3512.53

Case-III (0.65, 0.62) (0.69, 0.70, 0.72) 0.538 0.618 (0.726, 0.720) 4128.05

In manager’s point of view, 2nd case gives minimum profit. Since, in that case manufacturer
lost maximum opportunity of credit period, where as the customers receive maximum benefit
from the management system. The first and last cases are nearly same profitable, since in the
first case both the members offer lower credit period and in the last case both the members
offer higher credit periods. More over, in third case, as retailer offers higher credit period,
so demand of the customers become high but the quantity transferred from manufacturer to
retailer is same, therefore, period of consumptions of the retailer is reduced. As the demand of
the customers are linked with the credit period offered by the retailer, so high demand of the
customers reduced the time period of the retailers.

Example 11.2. Evaluate the optimal policy of the decision maker when the defective rate of

produce item depends on production rate only (i.e., ξ = 0) and the remain parameters of the

system are unalter.

Following table shows the optimum policies of the decision maker when the defective rate of
the produced item is of the form θ = β+λP . In comparison of the cases, Example 11.2 reveal
same decisions as Example 11.1. More-over, when defective rate does not depend on time, the
defective units are quite less, i.e., fresh units are more than that of Example 11.1. So, business
periods are larger than the Example 11.1, which also yield more profit than Example 11.1 for
each cases.
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Table 11.3: Optimal results of illustrated model when θ = β + λP

Cases Retailers’ credit Manufacturer credit Production Period of Period of Expected

period (N1, N2) period (M̃ ) time (t1) Manufacturer(t2) Retailers’ (T 1, T 2) Profit

Case-I (0.10, 0.12) (0.19, 0.20, 0.22) 0.543 0.622 (0.763, 0.757) 4370.80

Case-II (0.12, 0.10) (0.69, 0.70, 0.72) 0.548 0.637 (0.767, 0.761) 3872.79

Case-III (0.65, 0.62) (0.69, 0.70, 0.72) 0.558 0.642 (0.755, 0.748) 4327.61

Example 11.3. Find the optimal policies of the decision maker when the defective rate of

produce item depend on time only (i.e., λ = 0) and the remain parameters of the system are

unalter.

When the defective rate of produce item does not depend on production rate but depend on
time only i.e., θ = β + ξt, then the optimum results are shown in the following table.

Table 11.4: Optimal results of illustrated model when θ = β + ξt

Cases Retailers’ credit Manufacturer credit Production Period of Period of Expected

period (N1, N2) period (M̃ ) time t1 Manufacturer (t2) Retailers’ (T 1, T 2) Profit

Case-I (0.10, 0.12) (0.19, 0.20, 0.22) 0.728 0.848 (1.020, 1.010) 6074.09

Case-II (0.12, 0.10) (0.69, 0.70, 0.72) 0.731 0.851 (1.023, 1.013) 6833.38

Case-III (0.65, 0.62) (0.69, 0.70, 0.72) 0.739 0.858 (0.998, 0.991) 6095.70

If defective rate does not depend on the production rate, then production time is much larger.
So manufacturer produced more quantity of items. For this reason, the periods of manufacturer
and retailers are more than the scenarios when θ = β+λP+ξt or θ = β+λP . So the optimum
profit is more than the other two scenarios, as expected.

Example 11.4. When the defective rate of produce item is constant (i.e., λ = 0 and ξ = 0)

then evaluate the optimal profit of the decision maker (the remain parameter of the system

remain unalter).

Table 11.5: Optimal results of illustrated model when θ = β

Cases Retailers’ credit Manufacturer credit Production Period of Period of Expected

period (N1, N2) period (M̃ ) time t1 Manufacturer (t2) Retailers’ (T 1, T 2) Profit

Case-I (0.10, 0.12) (0.19, 0.20, 0.22) 0.783 0.913 (1.080, 1.081) 6593.89

Case-II (0.12, 0.10) (0.69, 0.70, 0.72) 0.787 0.918 (1.098, 1.090) 7664.13

Case-III (0.65, 0.62) (0.69, 0.70, 0.72) 0.794 0.924 (1.033, 1.045) 6638.49
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From Table 11.5, it is decided that when defective rate is fixed then the yields optimum profits
are maximum for each cases. This is due to the less amount of defective units. The other
conclusions regarding the comparison of the three cases remain same as in Example 11.1.

11.5.1 Sensitivity Analysis
In this section, we examine the effects of changes in the system parameters. A Sensitivity
analysis is performed by changing some of the parameters as follows. On the basis of the
results calculated the following observations can be made.

Sensitivity analysis 11.1. In this example, we use the same data as in Example 11.1 except

the production rate on the optimal solution. The results in Table 11.6 given below:

Table 11.6: Sensitivity analysis of expected profit w.r.t. P
Production Cases Defective rate Production time Manufacturer business Retailers’ business Expected

rate (P) (θ) (t1) period (t2) period (T 1, T 2) Profit

Case-I 0.141 0.561 0.612 (0.747, 0.741) 4237.68

40 Case-II 0.145 0.564 0.616 (0.748, 0.741) 3622.90

Case-III 0.151 0.572 0.625 (0.735, 0.728) 4189.38

Case-I 0.153 0.528 0.605 (0.734, 0.730) 4178.54

42 Case-II 0.155 0.531 0.610 (0.739, 0.732) 3512.53

Case-III 0.159 0.538 0.618 (0.726, 0.720) 4128.05

Case-I 0.156 0.484 0.597 (0.725, 0.719) 4090.69

45 Case-II 0.159 0.490 0.601 (0.728, 0.723) 3347.35

Case-III 0.165 0.495 0.607 (0.714, 0.707) 4036.89

Here, we conclude that increasing rate of production (P) increases the rate of defectiveness(θ)
as it is a increasing function of P , it also reduced value of production time, manufacturing
time as well as expected profit due to the increase of production with fixed demand expand the
inventory / holding cost. Again, increasing defective amount reduced the amount of fresh unit
that caused lower business period and lower profit.

Sensitivity analysis 11.2. This example outlines the effects of changes in the different values

of trade credit periods M̃ and N’s for case-II. The results given in Table 11.7.

Table 11.7 shows that, more spread of fuzzy credit period gives lower profit of the system as
well as lower interest paid by the retailer (as expected). And increasing of down stream credit
period (offered by the retailer to the customers) of the system yields more earn of the retailer
due to the increasing of demand which consequently decreases the holding cost also.
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Table 11.7: Sensitivity analysis of expected profit w.r.t. M̃ and N ’s on case-II
∆1 ∆2 Manufacturer credit period Retailers’ credit Interest earned by Interest paid by Expected

M̃ = (M −∆1,M,M + ∆2) period (N1, N2) the retailers (IE2) the retailers (IP2) Profit

(0.09, 0.07) 294.92 895.84 3488.15

0.008 0.020 (0.688, 0.700, 0.720) (0.12, 0.10) 315.52 895.84 3508.76

(0.15, 0.13) 333.76 895.84 3526.99

(0.09, 0.07) 298.70 895.87 3491.93

0.010 0.020 (0.690, 0.700, 0.720) (0.12, 0.10) 319.31 895.87 3512.53

(0.15, 0.13) 337.54 895.87 3530.77

(0.09, 0.07) 302.49 895.89 3495.70

0.012 0.020 (0.692, 0.700, 0.720) (0.12, 0.10) 323.09 895.89 3516.31

(0.15, 0.13) 341.34 895.89 3534.55

(0.09, 0.07) 302.27 896.48 3496.12

0.010 0.018 (0.690, 0.700, 0.718) (0.12, 0.10) 322.88 896.48 3516.72

(0.15, 0.13) 341.12 896.48 3534.96

(0.09, 0.07) 295.13 897.64 3487.74

0.010 0.022 (0.690, 0.700, 0.722) (0.12, 0.10) 315.74 897.64 3508.35

(0.15, 0.13) 333.98 897.64 3526.58

11.6 Conclusion
This chapter develops an integrated production inventory model involving manufacturer,
retailer and customers with up-stream and down stream credit periods. It will provide the
following decision making:
• If a manufacturer produces an item with defective quality also, then the rate of defective
may depend on production rate and/or time. And the effect of these dependencies are shown
here numerically with efficient cause.
• The duration of upstream credit period may fluctuate due to different causes, in this regard
here, an imprecise nature of upstream credit period is considered and analyzed numerically.
More over, its effects are justified by a sensitivity analysis.
• Here, an unavoidable circumstance of carbon-emission is taken into account for a good
gesture of society and this emission rate is not fixed through the cycle time, so it is formulated
with random nature.
• Furthermore, we discuss some special cases of credit periods to show their effects on the
management.
• Finally, we run several numerical examples and sensitivity analysis to illustrate the problem
and provide some managerial insights.
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Chapter 12

Summary and Future Research Work

12.1 Summary of the Thesis

In this dissertation, some imperfect production inventory models are formulated and solved in
crisp, stochastic, fuzzy and fuzzy stochastic environments. Major emphasis in this thesis has
been given on the realistic model formation in crisp, stochastic, fuzzy and fuzzy stochastic
environments. Here, nine virgin imperfect production inventory models have been presented.
The models are solved applying new/modified methods and these are numerically illustrated
with some data.

Part II of the thesis contains Chapter 3 in which an imperfect production inventory model
with production rate dependent defective rate and advertisement dependent demand in crisp
environments has been developed. In this model we consider different production rate and
screening rate.

In Part III, through Chapter 4, 5 & 6 three different types of imperfect production
inventory models in stochastic environments have been presented. In Chapter 4, multi item
imperfect production inventory model with promotional demand in random planning horizon
has been illustrated. In this model, the demand rate depend on both selling price and
advertisement. In Chapter 5, a deteriorating manufacturing system is considered with
inspection errors. In this model, the demand rate depends on discount and warranty period. In
Chapter 6, two layers supply chain in an imperfect production inventory model with two
storage facilities under reliability consideration has been described. In this model, the
defective rate depends on both production rate and time. Rework of imperfect item has been
considered in all models in this part.

In fourth part containing Chapter 7, 8 & 9, there are presented three different types of
imperfect production inventory models in fuzzy environments. In Chapter 7, three-layer
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supply chain in an imperfect production inventory model with two storage facilities under
fuzzy rough environment has been developed. Here, the demand of the customers is
considered as stock dependent. Chapter 8 discusses an imperfect production inventory model
based on fuzzy differential and fuzzy integral method. In Chapter 9, controlling GHG
emission from industrial waste in two plant production and reproduction inventory model
with interval valued fuzzy pollution parameters has been discussed.

Fifth part contains Chapter 10 & 11 which discuss two different types of imperfect
production inventory models in fuzzy stochastic environments. In Chapter 10, multi-item
EPQ model with shortages, rework and learning effect on imperfect production over
fuzzy-random planning horizon has been developed. In Chapter 11, two layers supply chain
imperfect production inventory model with fuzzy credit period, time and production rate
dependent imperfectness has been discussed. In this model, the demand rate of the customers
is considered as stock dependent and credit period. Rework of imperfect item has been
considered all models in this part.

In this thesis, several new techniques or existing techniques in modified forms have been
developed and implemented to solve the above mentioned imperfect production inventory
models. These methods are: Generalized Reduced Gradient (GRG) technique, Genetic
Algorithm (GA), Population Varying Genetic Algorithm (PVGA), Multi-Objective Genetic
Algorithm(MOGA), Fuzzy Simulation Based Genetic Algorithm (FSGA), Possibility/
Necessity/ Credibility representation, Solution of Fuzzy Differential Equation (FDE), Fuzzy
Programming Technique(FPT).

In this thesis, some statistical tests have been developed and implemented to above
mentioned imperfect production inventory models. These test are: ANOVA test for
comparison of means in Chapter 4, Fishers ‘t test for Comparison of two means in Chapter 8.

12.2 Future Research Work

There are lot of scopes to improve the production inventory models of this thesis.

In Chapter 3, the proposed model can be extended in several ways such as, First, one can
extend this model for stock dependent demand, probabilistic demand. Second, this model can
be generalized by considering two level credit policy. Third, this model can be extended to
fuzzy demand rate and fuzzy percentage of defective products.

In Chapter 4, the proposed model investigates a multi-item imperfect production
inventory model with promotional effort over random planning horizon and the proposed
model is solved via Population Varying Genetic Algorithm (PVGA). This model can be
extended in fuzzy and/or fuzzy-stochastic environment instead of stochastic (random)
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planning horizon. Moreover, the randomness of the horizon also can be proposed with other
continuous distribution. The items also can be treated as breakable or damageable, etc. Thus,
the scope for future work includes rigorous testing of this model with real and simulated data.

In Chapter 5 & 6, the model can be extended further considering the uncertain demand
which is the limitation of our model; the stock out situation at each stage of the chain may be
incorporated further. Moreover, multi-retailer levels may also be introduced in the model.

In Chapter 8, the proposed work can be extended to the rough, fuzzy-rough, random,
fuzzy-random environment taking constant part of screening cost, holding cost, set-up cost,
etc.

In Chapter 9, the proposed model investigates GA approach for controlling GHG
emission from industrial waste in two plant production and reproduction inventory model
with interval valued fuzzy pollution parameters. This model can be extended multi item
production inventory model in fuzzy stochastic environment instead of stochastic (random)
planning horizon. The items also can be treated as breakable or damageable, etc. Thus, the
scope for future work includes rigorous testing of this model with real and simulated data.

In Chapter 10, there are several interesting extensions to research work. First, more
general distributions such as normal distribution, standard normal distribution, etc. for
random time horizons can be considered. Another direction could be to consider fuzzy
dependent demand, probabilistic demand, time-dependent demand, etc. Finally, we can
consider the joint optimization of production, maintenance and quality with a two-level credit
period policy.

In Chapter 11, we suggest several possible directions for future research. First, one may
extend our considered EPQ model to joint optimization of expected total profit and carbon
emission (i.e., maximize expected total profit and minimize carbon emission). Second, one
immediate possible extension could be allowable shortages, cash discounts, etc. Finally, one
can extend the fully trade credit policy to the partial trade credit policy in which a seller
requests its credit-risk customers to pay a fraction of the purchase amount at the time of placing
an order as a collateral deposit, and then grants a permissible delay on the rest of the purchase
amount.
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Appendix A

For Chapter 3

Expression of first order partial derivative of the average profit AP (P, T ) w.r.t P ,
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From Lemma 3.7, we obtained the screening period t2 is given by
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(iv)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
SCj

Lf(h) dh =
∞∑

Nj=0

∫ NjT j+tj1

NjT j
SCj

L1
f(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj1

SCj
L2
f(h) dh

=
cjsr(P

j
0 + P j

1D
j)

R{1− e−(R+λ)T j}

[ R

R + λ
{1− e−(R+λ)tj1} − (1− e−Rt

j
1)e−λT

j

)
]

(v)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
RCj

Lf(h) dh =
∞∑

Nj=0

∫ NjT j+tj1

NjT j
RCj

L1
f(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj1

RCj
L2
f(h) dh

=
δj(1− βj)rjc

R{1− e−(R+λ)T j}
(P j

0 + P j
1D

j)
[ R

R + λ
{1− e−(R+λ)tj1} − (1− e−Rt

j
1)e−λT

j

)
]

(vi)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
SRj

Lf(h) dh =
∞∑

Nj=0

∫ NjT j+tj1

NjT j
SRj

L1
f(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj1

SRj
L2
f(h) dh

=
Djsj

R{1− e−(R+λ)T j}
[(1− e−λT j) +

λ

R + λ
(e−(R+λ)T j − 1)]

(vii) In the demand expression D1
1(S1) = A1(s1max−s1)

s1−s1max
the input parameter s1

min is taken per
unit total requirement input parameter cost. Other two parameters A1, s1

max are computed by
the solving following two regression lines for n = 7.

1

n

n∑
i=1

D1(i)s1(i)− s1
min

n

n∑
i=1

D1(i) = A1
[
s1
max −

1

n

n∑
i=1

s1(i)
]

(B.1)

and
1

n

n∑
i=1

{D1(i)}2s1(i)− s1
min

n

n∑
i=1

{D1(i)}2 = A1
[
s1
max

1

n

n∑
i=1

D1(i)− 1

n

n∑
i=1

D1(i)s1(i)
]

(B.2)

(viii) Similarly for the demand expression D1
2(ν1) = κ1(1 − 1

ν1+1
) the input parameter κ1 is

estimated by the solving following regression line.

k1 =
1

n

n∑
i=1

D1(i)− 1

n

n∑
i=1

D1(i)

ν1(i)
, for n=7

(ix) The following formula are used in ANOVA comparison:
For the groups data X1, X2, . . . , Xk of sizes n1, n2, . . . , nk respectively,

N =
k∑
i=1

ni , X =

∑k
i=1 Xi

N
, SSt =

k∑
i=1

n∑
i=1

(Xi −X)2 with dft = N − 1 and s2
t =

SSt
dft

X1 =

∑
X1

n1

; X2 =

∑
X2

n2

; . . . ;Xk =

∑
Xk

nk
, SSb =

k∑
i=1

[ni(Xi −X)2] with dfb = k − 1

SSw =
k∑
i=1

n∑
i=1

(Xi −X)2 with dfw = N − k and s2
b =

SSb
dfb

, s2
w =

SSw
dfw

, F =
s2
b

s2
w

.
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Appendix C

For Chapter 5

(i)

∫ t1

0

f(τ) dτ = λ

∫ t1

0

e−λτ dτ

= 1− e−λt1

= λt1, approximating up to the second term of the expansion of e−λt1

(ii)

∫ ∞
t1

f(τ) dτ = λ

∫ ∞
t1

e−λτ dτ

= e−λt1

= 1− λt1, approximating up to the second term of the expansion of e−λt1

(iii)

∫ t1

0

τf(τ) dτ = λ

∫ t1

0

τe−λτ dτ

=
1

λ
{1− e−λt1} − t1e−λt1

= λt21, approximating up to the third term of the expansion of e−λt1

(iv)

∫ t1

0

(
t1 − τ

)
f(τ) dτ = λ

∫ t1

0

(
t1 − τ

)
e−λτ dτ

= t1 −
1

λ
{1− e−λt1}

=
1

2
λt21, approximating up to the third term of the expansion of e−λt1
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(v)

∫ t1

0

τ 2f(τ) dτ = λ

∫ t1

0

τ 2e−λτ dτ

= t21e
−λt1 − 2t1

λ
e−λt1 +

2

λ2
{1− e−λt1}

=
1

2
λ2t41, approximating up to the third term of the expansion of e−λt1

(vi)

∫ t1

0

(
t1 − τ

)2

f(τ) dτ = λ

∫ t1

0

(
t1 − τ

)2

e−λτ dτ

= t21 −
2t1
λ

+
2

λ2
{1− e−λt1}

=
1

3
λt31, approximating up to the fourth term of the expansion of e−λt1

(vii)

∫ t1

0

(
t1 − τ

)3

f(τ) dτ = λ

∫ t1

0

(
t1 − τ

)3

e−λτ dτ

= t31 − 3

∫ t1

0

(
t1 − τ

)2

e−λτ dτ

= t31 −
3

λ

∫ t1

0

(
t1 − τ

)2

f(τ) dτ

= t31 −
3

λ

[
t21 −

2t1
λ

+
2

{λ}2
{1− e−λt1}

]
, using (iv)

=
1

4
λt41, approximating up to the fifth term of the expansion of e−λt1
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Appendix D

For Chapter 6

(i)

∫ t1

0

f(τ) dτ

= λ1φ(P )

∫ t1

0

e−λ1φ(P )τ dτ

= 1− e−λ1φ(P )t1

= λ1φ(P )t1, approximating up to the second term of the expansion of e−λ1φ(P )t1

(ii)

∫ t1

0

(
t1 − τ

)
λ1φ(τ) dτ

= λ1φ(P )

∫ t1

0

(
t1 − τ

)
e−λ1φ(P )τ dτ

= t1 −
1

λ1φ(P )
{1− e−λ1φ(P )t1}

=
1

2
λ1φ(P )t21, approximating up to the third term of the expansion of e−λ1φ(P )t1

(iii)

∫ t1

0

(
t2 − τ

)
λ1φ(τ) dτ

= λ1φ(P )

∫ t1

0

(
t2 − τ

)
e−λ1φ(P )τ dτ

= −(t2 − t1)e−λ1φ(P )t1) + t2 −
1

f(P )
{1− e−λ1φ(P )t1}

= t1(t2 − t1)λ1φ(P ), approximating up to the second term of the expansion of e−λ1φ(P )t1
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(iv)

∫ t1

0

(
t1 − τ

)2

f(τ) dτ

= λ1φ(P )

∫ t1

0

(
t1 − τ

)2

e−λ1φ(P )τ dτ

= t21 −
2t1

λ1φ(P )
+

2

{λ1φ(P )}2
{1− e−λ1φ(P )t1}

=
1

3
λ1φ(P )t31, approximating up to the fourth term of the expansion of e−λ1φ(P )t1

(v)

∫ t1

0

(
t1 − τ

)3

f(τ) dτ

= λ1φ(P )

∫ t1

0

(
t1 − τ

)3

e−λ1φ(P )τ dτ

= t31 − 3

∫ t1

0

(
t1 − τ

)2

e−λ1φ(P )τ dτ

= t31 −
3

λ1φ(P )

∫ t1

0

(
t1 − τ

)2

f(τ) dτ

= t31 −
3

λ1φ(P )

[
t21 −

2t1
λ1φ(P )

+
2

{λ1φ(P )}2
{1− e−λ1φ(P )t1}

]
, using (iv)

=
1

4
λ1φ(P )t41, approximating up to the fifth term of the expansion of e−λ1φ(P )t1
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Appendix E

For Chapter 7

T = t4 +
1

β1

log
[
(1− Dr

α1

)(1− e−β1t3)
]

= t2 +
S −W1

α1 + β1W1

+
1

β1

log
[
(1− Dr

α1

)(1− e−β1t3)
]

=
P

Dr

[ 1

α
(1− β)(1− e−αt1) + βt1 +

S −W1

α1 + β1W1

+
1

β1

log
[
(1− Dr

α1

)(1− e−β1t3)
]

=
P

Dr

t1 +
S −W1

α1 + β1W1

+
1

β1

log
[
(1− Dr

α1

)(1− e−β1t3)
]

=
1− θ
Dr

R + t0, (using 1− e−αt1 ≈ αt1

)
.

APS(R,P ) =
1

T

[
{ws(1− θ) + w′sθ − cs − sc}R− As − hsR[

(1− θ)t1
2

+
Rθ

x
]− Ics(T − t1)

]
=

1

T

[
− Z0s + Z1sR + Z2s

R

P
− Z3s

R2

2P
− Z4sR

2
]
, where Z0s = (As + Icst0),

Z1s =
[
ws(1− θ) + w′s − cs − sc −

Ics(1− θ)
Dr

]
,

Z2s = Ics(1− θ), Z3s = hs(1− θ)2, Z4s =
hsθ

x
.

APM(R,P ) =
1

T

[
(smDrt2 + s′mD

′
rt
′
2)−

{
ws + C(P ) + Ism

}
Pt1

−rcm
{
− Pβ

α
(1− e−αt1) + Pβt1

}
− Am − Icm(T − t2)

−hm
{P
α

(1− β)t1 −
P

α2
(1− β)(1− e−αt1) + Pβ

t21
2
−Dr

t22
2

}
−h′m

{ P
α2
γ(1− β)(1− e−αt1)− γ

α
(1− β)Pt1 + (γ(1− β)P −D′r)

t21
2

+
D′r
2

(t1 − t′2)2
}]
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=
1

T

[
(sm +

Icm
Dr

)
{P
α

(1− β)(1− e−αt1) + Pβt1

}
−
{
ws + C(P ) + Ism

}
Pt1 − Am

+s′m

{−Pγ
α

(1− β)(1− e−αt1) + Pγ(1− β)t1

}
− rcm[−Pβ

α
(1− e−αt1) + Pβt1]

−IcmT − hm
{P
α

(1− β)t1 −
P

α2
(1− β)(1− e−αt1) + Pβ

t21
2
−Dr

t22
2

}
−h′m

{ P
α2
γ(1− β)(1− e−αt1)− γ

α
(1− β)Pt1 + (γ(1− β)P −D′r)

t21
2

+
D′r
2

(t1 − t′2)2
}]

=
1

T

[
(sm +

Icm
Dr

− ws − Ism −R1)Pt1 − IcmT − Am −Gt1 −HP 2t1

+
[
s′m(1− β)αγ − (sm +

Icm
Dr

)(1− β)α− hm − rcmαβ
]Pt12

2

+
hm
2Dr

P 2t1
2 + h′mD

′
rt1

2
]
, (Using 1− e−αt1 ≈ αt1

)
=

1

T

[
− Z0m − Z1m

R

P
+ Z2mR + Z3m

R2

P 2
+ Z4m

R2

P
+ Z5mR

2 − Z6mPR
2
]
.

where Z0m = Icmt0 − Am, Z1m = G(1− θ), Z2m = (sm − ws − Ism −R1)(1− θ)
Z4m =

[
s′m(1− β)αγ − (sm + Icm

Dr
)(1− β)α− hm − rcmαβ

]
(1−θ)2

2

Z3m = h′mD
′
r(1− θ)2, Z5m = hm

2Dr
(1− θ)2, Z6m = H(1− θ).

APR(R,P ) =
1

T

[
(sr − ctp)

{
(α1 + β1W1)(t4 − t3) +Dr(t3 −

1

β1

) +
Dr − α1

β1

e−β1t3

+
α1

β1

e−β1(t4−T )
}
− hrs

2

{
(Dr − (α1 + β1W1))(t2 − t3)2 + (α1 + β1W1)(t2 − t4)2

}
−hr

{Dr − α1

β1

(t3 +
e−β1t3

β1

− 1

β1

) +W1(t4 − t3)− α1

β1

{
(T − t4) +

1

β1

− e−β1(t4−T )

β1

}}
−h

′
r

2

{
(D′r −D′c)t′2

2
+D′c(t

′
2 − T ′)2

}
− Ar − A′r + (s′r − c′tp)D′rt′2

−sm
{P
α

(1− β)t1 −
P

α2
(1− β)(1− e−αt1) + (Pβ)

t21
2
−D′r

t22
2

}
−s′m

{Pγ
α2

(1− β)(1− e−αt1)− Pγ

α
(1− β)t1 +

D′r
2

(t1 − t′2)2 + (Pγ(1− β)−D′r)
t21
2

}]
=

1

T

[
Z0r + Z1rR + Z2r

R2

2P
+ Z3rR

2 + Z4r
R3

P
+ Z5r

R4

P 2

]
, (using 1− e−αt1 ≈ αt1)

where Z0r = −hrs
[

(s−W1)2

2(Dr−(α1+β1W1))
+ (s−W1)2

2(α1+β1W1)

]
− Ar − A′r

− hr
[
− α1

β2
1

log(1 + β1W1

α1
)− 1

β1
(Dr−α1

β1
− DrW1

α1+β1W1
) log(1− W1β1

Dr−α1
)
]

Z1r = (sr − ctp − hrW1

α1+β1W1
)(1− θ)

Z2r =
[
(s′r − c′tp)γα(1− β) + (sr − ctp − hrW1

α1+β1W1
)α(1− β)− Wm

2

]
(1− θ)2
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Z3r = sm
2Dr

(1− θ)2, Z4r =
[
s′mγα

2
(1− β)− smγ

2Dr
(1− β)

]
(1− θ)3

Z5r =
[
sm

γ2

4Dr
(1− β)2 − s′m

γ2α2

8Dr
(1− β)2 − h′r

8D′r

{
(D′r −D′c) + (D′r−D′c)2

D′2c

}
γ2α2(1− β)2

]
.

IAP (R,P ) =
[
APS + APM + APR

]
=

1

T

[
(Z0r − Z0m − Z0s) + (Z2s − Z1m)

R

P
+ (Z1s + Z1r + Z2m)R− (Z3s + 2Z4m

+Z2r)
R2

2P
+ Z3m

R2

P 2
− Z6mPR

2 − (Z4s − Z3r − Z5m)R2 + Z4r
R3

P
+ Z5r

R4

P 2

]
=

1

T

[
Z0 + Z1

R

P
+ Z2R− Z3

R2

2P
+ Z4

R2

P 2
− Z5PR

2 − Z6R
2 + Z7

R3

P
+ Z8

R4

P 2

]
,

where Z0 = (Z0r − Z0m − Z0s), Z1 = (Z2s − Z1m), Z2 = (Z1s + Z1r + Z2m), Z5 = Z6m,

Z3 = (Z3s + 2Z4m + Z2r), Z4 = Z3m, Z7 = Z4R, Z8 = Z5R, Z6 = (Z4s − Z3r − Z5m).

Calculations for optimality test

d

dP
(APM) =

1

T

[
Z1m

R

P 2
− 2Z3m

R2

P 3
− Z4m

R2

P 2
− Z6mR

2
]
.

d2

dP 2
(APM) =

1

T

[
− Z1m

R

P 3
+ 3Z3m

R2

P 4
+ Z4m

R2

P 3

]
.

d

dP
(IAP ) =

1

T

[
− Z1

R

P 2
+ Z3

R2

2P 2
− 2Z4

R2

P 3
− Z5R

2 − Z7
R3

P 2
− 2Z8

R4

P 3

]
.

d2

dP 2
(IAP ) =

1

T

[
2Z1

R

P 3
− Z3

R2

P 3
+ 6Z4

R2

P 4
+ 2Z7

R3

P 3
+ 6Z8

R4

P 4

]
.

∂

∂R
(APM) =

1

T

[
− Z1m

1

P
+ Z2m + 2Z3m

R

P 2
+ 2Z4m

R

P
+ 2Z5mR− 2PRZ6m

]
−(1− θ)
DrT 2

[
− Z0m − Z1m

R

P
+ Z2mR + Z3m

R2

P 2
+ Z4m

R2

P
+ Z5mR

2 − Z6mPR
2
]

=
(1− θ)
DrT

Z0m +
[(1− θ)R
DrTP

− 1

P
]Z1m + [1− (1− θ)R

DrT

]
Z2m +

[2R

P 2
− (1− θ)R2

DrTP 2

]
Z3m

+
[2R

P
− (1− θ)R2

DrTP

]
Z4m +

[
2R− (1− θ)R2

DrT
]Z5m + [

(1− θ)R2P

DrT
− 2PR

]
Z6m.

∂

∂P
(APM) =

1

T

[
Z1m

R

P 2
− 2Z3m

R2

P 3
− Z4m

R2

P 2
− Z6mR

2
]
.

∂2

∂P 2
(APM) = 2

[
− Z1m

R

P 3
+ 3Z3m

R2

P 4
+ Z4m

R2

P 3

]
∂2

∂R∂P
(APM) =

1

T

[
Z1m

1

P 2
− 4Z3m

R

P 3
− 2Z4m

R

P 2
− 2Z6mR

]
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∂2

∂R2
(APM) =

1

T

[
− (1− θ)2

Dr
2T 2

Z0m +
{(1− θ)
DrPT

− (1− θ)2R

Dr
2T 2P

}
Z1m +

{(1− θ)2R

Dr
2T 2

− (1− θ)
DrT

}
Z2m

+
{(1− θ)2R2

Dr
2T 2P 2

+
1

P 2
− 2(1− θ)R

DrTP 2

}
Z3m +

{ (1− θ)2

Dr
2T 2P

+
1

P
− 2(1− θ)R

DrTP

}
Z4m

+
{

1− 2(1− θ)R
DrPT

+
(1− θ)2R2

Dr
2T 2

}
Z5m −

{
P − 2(1− θ)PR

DrT
+

(1− θ)2R2P

Dr
2T 2

}
Z6m

]
.

∂

∂R
(IAP ) =

1

T

[
Z1

1

P
+ Z2 − Z3

R

P
+ 2Z4

R

P 2
− 2Z5PR− 2Z6R + 3Z7

R2

P
+ 4Z8

R3

P 2

]
−(1− θ)
DrT 2

[
Z0 + Z1

R

P
+ Z2R− Z3

R2

2P
+ Z4

R2

P 2
− Z5PR

2 − Z6R
2 + Z7

R3

P
+ Z8

R4

P 2

]
∂2

∂R2
(IAP ) =

1

T

[2(1− θ)2

Dr
2T 2

Z0 +
{2(1− θ)2R

Dr
2T 2P

− 2(1− θ)
DrTP

}
Z1 + {2(1− θ)2R

Dr
2T 2

− 2(1− θ)
DrT

}
Z2

−
{

1 +
2(1− θ)2R2

Dr
2T 2P

− 2(1− θ)R
DrTP

}
Z3 +

{ 2

P 2
+

2(1− θ)2R2

Dr
2T 2P 2

− 4(1− θ)R
DrTP

}
Z4

−
{

2P +
2(1− θ)2PR2

Dr
2T 2

− 4(1− θ)PR
DrT

}
Z5 −

{
2 +

2(1− θ)2R2

Dr
2T 2

− 4(1− θ)R
DrT

}
Z6

+
{6R

P
+

2(1− θ)2R3

Dr
2T 2P

− 6(1− θ)R2

DrTP

}
Z7 +

{12R2

P 2
+

2(1− θ)2R4

Dr
2T 2P 2

− 8(1− θ)R3

DrTP 2

}
Z8

]
.

∂

∂P
(IAP ) =

1

T

[
− Z1

R

P 2
+ Z3

R2

2P 2
− 2Z4

R2

P 3
− Z5R

2 − Z7
R3

P 2
− 2Z8

R4

P 3

]
.

∂2

∂P 2
(IAP ) =

1

T

[
2Z1

R

P 3
− Z3

R2

P 3
+ 6Z4

R2

P 4
+ 2Z7

R3

P 3
+ 6Z8

R4

P 4

]
.

∂2

∂R∂P
(IAP ) =

1

T

[
− Z1

1

P 2
+ Z3

R

P 2
− 4Z4

R

P 3
− 2Z5R− 3Z7

R2

P 2
− 8Z8

R3

P 3

]
−(1− θ)
DrT 2

[
− Z1

R

P 2
+ Z3

R2

2P 2
− 2Z4

R2

P 3
− Z5R

2 − Z7
R3

P 2
− 2Z8

R4

P 3

]
=

1

T

[{(1− θ)R
DrTP 2

− 1

P 2

}
Z1 +

{ R
P 2
− (1− θ)R2

2DrTP 2

}
Z3 +

{2(1− θ)R2

DrTP 3
− 4R

P 3

}
Z4

+
{(1− θ)R2

DrT
− 2R

}
Z5 +

{(1− θ)R2

DrTP 2
− 3R2

P 2

}
Z7 +

{2(1− θ)R2

DrTP 3
− 8R3

P 3

}
Z8

]
.
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Appendix F

For Chapter 9

(i) P2i = Production rate of ith cycle in plant II=λP2(i−1) = λi−1P2, with P21 = P2.
n∑
i=1

P2i = P2

n∑
i=1

λi−1 = P2
λn − 1

λ− 1
, λ > 1.

(ii) D2i = Demand rate of ith cycle in plant II=µD2(i−1) = µi−1D2 with D21 = D2.
n∑
i=1

D2i = D2

n∑
i=1

µi−1 = D2
µn − 1

µ− 1
, µ > 1.

(iiii) αij = percentage of return of better quality items per unit time collected from the market
for ith cycle from jth cycle (j=1,2,. . . ,i) in plant I and we take αii = α1 and αij−1 = αijh .

Therefore, αi+m,i = hαi+m,i+1 = h2 αi+m,i+2 = . . . . . . · · · = hm αi+m,i+m = hm α1,

k+i−1∑
r=i

αij = αi,i + αi+1,i + αi+2,i + · · ·+ αi+k−1,i

= αi,i + hαi+1,i+1 + h2αi+2,i+2 + · · ·+ hk−1αi+k−1,i+k−1

= α1 + hα1 + h2α1 + · · ·+ hk−1α1

= α1
hk − 1

h− 1
, h > 1, i = 1, 2, . . . , n− k + 1.

n∑
r=i

αri = αi,i + αi+1,i + αi+2,i + · · ·+ αn,i

= αi,i + hαi+1,i+1 + h2αi+2,i+2 + · · ·+ hk−1αi+(n−i),i+(n−i)

= α1 + hα1 + h2α1 + · · ·+ hn−iα1

= α1
hn−i+1 − 1

h− 1
, h > 1, i = n− k + 2, . . . , n− 1.
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Similarly,
k+i−1∑
r=i

βri = α2
h′k − 1

h′ − 1
, h′ > 1, i = 1, 2, . . . , n− k + 1.

and
n∑
r=i

βri = α2
h′n−i+1 − 1

h′ − 1
, h′ > 1, i = n− k + 2, . . . , n− 1.

(iv) Here ε̃g = [ε̃Lg , ε̃
R
g ], ε̃w = [ε̃Lw, ε̃

R
w], ẼRg = [ẼR

L

g , ẼR
R

g ];
where ε̃Lg = (εLg1, ε

L
g2, ε

L
g3), ε̃Rg = (εRg1, ε

R
g2, ε

R
g3); ε̃Lw = (εLw1, ε

L
w2, ε

L
w3), ε̃Rw = (εRw1, ε

R
w2, ε

R
w3);

ẼR
L

g = (ERL
g1, ER

L
g2, ER

L
g3), ẼR

R

g = (ERR
g1, ER

R
g2, ER

R
g3) are considered as TFN, so

T̃Cp1 = n
{
cp + rcδ1(1− β1) + csr

}
P1t1 + THC1 + nAs + ncw[ε̃Lw, ε̃

R
w]P η1w

1 t1 + ncg[ε̃
L
g , ε̃

R
g ]P

η1g
1 t1

= [T̃C
L

p1, T̃C
R

p1]

T̃Cp2 = TPC2 +RWC2 + TSC2 + THC2 + nA′s + cw[ε̃Lw, ε̃
R
w](T − t1)

n∑
i=1

P
η2g
2i

+cg[ε̃
L
g , ε̃

R
g ](T − t1)

n∑
i=1

P
η2g
2i = [T̃C

L

p2, T̃C
R

p2]

Z̃g = n[ε̃Lg , ε̃
R
g ]P

η1g
1 t1 + [ε̃Lg , ε̃

R
g ](T − t1)

n∑
i=1

P
η2g
2i + [ẼR

L

g , ẼR
R

g ]Q4 = [Z̃L
g , Z̃

R
g ]

where T̃C
L

p1 = n
{
cp+rcδ1(1−β1)+csr

}
P1t1 +THC1 +nAs+ncw ε̃

L
wP

η1w
1 t1 +ncg ε̃

L
gP

η1g
1 t1,

T̃C
R

p1 = n
{
cp + rcδ1(1− β1) + csr

}
P1t1 + THC1 + nAs + ncw ε̃

R
wP

η1w
1 t1 + ncg ε̃

R
g P

η1g
1 t1,

T̃C
L

p2 = TPC2 +RWC2 + TSC2 + THC2 + nA′s + cw ε̃
L
w(T − t1)

n∑
i=1

P η2w
2i + cg ε̃

L
g (T − t1)

n∑
i=1

P
η2g
2i ,

T̃C
R

p2 = TPC2 +RWC2 + TSC2 + THC2 + nA′s + cw ε̃
R
w(T − t1)

n∑
i=1

P η2w
2i + cg ε̃

R
g (T − t1)

n∑
i=1

P
η2g
2i ,

z̃Lg = nε̃LgP
η1g
1 t1 + ε̃Lg (T − t1)

∑n
i=1 P

η2g
2i + ẼR

L

gQ4,

z̃Rg = nε̃Rg P
η1g
1 t1 + ε̃Rg (T − t1)

∑n
i=1 P

η2g
2i + ẼR

R

g Q4.

T̃P = TSRp1 + TSRp2 − T̃Cp1 − T̃Cp2 − THC3 − cgẼRgQ4 − ctQ4 = [T̃P
L
, T̃P

R
]

where

T̃P
L

= TSRp1 + TSRp2 − T̃C
R

p1 − T̃C
R

p2 − THC3 − cgẼR
R

g Q4 − ctQ4

T̃P
R

= TSRp1 + TSRp2 − T̃C
L

p1 − T̃C
L

p2 − THC3 − cgẼR
L

gQ4 − ctQ4
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Using Lemma 2.3, we have
E(ε̃Lg ) = 1

2

{
(1− ρ)εLg1 + εLg2 + ρεLg3

}
, E(ε̃Rg ) = 1

2

{
(1− ρ)εRg1 + εRg2 + ρεRg3

}
, 0 < ρ < 1

E(ε̃Lw) = 1
2

{
(1− ρ)εLw1 + εLw2 + ρεLw3

}
, E(ε̃Rw) = 1

2

{
(1− ρ)εRw1 + εRw2 + ρεRw3

}
,

E(ẼR
L

g ) = 1
2

{
(1−ρ)ERL

g1+ERL
g2+ρERL

g3

}
,E(ẼR

R

g ) = 1
2

{
(1−ρ)ERR

g1+ERR
g2+ρERR

g3

}
,

E(T̃C
L

p1) = TPC1 +RWC1 +TSC1 +THC1 +nAs +ncwE(ε̃Lw)P η1w
1 t1 +ncgE(ε̃Lg )P

η1g
1 t1,

E(T̃C
R

p1) = TPC1 +RWC1 +TSC1 +THC1 +nAs +ncwE(ε̃Rw)P η1w
1 t1 +ncgE(ε̃Rg )P

η1g
1 t1,

E(T̃C
L

p2] = TPC2 +RWC2 + TSC2 + THC2 + nA′s + cwE(ε̃Lw)(T − t1)

n∑
i=1

P
η2g
2i + cgE(ε̃Lg )(T − t1)

n∑
i=1

P
η2g
2i ,

E(T̃C
R

p2] = TPC2 +RWC2 + TSC2 + THC2 + nA′s + cwE(ε̃Rw)(T − t1)

n∑
i=1

P
η2g
2i + cgE(ε̃Rg )(T − t1)

n∑
i=1

P
η2g
2i ,

E(z̃Lg ) = nE(ε̃Lg )P
η1g
1 t1 + E(ε̃Lg )(T − t1)

∑n
i=1 P

η2g
2i + E(ẼR

L

g )Q4,

E(z̃Rg ) = nE(ε̃Rg )P
η1g
1 t1 + E(ε̃Rg )(T − t1)

∑n
i=1 P

η2g
2i + E(ẼR

R

g )Q4.
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Appendix G

For Chapter 10

(i)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
PCj

Lf̃(h) dh

=
∞∑

Nj=0

∫ NjT j+tj1

NjT j
PCj

L1
f̃(h) dh+

∞∑
Nj=0

∫ NjT j+tj2

NjT j+tj1

PCj
L2
f̃(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj2

PCj
L3
f̃(h) dh

=
cjpP

j

R

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

] ∞∑
Nj=0

e−(RT j+λ̃T j−βj)Nj

=
cjpP

j

R{1− e−(RT j+λ̃T j−βj)}

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

]

(ii)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
SCj

Lf̃(h) dh

=
∞∑

Nj=0

∫ NjT j+tj1

NjT j
SCj

L1
f̃(h) dh+

∞∑
Nj=0

∫ NjT j+tj2

NjT j+tj1

SCj
L2
f̃(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj2

SCj
L3
f̃(h) dh

=
cjsrP

j

R

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

] ∞∑
Nj=0

e−(RT j+λ̃T j−βj)Nj

=
cjsrP

j

R{1− e−(RT j+λ̃T j−βj)}

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

]
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(iii)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
RCj

Lf̃(h) dh

=
∞∑

Nj=0

∫ NjT j+tj1

NjT j
RCj

L1
f̃(h) dh+

∞∑
Nj=0

∫ NjT j+tj2

NjT j+tj1

RCj
L2
f̃(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj2

RCj
L3
f̃(h) dh

=
rjc(1− δj)θjP j

R{1− e−{(R+λ̃)T j+αj}}

[
(1− e−λ̃T j)− λ̃

R + λ̃
{1− e−(R+λ̃)tj1} − e−Rt

j
1(e−λ̃t

j
1 − e−λ̃T j)

]

(iv)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
SRj

Lf̃(h) dh

=
∞∑

Nj=0

∫ NjT j+tj1

NjT j
SRj

L1
f̃(h) dh+

∞∑
Nj=0

∫ NjT j+tj2

NjT j+tj1

SRj
L2
f̃(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj2

SRj
L3
f̃(h) dh

=
sjP j

R

{ 1

1− e−(R+λ̃)T j
− δjθj

1− e−{(R+λ̃)T j+αj}

}[
(1− e−λ̃t

j
2)− λ̃

λ̃+R
{1− e−(R+λ̃)tj2}

]
+sj

{ (P j − aj)
1− e−(R+λ̃)T j

− δjθjP j

1− e−{(R+λ̃)T j+αj}

}[ 1

R + bj
(1− e−λ̃t

j
1)− λ̃{1− e−(λ̃+R+bj)tj1}

(R + bj)(λ̃+R + bj)

+
{ 1

R
(1− e−Rt

j
1)− 1

R + bj
{1− e−(R+bj)tj1}

}
(e−λ̃t

j
1 − e−λ̃T j)

]
− sjaj

1− e−(R+λ̃)T j

[e−Rtj1
R

(e−λ̃t
j
1 − e−λ̃t

j
2)− λ̃

R(λ̃+R)
(e−(R+λ̃)tj1 − e−(R+λ̃)tj2)

− eb
jt2

R + bj

{
e−(R+bj)tj1(e−λ̃t

j
1 − e−λ̃t

j
2)− λ̃

(λ̃+R + bj)
{e−(R+bj+λ̃)tj1 − e−(R+bj+λ̃)tj2}

}
+
{ 1

R
(e−Rt

j
1 − e−Rt

j
2)− eb

jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

}
(e−λ̃T

j − e−λ̃t
j
2)
]

(v)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
SHj

Lf̃(h) dh

=
∞∑

Nj=0

∫ NjT j+tj1

NjT j
SHj

L1
f̃(h) dh+

∞∑
Nj=0

∫ NjT j+tj2

NjT j+tj1

SHj
L2
f̃(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj2

SHj
L3
f̃(h) dh

=
cjsha

j

bj{1− e−(R+λ̃)T j}

[ bje−Rt
j
2

R(R + bj)

(
e−λ̃t

j
2 − e−λ̃T j

)
− λ̃

R(R + λ̃)

{
e−(R+λ̃)tj2 − e−(R+λ̃)T j

}
+

λ̃ebt
j
2

(R + bj)(R + λ̃+ bj)

{
e−(R+λ̃+bj)tj2 − e−(R+λ̃+bj)T j

}]
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(vi)
∞∑

Nj=0

∫ (Nj+1)T j

NjT j
HCj

Lf̃(h) dh

=
∞∑

Nj=0

∫ NjT j+tj1

NjT j
HCj

L1
f̃(h) dh+

∞∑
Nj=0

∫ NjT j+tj2

NjT j+tj1

HCj
L2
f̃(h) dh+

∞∑
Nj=0

∫ (Nj+1)T j

NjT j+tj2

HCj
L3
f̃(h) dh

=
hjc
bj

{ (P j − aj)
{1− e−(R+λ̃)T j}

− δjθjP j

{1− e−{(R+λ̃)T j+αj}}

}[ 1

R
(1− e−λ̃t

j
1)− λ̃

R(λ̃+R)
{1− e−(R+λ̃)tj1}

+
1

R + bj
(1− e−λ̃t

j
1)− λ̃

(R + bj)(λ̃+R + bj)
{1− e−(R+bj+λ̃)tj1}

+
{ 1

R
(1− e−Rt

j
1)− 1

R + bj
{1− e−(R+bj)tj1}

}
(e−λ̃t

j
1 − e−λ̃T j)

]
− hjca

j

bj{1− e−(R+λ̃)T j}

[e−Rtj1
R

(e−λ̃t
j
1 − e−λ̃t

j
2)− λ̃

R(λ̃+R)
(e−(R+λ̃)tj1 − e−(R+λ̃)tj2)

− eb
jt2

R + bj

{
e−(R+bj)tj1(e−λ̃t

j
1 − e−λ̃t

j
2)− λ̃

(λ̃+R + bj)
{e−(R+bj+λ̃)tj1 − e−(R+bj+λ̃)tj2}

}
+
{ 1

R
(e−Rt

j
1 − e−Rt

j
2)− eb

jtj2

R + bj
{e−(R+bj)tj1 − e−(R+bj)tj2}

}
(e−λ̃T

j − e−λ̃t
j
2)
]
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