
Some Problems on Supply Chain Management

Thesis submitted to the

Vidyasagar University, Midnapore

for the award of the degree of

DOCTOR OF PHILOSOPHY (SCIENCE)

by

Arunava Majumder

(Reg. No.: 0641/Ph.D./Sc. dated 30th December, 2013)

Department of Applied Mathematics with
Oceanology and Computer Programming

Vidyasagar University
Midnapore - 721 102

India
2016



Dedicated to my parents

Mr. Santanu Majumder

Mrs. Manju Majumder







ACKNOWLEDGMENTS

It is pleasure for me to express my sincere and deepest gratitude to Dr. Biswajit

Sarkar, Assistant Professor of Department of Applied Mathematics with Oceanology

and Computer Programming, Vidyasagar University, India, under whose kind super-

vision and guidance the entire work contained in this thesis have been carried out. I

convey my respect to my supervisor for helping me in research work and providing me

continuous support. His suggestion on both my research work and my career is truly

valuable. He provided me excellent suggestions for presenting the results of the thesis.

I would like to appreciate his contributions of time, guidance, and suggestions to de-

velop my Ph.D. experience throughout the research work. I feel myself very fortunate

to carry on my thesis study under the direction of my supervisor, who helps me to

learn the real technique for doing research work. My research would not have been

completed without his supports, helps, and guidance.

I am thankful to Mrs. Mitali Sarkar, Mr. Bikash Koli Dey, and Miss Gargi Roy

for their collaboration to contribute their ideas with me, which was very helpful for

constructing my research work.

I convey my appreciation to Prof. Madhumangal Pal, respected Head of the

Department of Applied Mathematics with Oceanology and Computer Programming,

Vidyasagar University, Dr. Shyamal Kumar Mondal, Dr. Sankar Kumar Roy, Dr. Dilip

Kumar Maiti, Mr. Ganesh Ghorai, Mr. Raghu Nandan Giri for their encouragement

in different stages and also indebted to the University for help and support and giving

me the opportunity to utilize the infrastructure to proceed my research work. I am

also thankful a substantial debt to each members of the Doctoral Scrutiny Committee

for their valuable suggestions, advice, and encouragement.

I appreciatively thankful to my co-researchers Mr. Sumon Sarkar, Miss Sarmila

Saren, Mr. Buddhadev Mandal, Mr. Bimal Kumar Sett, Mr. Hiranmoy Gupta, Mr.

Amalendu Singha Mahapatra, Miss Gargi Roy, Mr. Bikash Koli Dey, Miss Rekha

Guchhait, Miss Baisakhi Ganguly, Mr. Shaktipada Bhunia, Mr. Bijoy Kumar Shaw,

Miss Debjani Sinha for providing friendly environment and encouragement.

I convey my appreciation to Techno India College of Technology, Rajarhat, Kolkata,

India, and all faculty members and staffs of the Department of Basic Science and Hu-

manities for their continuous support and encouragement to carry on my research.

I gratefully acknowledge my parents, Mrs. Manju Majumder and Mr. Santanu

Majumder; all family members, Mr. Pradip Majumder, Mrs. Krishna Majumder, Mr.

Amitava Majumder, Mr. Rana Majumder, Miss Anuradha Nath, Mr. Madhab Nath,



Mr. Akshar Nath and my aunt Miss Swapna Das for their constant encouragement

which has been a source of inspiration to me.

I acknowledge all my teachers who supported me from the beginning of my edu-

cation and helped me to gather knowledge and wisdom to build a successful human

being.

I acknowledge all my friends Mr. Debodeep Raychaudhuri, Mr. Chirantan Dey

and my colleagues Mr. Tanmay Chakraborty, Miss Barnima Ghosal, Mr. Sujay Das,

Mr. Subhajit Pal, and Mr. Sayantan Majumder for their continuous support and en-

couragement.

I am very much thankful to everyone who is important to me for successful real-

ization of the thesis. I also convey my apology as I could not acknowledge each person

individually.

I gratefully acknowledge to the Editor-in-Chief of the journals Economic Modelling,

Applied Mathematics and Computation, and Journal of Industrial and Management

Optimization for publishing my papers.

Finally, I am grateful to the authors of all research articles from which I studied

many valuable contributions to gather knowledge and wisdom to help me for writing

this thesis.

Arunava Majumder



List of Publications and communicated papers

Published and accepted papers

1. B. Sarkar, A. Majumder, A study on three different dimensional facility location

problems, Economic Modelling, SSCI, I.F. 0.997. 2013, 30, 879-887.

2. B. Sarkar, A. Majumder, Integrated vendor-buyer supply chain model with ven-

dor’s setup cost reduction, Applied Mathematics and Computation, SCIE, I.F.

1.345. 2013, 224, 362-371.

3. B. Sarkar, A. Majumder, M. Sarkar, B. K. Dey, G. Roy, Two-echelon supply

chain model with manufacturing quality improvement and setup cost reduction,

Journal of Industrial and Management Optimization, SCIE, I.F. 0.84. Accepted.

Communicated papers

1. Manufacturing quality improvement and setup cost reduction in an integrated

vendor-buyer supply chain system. Under review in European Journal of Indus-

trial Engineering.

2. Joint effect of price and demand on decision making in a supply chain manage-

ment. Submitted to Journal of Industrial and Management Optimization.

3. Distribution free newsvendor model with consignment policy and retailer’s royalty

reduction. Submitted to International Journal of Production Research.

4. A multi-retailer supply chain model with backorder and variable production cost.

Submitted to RAIRO-Operations Research.

5. Relation between quality of products and production rate in a single-vendor

multi-retailer joint economic lot size model with variable production cost. Under

review in International Journal of Production Research.



Contents

Notation 8

1 Abstract 16

2 Introduction 18

2.1 Overview and definition of supply chain management . . . . . . . . . . . . . . . 18

2.2 Stages of a supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Objective of a supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Decisions in a supply chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Supply chain process views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Introduction of modelling within supply chain . . . . . . . . . . . . . . . . . . . 23

2.6.1 Inventory and integrated inventory models . . . . . . . . . . . . . . . . . 23

2.6.2 Facility location problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 Delivery policies among parties in a supply chain . . . . . . . . . . . . . . . . . 29

2.7.1 Single-setup single-delivery (SSSD) policy . . . . . . . . . . . . . . . . . 29

2.7.2 Single-setup multi-delivery (SSMD) policy . . . . . . . . . . . . . . . . . 30

2.7.3 Consignment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Supply chain model under uncertain and variable demand . . . . . . . . . . . . 31

2.8.1 Uncertain demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.2 Variable demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.3 Distribution free approach . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Integrated vendor-buyer supply chain model with vendor’s setup cost reduc-

tion 35

3.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



3.2.3 Solution algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.4 Distribution free approach . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.5 Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.6 Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.7 Solution algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.2 Evaluation of expected value of additional information (EVAI) . . . . . . 52

3.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Appendices of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Manufacturing quality improvement and setup cost reduction in an inte-

grated vendor-buyer supply chain system 57

4.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.2 Solution algorithm SM 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Distribution free approach . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.4 Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.5 Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.6 Solution algorithm SM 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Evaluation of expected value of additional information (EVAI) . . . . . . 72

4.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Appendix of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2



5 Two-echelon supply chain model with manufacturing quality improvement

and setup cost reduction 78

5.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.2 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Special case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.2 Special case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.3 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Appendices of Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Joint effect of price and demand on decision making in a supply chain man-

agement 101

6.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.2 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2.3 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.4 Solution algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.5 Distribution free approach . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.6 Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2.7 Lemma 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2.8 Solution algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

3



6.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6 Appendices of Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Distribution free newsvendor model with consignment policy and retailer’s

royalty reduction 125

7.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.2 Traditional policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.3 Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.2.4 Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.2.5 Consignment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.2.6 Proposed way to evaluate the fixed fee in CP . . . . . . . . . . . . . . . . 133

7.2.7 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3.1 Price sensitivity on demand . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.6 Appendices of Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8 A multi-retailer supply chain model with backorder and variable production

cost 147

8.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

8.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.2.2 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

8.3.1 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4



8.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9 Relation between quality of products and production-rate in a single-vendor

multi-retailer joint economic lot size model with variable production cost 160

9.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9.2.2 Special functions for mean time to failure . . . . . . . . . . . . . . . . . . 168

9.2.3 Solution algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.3.1 Numerical discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10 A study on three different dimensional facility location problems 182

10.1 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.2 Model formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

10.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.2.2 Problem P1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.2.3 Problem P2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.2.4 Problem P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

10.2.5 Comparison of Problem P1 and Problem P2 . . . . . . . . . . . . . . . . 190

10.2.6 Comparison of Problem P2 and Problem P3 . . . . . . . . . . . . . . . . 192

10.2.7 Change in constraint set . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.3 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

10.3.1 Numerical discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

10.4 Managerial insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5



10.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Conclusions and future extensions 208

Bibliography 210

6



List of Figures

1 Coordination in various supply chain stages . . . . . . . . . . . . . . . . . . . . 19

2 Cycle view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Push-pull view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Integrated vendor-buyer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Facility location problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Outline of consignment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7 Vendor’s inventory position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 Buyer’s inventory position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9 Supplier’s inventory position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

10 Purchasing cost versus demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

11 Purchasing cost versus profit by single-setup single-delivery policy . . . . . . . . 116

12 Purchasing cost versus profit by single-setup multiple-delivery policy . . . . . . . 117

13 Graphical representation of order quantity versus profit for consignment policy . 137

14 Graphical representation of order quantity, standard deviation versus profit for

consignment policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

15 Graphical representation of order quantity versus expected profit for traditional

policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

16 Graphical representation of order quantity, standard deviation versus profit for

traditional policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

17 Production rate versus mean time to failure . . . . . . . . . . . . . . . . . . . . 167

18 Production rate versus production cost . . . . . . . . . . . . . . . . . . . . . . . 168

19 Order quantity versus production rate versus expected joint total cost . . . . . . 174

20 Setup cost versus expected joint total cost . . . . . . . . . . . . . . . . . . . . . 176

21 Vendor’s holding cost versus expected joint total cost . . . . . . . . . . . . . . . 176

22 Ordering cost versus joint total expected cost . . . . . . . . . . . . . . . . . . . 177

23 Buyer’s holding cost versus expected joint total cost . . . . . . . . . . . . . . . . 177

24 Rework cost versus expected joint total cost . . . . . . . . . . . . . . . . . . . . 178

7



Notation

Decision variables

S setup cost of the vendor per setup ($/setup)

Q quantity ordered by the buyer/production lot size per batch−cycle (unit)
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R reorder point of the buyer (unit)

L length of the lead time for the buyer (time unit)
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P production rate per unit item (unit) (for Chapter 8 and 9)

V variable cost per unit for order handling and receiving ($/unit)

T duration of inventory cycle (time unit)

T1 production time duration for the supplier (time unit)

T2 the duration of non-production time for supplier (time unit)

T3 duration between two successive deliveries (time unit)

D(p) price dependent demand of retailer (unit)

k safety factor

r reorder point of retailer (unit)

α commission for each item sold ($/unit)
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A fixed cost given by the manufacturer to the buyer ($)

qi order quantity delivered by the vendor to buyer i in a single lot (unit)

ri reorder point for buyer i (unit)

si safety stock for buyer i (unit)

ki safety factor for buyer i

Li length of lead time for buyer i (time unit)

C(P ) unit variable production cost ($)

N number of defective goods in a production cycle (unit)

t actual production run time (time unit)

η(P ) elapsed time that the process goes out-of-control (time unit) (exponential random vari-

able)

Xi normally distributed lead time demand for buyer i with mean diLi and standard deviation

σi
√
Li (unit)

xij fraction (with respect to Di) of product delivered to retailer i from warehouse j

xijp fraction (with respect to Dip) of product p delivered to retailer i from warehouse j

xtijp fraction (with respect to Dip) of product p delivered to retailer i from warehouse j via

transportation mode t

yjk fraction (with respect to WCj) of the product delivered to warehouse j from plant k

yjkp fraction (with respect to WCj) of product p delivered to warehouse j from plant k

ytjkp fraction (with respect to WCj) of product p delivered to warehouse j from plant k via

transportation mode t
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si fraction (with respect to Di) of the product delivered to retailer i from an outside supplier

sip fraction (with respect to Dip) of product p delivered to retailer i from an outside supplier

stip fraction (with respect to Dip) of product p delivered to retailer i from an outside supplier

via transportation mode t

Ij inventory holding of a product at warehouse j (unit)

Ijp inventory holding of product p at warehouse j (unit)

Jk inventory holding of a product at plant k (unit)

Jkp inventory holding of product p at plant k (unit)

Parameters

D average demand per unit time of the buyer (unit)

A ordering cost of the buyer per order ($/order)

P production rate per unit time (unit)

S0 initial setup cost of the vendor per setup ($/setup)

Cv production cost per unit paid by vendor ($/unit)

Cb purchase cost per unit paid by buyer, Cb > Cv (money unit)

rv fractional holding cost of the vendor per unit item per unit time

rb fractional holding cost of the buyer per unit item per unit time

Hs non-fractional holding cost for the supplier per unit time per unit item ($/unit/unit time)

Hb non-fractional holding cost for the buyer per unit time per unit item ($/unit/unit time)
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hv non-fractional holding cost for vendor per unit item per unit time ($/unit/unit time)

π unit backlogging cost for the buyer ($/unit)

θ probability that the production process may go ‘out-of-control’

s replacement cost per unit defective item ($/unit)

σ standard deviation of demand per unit time (unit)

Ab area under the buyer’s inventory

As area under the supplier’s inventory

F transportation cost per delivery ($/delivery)

d deterioration rate

Cd deterioration cost per unit ($/unit)

p unit selling price of retailer/retail price ($/unit)

w unit wholesale price ($/unit)

hTSr holding cost of the retailer under the traditional system ($/unit/unit time)

hCPr holding cost of the retailer under the consignment policy ($/unit/unit time)

hCPm holding cost of the manufacturer under the consignment policy ($/unit/unit time)

sr goodwill loss per unit item for the retailer ($/unit)

sm goodwill loss per unit item for the manufacturer ($/unit)

c manufacturing cost for unit item ($/unit)

WCj capacity of warehouse j (unit)

PCk capacity of plant k (unit)
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Di demand of retailer i (unit)

Dip demand of product p of retailer i (unit)

TCWj total cost of warehouse j open ($)

TCPk total cost of plant k open ($)

PTCjk production and transportation cost per unit of product from plant k to warehouse j

($/unit)

PTCjkp production and transportation cost per unit of product p from plant k to warehouse j

($/unit)

PTCt
jkp production and transportation cost per unit of product p from plant k to warehouse j via

transportation mode t ($/unit)

TCij transportation cost per unit of product from warehouse j to retailer i ($/unit)

TCijp transportation cost per unit of product p from warehouse j to retailer i ($/unit)

TCt
ijp transportation cost per unit of product p from warehouse j to retailer i via transportation

mode t ($/unit)

ICj unit inventory holding cost of a product at warehouse j ($/unit)

ICjp unit inventory holding cost of product p at warehouse j ($/unit)

JCk unit inventory holding cost of a product at plant k ($/unit)

JCkp unit inventory holding cost of product p at plant k ($/unit)

OSCi transportation cost per unit of product to retailer i from an outside supplier ($/unit)

OSCip transportation cost per unit of product p to retailer i from an outside supplier ($/unit)
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OSCt
ip transportation cost per unit of product p to retailer i from an outside supplier via trans-

portation mode t ($/unit)

M monetary value per unit of lead time ($/unit)

Mp monetary value per unit of lead time for product p ($/unit)

TWRij delivery lead time per unit of product from warehouse j to retailer i (time unit)

TWRijp delivery lead time per unit of product p from warehouse j to retailer i (time unit)

TWRt
ijp delivery lead time per unit of product p from warehouse j to retailer i via transportation

mode t (time unit)

TPRjk delivery lead time per unit of product from plant k to warehouse j (time unit)

TPRjkp delivery lead time per unit of product p from plant k to warehouse j (time unit)

TPRt
jkp delivery lead time per unit of product p from plant k to warehouse j via transportation

mode t (time unit)

n number of buyers (unit)

di average demand/unit time for buyer i (unit)

Abi ordering cost of ith buyer per order ($/order)

hbi non-fractional holding cost of ith buyer per unit item per unit time ($/unit/unit time)

σi standard deviation of the demand/unit time (unit)

πi unit backorder cost for buyer i ($/unit)

E(·) mathematical expectation

x+ maximum value of x and 0
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X lead time demand having a cumulative distribution function (c.d.f) with a finite mean

and standard deviation (unit)

πTSr retailer’s profit for the traditional policy ($)

πTSm manufacturer’s profit for the traditional policy ($)

πCPr retailer’s profit for the consignment policy ($)

πCPm manufacturer’s profit for the consignment policy ($)

πCPt joint profit for the consignment policy ($)

I set of retailer i ∈ I

J set of potential warehouse sites j ∈ J

K set of plant sites k ∈ K

P set of different product types p ∈ P

T set of available transportation modes t ∈ T
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Abstract
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1 Abstract

The research study consists of recent development on supply chain model which is entitled as

‘Some problems on supply chain management’. A supply chain is generally formed with

various stages, most commonly named as players or parties. Players of the supply chain always

maintain some rules or policies (cooperative or non-cooperative) to gain more for any purpose

as cost, benefits, and others. The supply chain is a flow of goods, information, and funds among

its different stages. This research successfully resolves a number of critical problems which are

hurdles to form a successful supply chain. This dissertation consists of nine (excluding Chapter

1) chapters. Every chapter, except the introductory part, contains a descriptive mathematical

model related to supply chain management under various realistic circumstances. The topic of

each chapter is stated below.

Chapter 2 contains the introduction of the dissertation. This part includes overview and

mathematical background of supply chain management, definitions, brief description of various

supply chain models and their industrial benefits. Chapter 3 deals with a single-vendor

single-buyer supply chain model with single-setup multi-delivery (SSMD) policy. An effort for

vendor’s setup cost reduction is considered to gain more at the optimum level. Chapter 4 is

an extended version of the first one with imperfect quality of products. Chapter 5 extends all

previous models with setup cost reduction, quality improvement, and deterioration of products

under just-in-time manufacturing system. Chapter 6 considers the price dependent variable

demand, which is a decreasing function of selling-price. The model is developed under both

fixed and variable purchasing cost. Chapter 7 consists of a different delivery policy named as

consignment policy. The model is solved using a distribution free approach with known mean

and standard deviation. An effective approach is also proposed to enhance the agreement

policy of consignment contract. Chapter 8 is constructed with a single-vendor multi-buyer

supply chain model under variable production cost, which is dependent on the production

rate. Chapter 9 extends the previous model with the reliability of the production process.

Chapter 10 consists of a three-echelon facility location model. This research emphasizes on a

comparative study among three different dimensional facility location problems.
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Chapter 2

Introduction
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2 Introduction

Now a days, in almost every social and business sectors supply chain management plays an

important role. A proper development of supply chain leads to a revolution of world economy

which results the prosperity of the social-economic background of the world. In this section, the

definition, examples, and various types of supply chain management problems are described.

2.1 Overview and definition of supply chain management

A supply chain is composed of all contributors involved in the production of goods from raw

materials to finished goods. It includes manufacturing, framing, packaging, design, transporta-

tion. Retailers manage supply chain to control the inventory level, timing, product quality,

and costs. Thus, an uninterrupted flow of materials, information, and fund is one of the most

important attributes to achieve a successful supply chain.

Definition

Supply chain management (SCM) is handling of the flow of goods, data, and information

among the multiple nodes of an extended industry sector. These nodes include manufacturers,

vendors, retailers, customers or other players with several facilities. The ultimate goal of the

supply chain management is to satisfy the customer’s demand. Whatever uncertainties are, the

demand has to be met at the exact location, with exact amount, and with insignificant delay

in time.

All facilities include every function of receiving and satisfying the demand of any other

facility or organization. Functions performed to satisfy the demand are marketing, operations,

distribution, development of product, finance, and customer service.

An example of a Wall-Mart store is considered. A customer enters a store to purchase

a product. The supply chain begins with the demand of the customer. The next step is the

Wall-Mart retailer store, where the customer goes to purchase product. The inventory of the
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Figure 1 Coordination in various supply chain stages

retailer store comes from a warehouse or distributor through any transportation mode and the

stock of goods is maintained by the manufacturing plant. The manufacturing plant receives

raw materials from various suppliers.

2.2 Stages of a supply chain

The primary aim of a supply chain is to satisfy the customer’s need and at the same time make

a profit for itself. The term supply chain indicates that it is a flow of information, products or

materials among suppliers, manufacturers or distributors, retailers, and customers. Therefore,

stages of supply chain are categorized as follows:

1. Customers

2. Retailers

3. Warehouses/distributers

4. Manufactures

5. Raw material suppliers
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2.3 Objective of a supply chain

The objective of every supply chain is to optimize i.e. to maximize or to minimize the total

profit or cost of the chain, respectively. The aim of a supply chain is to maximize of the overall

profit generated by every stage of the chain. The profit of the supply chain is the difference

between the revenue earned from the customer and total costs of all stages of the chain to

satisfy the customer’s demand.

• Supply chain profitability

The supply chain profitability or surplus refers to the difference between the revenue gen-

erated from customers and total cost throughout the supply chain. The cost of each stage is

highly correlated with the supply chain profitability in most of the commercial environment.

If a customer purchases a product for $100, the revenue of the supply chain is $100. Costs

incurred by the chain are for production, transportation, conveying information. The difference

between the price paid by the customer i.e. $100 and the total cost of the overall supply chain

to meet the customer’s demand of that particular product represents is supposed $80, then the

supply chain profitability is $20 for a particular product.

• Source of revenue and cost

The customer is generally the one and only one source of revenue in a supply chain. When-

ever a customer pays an amount, provides positive cash flow in a supply chain, all the other

cash flows are the exchange of fund, provided by customers, between stages of the supply chain,

retailers take a part of the fund given by customers and pass the rest to their suppliers. The

same procedure happens for suppliers and distributors.

2.4 Decisions in a supply chain

Decision phases in a supply chain to convey information, flow of products and raw materials

for high supply chain profitability are as follows:

1. Supply chain design or strategy
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2. Supply chain planning

3. Supply chain operation

Above three decisions plays a vital role for a successful supply chain. Each decision is to be

made to increase the supply chain profitability.

• Supply chain design

All strategic decisions to construct the supply chain over next several time periods are

made during this phase. This decision phase includes the configuration of the overall chain,

processes that each stage of the chain will perform and allocate several of resources. Locations

of facilities (manufacturing plants, warehouses, retailers), capacities of plants and warehouses,

type of product to be manufactured, type of transportation mode and the information system

to be utilized are decided in this phase to maintain fruitful supply chain profitability.

• Supply chain planning

This phase of supply chain includes making the decision of what inventory policy is to be

followed, the subcontracting of manufacturing, locating the market sites where products will

be supplied from which locations, timing and size of marketing and price promotions. Uncer-

tainties in demand, exchange rates are also regarded in this phase. The frame of time horizon

is assumed as quarter of a year.

• Supply chain operation

In this phase, satisfying the customer’s order is to be performed. For each individual order,

the allocation of inventory and production are carried out. Firms assign an order to particular

transportation mode, generate pick lists at some warehouses and place replenishment orders.

The aim of this supply chain decision phase is to reduce the uncertainty and optimize perfor-

mance. The time horizon considered is daily or weekly or sometime monthly.
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Figure 2 Cycle view

2.5 Supply chain process views

A supply chain consists of many processes and flows. These processes take place between

various stages of the supply chain to satisfy customers demand. The supply chain processes

can be viewed by two ways.

1. Cycle view

2. Push-pull view

Processes in a supply chain can be divided into cycles such that each cycle can be defined in

between any two stages of the chain. If the supply chain has five stages, then there are four

cycles. They are generally customer order cycle, replenishment cycle, manufacturing cycle,

procurement cycle.

The execution of push and pull processes depend on awareness of the demand of the cus-

tomer. The execution of push process is initiated in anticipation of the customer’s demand i.e.

when the actual demand is not known or forecasted. When the customer’s demand is known,

the pull process execution is initiated. Thus, the pull process takes place in response to the

customer’s demand.
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Figure 3 Push-pull view

2.6 Introduction of modelling within supply chain

There are many different models in the existing literature, which describe the decision making

in a supply chain under different circumstances. Various situations include demand uncer-

tainty, imperfect production, product deterioration, variable production rate, and variability of

demand. Supply chain models under foretold situations are studied in next consecutive chap-

ters. This section gives a thorough idea about some of the most widely used models in the

modern marketing environment.

2.6.1 Inventory and integrated inventory models

Inventory is defined as the stock of items such as goods in warehouses or retailer shops. The

inventory is accumulated by production lot from the manufacturing plants. This inventory can

be used to satisfy customer’s demand through supply chain.

As an example, in a retailer store, an average of 5 items of a product is purchased by

customers per day. The storekeeper orders 150 items to the manufacturer each time of placing

an order. Thus, 150 is the lot or batch size in this case. Now, according to the daily sale of

the retailer’s store, it takes an average of 30 days to sell all items and a new lot of 150 items

to be purchased from the manufacturer. There is a time horizon during which the level of
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inventory rises up and reaches down to zero and again the lot size comes and goes and so on.

Without shortages, each time period, in which the lot reaches at maximum inventory level just

after receiving shipment and gradually decreasing and finally reaches to zero, is called the cycle

period. Besides this costs incurred by the retailer are ordering cost, inventory holding cost,

lead time cost, shortage cost, deterioration cost etc. The mathematical model for an inventory

management is to obtain the optimal inventory level such that the total cost incurred during a

cycle period is minimized. There are generally two types of inventory model. They are given

by

1. Economic order quantity model

2. Economic manufacturing quantity model

An EOQ (Economic order quantity) model is developed to optimize the level of inventory

such that the total inventory cost in a cycle period is minimized. In this model, whenever the

inventory level comes to zero, each new order is delivered and the replenishment rate is infinite.

The EMQ (Economic manufacturing quantity) has the same objective. But unlike EOQ

model, each order is produced and the replenishment rate is finite.

Safety inventory

In modern global economic environment, the demand of the customer is not always fixed.

Every company manages their level of inventories by means of forecasting of demand. Due to

the uncertainty of demand, the actual demand of the customer does not match to the forecast-

ing demand. Here is the necessity of safety stock. Safety stock is the additional stock after

the nullifying of actual inventory level. It satisfies the customer’s demand if the inventory level

reaches to zero during delivery lead time.

The integrated vendor buyer model is the combined model of vendors and buyers where the

objective is to optimize the inventory level and safety stock (if considered) in order to minimize

the expected joint total cost of buyer and vendor.
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Several inventory costs

• Ordering cost

The ordering cost is incurred every time the order is placed. In the other word this cost is

needed for the replenishment of the inventory. The ordering cost can be divided into two parts.

Fixed cost for ordering

This is a fixed cost incurred when the order is placed and independent of the amount of

product delivered. This cost consists of the cost of accounting, communication or the delivery

cost when the order is placed.

Logistics cost

This cost refers to the variable cost for transportation while delivering items from one party

to another.

• Holding cost/carrying cost

This cost is incurred for holding or maintaining the inventory in one’s shelter. As the

inventory level is being changed by time, this cost depends on the average inventory level. This

includes financing or capital cost which includes every kind of cost related to the investment,

cost for storage spaces i.e., the cost incurred for maintaining goods (air conditioning, heating

etc.) and lease or property taxes, different service costs which include insurance, costs for IT

services or hardware and application etc., deterioration or inventory risk cost.

• Shortage cost

Shortages occur when the supply of product is less than the customer’s demand. Shortages

can be explained by two ways one is fully backordered and another one is partial backordered.

Fully backordering

In this case customers wait until the delivery of the item. Therefore, there is no chance of

occurrence of any lost sale. The exact magnitude of backorder cost is unknown, generally it is

incurred by the extra paper or managerial cost in processing the order.

Partial backordering

In this condition, the customer does not wait for the delivery of the item which leads to lost
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sales in other words the retailer faces goodwill loss. This goodwill loss is expected to increase

proportional to the time of delay.

Newsvendor problem

The newsvendor model is widely used in inventory and supply chain management. The

intension of this model is to decide the order quantity under the a single purchasing opportunity

before the selling period starts and the demand of the customer is random (Gallego and Moon,

1993). The newsvendor may face the overage or underage costs if the order is very high or very

low, respectively compared to the customer demand (Gallego, 1995). A classical newsvendor

problem with perishable item has become an interesting topic among researchers worldwide as

a high managerial importance lies underneath the overstocking problem in case of product of

short lifetime. The perishable product may damage if any extra items are left in stock after

satisfying the customer demand. This model is useful for the industry related to any perishable

agricultural product, baked or dairy food (Pal et al., 2013). This model is also often used in

order to make decisions in fashion and sports goods industries (Gallego and Moon, 1993).

Integrated vendor-buyer problem

A single buyer or single vendor problem consists of only single inventory model of either

vendor or buyer. But, in modern global markets, every industry has to choose new technologies

and strategies to survive. Integrated vendor-buyer model is the combined optimization of

vendor’s and buyer’s inventory decisions together. Its main objective is to optimize the expected

joint total cost/profit of both vendor and buyer. Thus, managing manufacturing, inventory and

as well as supply chain are matters of concern too.

JIT (Just in time) production has the capability to strengthen the competiveness of the firm

by reducing the waste, improving product quality and efficiency of production. It was Japanese

manufacturing technique and adopted by various Japanese manufacturing organizations since
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1970. Benefits of achieving JIT are,

1. Reduction of the level of inventory, purchased goods and finished goods

2. Reduction of the requirement of space

3. Reduction of manufacturing lead time

4. Increase of product quality

5. Increase of productivity level and machine utilization

JIT has an important role in integrated inventory systems. It reduces the manufacturing time

and delivery lead time between different stages in supply chain. Fig 4 represents an integrated

supply chain system with single-vendor and single-buyer. The notation P , Q, D, and S in-

dicates production rate of the vendor, order quantity of the buyer, demand of the buyer, and

safety stock, respectively.

2.6.2 Facility location problem

Facility location problem is one of the most important parts in SCM. Supply chain stages like

supplier, manufacturer, warehouse, retailer etc are denoted by facilities. The objective of FLP

(Facility location problem) is to locate facilities in different locations in such a way that the

total network cost of the supply chain is to be minimized. To satisfy the customer’s demand

each and every facility must communicates with each other.

The echelon of a FLP is referred to the steps. As an example, if the supply chain consists

of any two of the facilities such as supplier to manufacturer or warehouses to retailers then the

FLP is said to be one echelon FLP and if it has three facilities, then is called two echelon FLP

and so on. Any FLP containing more than two facilities is said to be multi-echelon FLP.

Location problems generally are of two types such as,
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Figure 4 Integrated vendor-buyer model

Figure 5 Facility location problem

28



1. Unapacitated facility location problem

2. Capacitated facility location problem

Uncapacitated FLP is that type of location problem where the capacity of facilities is not

taken under consideration. In this type of problem, limitations of production of the plant or the

inventory holding capacity of warehouse or retailer are negligible. But in case of capacitated

FLP all the above capacities for facilities are assumed.

When a FLP model is developed, is transformed into a MILP (mixed integer linear pro-

gramming problem). The objective of MILP is to optimize a linear objective function with

respect to some linear constraint and some of the variables are treated as integers.

2.7 Delivery policies among parties in a supply chain

To achieve a successful supply chain, a suitable delivery policy must be selected by parties

such that lead time as well as the cost is minimized. There are several policies to deliver prod-

ucts between parties. Every policy has its own importance depending on different marketing

environment. A brief discussion on some of these policies is stated below.

2.7.1 Single-setup single-delivery (SSSD) policy

This policy is also known as ‘lot-for-lot’ policy or single time delivery policy and was pro-

posed by Banerjee (1986). The manufacturer produces a lot whenever an order comes from the

retailer. In this case, the manufacturer makes just one lot in one setup, which is demanded by

the retailer and no extra item is produced. The final product or lot is delivered to the retailer.

Costs incurred by both the parties are

Manufacturer Retailer

1. Setup cost 1. Ordering cost

2. Holding cost 2. Holding cost
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2.7.2 Single-setup multi-delivery (SSMD) policy

This delivery policy was introduced by Goyel (1986). Other than SSSD, this policy supports

delivery over multiple times. When the retailer’s order comes, the manufacturer produces an

integer multiple of the retailer’s order quantity and delivers over multiple segment of times

(Ouyang et al., 2004). In ‘lot-splitting’ case, the manufacturer splits the order quantity of the

retailer and delivers over multiple times. In this case, the manufacturer makes the same amount

as ordered by the buyer, but divides it into an equal parts. The cost components are same as

SSSD policy for both parties.

2.7.3 Consignment policy

Consignment policy (CP) is a new approach in supply chain management which became popu-

lar especially in heath care field. Many departmental stores and online shopping industries such

as Wall-Mart, amazon.com etc., have been adopting this policy. The major advantage of CP

is to reduce the vendor’s/supplier’s inventory level as vendor uses buyer’s/retailer’s warehouse

to stock items.

CP is is formed by an agreement of two parties namely the ‘consignor’ and the ‘consignee’.

The ‘consignor’ is mainly the owner of goods (manufacturer) who delivers products to the other

party ‘consignee’ (retailer). The following assumptions are considered to develop a successful

CP.

1. Manufacturer uses retailer’s inventory to stock its produced items but retains the owner-

ship of goods.

2. The inventory holding cost is shared between two parties. The operational part of the

holding cost is incurred by the retailer and manufacturer bears the financial part.

3. No fund transfer is occurred until a product is sold.

4. Retailer gets a per unit commission from manufacturer for each sold item sold.
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Figure 6 Outline of consignment policy

As there is a matter of gaining per unit commission for the sell of each item, retailer accepts

the contract only if the consignment agreement favours the ‘consignee’ party.

2.8 Supply chain model under uncertain and variable demand

Demand is the most vital factor for any industrial model not only for supply chain. No busi-

ness would ever exist if there is no demand. Thus, understanding the nature of demand is one

of the key factors to achieve a successful supply chain. Even, the profit or loss of an industry

directly depends on this factor.

Initially, some models considered the annual demand as a fixed quantity. But, in reality,

it is quite impossible to predict the exact figure. In most of the cases, demand is uncertain

and can be predicted under some probability distribution, sometimes demand is variable and

varies over some factors like stock, selling-price etc. Even, both uncertainty and variability

may occurs simultaneously. Remembering the above points this section describes some realistic

nature of demand.

31



2.8.1 Uncertain demand

A vary common phenomenon is that the customer demand per unit time (year, week, day

etc.,) is not fixed. To manage the supply chain and to maximize the supply chain profitability

the manager of every industry must estimate the customer demand. An useful methodology

to estimate demand is to consider it as a random variable. Analyzing the previous demand

data a suitable probability distribution of demand can be formed. By the help of that specific

distribution a mathematical model can be formed and managerial decisions can be made easily.

2.8.2 Variable demand

There is a difference between randomness and variability. An uncertain random demand can

vary over many factors. Some examples should be given in this context.

1. Customer demand may increase over increasing stock.

2. Demand may decrease over increasing selling-price.

In the first example, demand is an increasing function of stock i.e., if the retail outlet/shop

has a significant number of product in its stock, customer demand may increase. On the other

hand, demand may decrease with increasing selling-price which implies it is a decreasing func-

tion of price. Both examples show the customer demand as a continuous dependent variable in

stock and selling-price, respectively.

2.8.3 Distribution free approach

This is a very efficient procedure to make decisions under uncertainty. This method is appli-

cable when the information about the random variable is insufficient and difficulty occurs in

order to obtain the actual probability distribution of the random variable. As an example, in
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a classical continuous or periodic review inventory model, an uncertain the lead time demand

is treated to be an uncertain entity which leads to the requirement of demand information.

However, the exact probability distribution of the lead time is often difficult to obtain. Some-

times the only information available are just a conjectured mean and variance. In this case the

tendency of considering a normal distribution is quite habituated which does not provide the

best fit against the occurrence of other distribution. Therefore, only two ways are left to solve

this problem.

1. Obtaining the proper information about lead time demand in order to get knowledged

about exact probability distribution. This process requires a lot of fund to gather the

lead time demand data.

2. Discovering a procedure to obtain managerial decisions without having the appropriate

demand distribution such that one can solve the model with just on hand mean and

variance of lead time demand.

Distribution free approach gives us the opportunity to solve the model even if no proper

information about lead time demand distribution is available. Thus, the manager can make

decisions with just an educated guess of mean and variance of lead time demand.
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Chapter 3

Integrated vendor-buyer supply chain model

with vendor’s setup cost reduction
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3 Integrated vendor-buyer supply chain model with ven-

dor’s setup cost reduction

This chapter deals with an integrated vendor-buyer supply chain model. Two models are

constructed based on the probability distribution of the lead time demand. The lead time

demand is stochastic following a normal distribution in the first model and in the second

model, the lead time demand is considered as random, but without any specific probability

distribution except for educated mean and standard deviation. The aim of this research is to

reduce the total system cost by considering the setup cost reduction of the vendor.

3.1 Literature review

The supply chain model is used to minimize the cost or to maximize the profit throughout

the network under the condition that demands of each facilities have to be met. Thus, the

integrated inventory control policy is a matter of concern (for instances Villa (2001), Yang and

Wee (2001), Viswanathan (1998), and Bylka (2003)). Goyal (1976) developed the first research

work on the integrated vendor-buyer problem. Banerjee (1986) extended Goyal’s (1976) model

with lot-for-lot (LFL) policy. Goyal (1988) extended Banerjee’s (1986) model by assuming

the manufacturing quantity of the vendor is an integer multiple of the order quantity of the

buyer as single-setup-multiple-delivery (SSMD) policy. Huang (2002) developed an integrated

vendor-buyer model in an imperfect production process. Cárdenas-Barrón et al. (2011) used

the arithmetic-geometric inequality to solve a vendor-buyer integrated inventory model with a

closed−form solution. Teng et al. (2011) considered a vendor-buyer inventory model with a

closed-form optimal solution.

Controlling the lead time plays an important role for any inventory model. Tersine (1994)

introduced the lead time as a partition of five components as the supplier’s lead time, order

B. Sarkar, A. Majumder, Integrated vendor-buyer supply chain model with vendor’s setup

cost reduction, Applied Mathematics and Computation. 2013, 224, 362-371.
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preparation, order transit, delivery time, and the setup time. Liao and Shyu (1991) considered

the lead time as a unique decision variable in their inventory model. Ben-Daya and Raouf

(1994) explained both the ordering quantity and the lead time as decision variables without

shortages. Ouyang et al. (1996) modified Ben-Daya and Raouf’s (1994) model in view of

shortages but they made a mistake which is corrected by Moon and Choi (1998). Hariga and

Ben-Daya (1999) developed some stochastic inventory models with variable lead time. Pan and

Yang (2002) considered the lead time as a controllable factor to obtain the expected joint total

cost.

Scarf (1958) first established the min-max distribution free approach for the newsvendor

problem without any information about the distribution of the lead time demand except mean

and standard deviation. Gallego and Moon (1993) made Scarf’s (1958) ordering rule very easy.

After Gallego and Moon’s (1993) proof, the distribution free approach becomes a very famous

approach for solving inventory models without any specific distribution of the lead time demand

except mean and standard deviation.

Moon and Gallego (1994) found out some valuable applications of the distribution free

approach for different types of inventory models. After this model, the distribution free ap-

proach has been applied by many researchers from the different sectors. Moon and Yun (1997)

considered the distribution free job control problem. Moon and Choi (1997) explained the

distribution free procedure for make-to-order (MTO), make-in-order (MIA), and composite

policies. Ouyang et al. (2002) developed an inventory model with the product’s quality im-

provement and the vendor’s setup cost reduction. Ouyang et al. (2004) explained an integrated

production inventory model with the controllable lead time and shortages including a long-term

strategic supply chain between the buyer and the vendor. They simultaneously optimized the

lead time, reorder point, number of lots delivered, and the ordering quantity. The setup cost

for the vendor was treated to be fixed in that model.

Lin (2011) proposed a min-max distribution free approach for the integrated inventory

model with the defective goods and the probabilistic lead time demand. Using min-max distri-

bution free approach Liao et al. (2011) discussed a newsvendor model with lost sales penalty
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and the balking policy. Lee et al. (2006) developed an inventory model with the negative expo-

nential backorder cost and the mixture of distribution for the lead time demand. Hsu and Lee

(2009) investigated a single-manufacturer multiple-retailer supply chain model with the distri-

bution free approach. Jha and Shankar (2009) considered a single-vendor single-buyer supply

chain model with a service level constraint. Annadurai and Uthayakumar (2010) developed a

(T,R,L) inventory model with the controllable lead time and lost sales reduction. Lin et al.

(2012) developed an integrated supplier-retailer inventory model with defective items and trade

credit policy.

3.2 Model formulation

This section contains assumptions to formulate a mathematical model, entire model descrip-

tion, propositions, and solution algorithms.

3.2.1 Assumptions

Following assumptions are considered to develop the model

1. An integrated vendor-buyer model is considered.

2. When the buyer orders a lot size Q, the vendor manufactures the lot mQ with finite

production rate P (P > D) at one setup but delivers the quantity Q over m times.

3. The buyer places an order when the level of inventory reaches to the reorder point R.

4. The reorder point is R = DL+kσ
√
L, where DL = the expected demand during the lead

time, kσ
√
L = safety stock, and k = safety factor.

5. Shortages are allowed and fully backordered.

6. The lead time L consists of n mutually independent components. For the ith component,

ai = minimum duration, bi = normal duration, and ci = crashing cost per unit time. For

the sake of convenience, we assume c1 ≤ c2 ≤ ... ≤ cn.
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7. We assume L0 ≡
∑n

j=1 bj and Li be the lead time length having components 1, 2, ..., i

crashed to their minimum duration, then, Li = L0−
∑i

j=1(bj−aj), i = 1, 2, ...n. The lead

time crashing cost/cycle C(L) is expressed as C(L) = ci(Li−1 − L) +
∑i−1

j=1 cj(bj − aj).

8. The transportation cost per unit time from the vendor to the buyer is constant and

independent of the quantity ordered. Thus, the total transportation cost per unit time is

neglected.

We consider the single-setup-multiple-delivery (SSMD) policy in an integrated vendor-buyer

model i.e., if the buyer orders quantity Q, then the vendor produces the quantity mQ where

m is any positive integer, and the quantity Q is delivered to the buyer over m times. The

vendor produces the quantity mQ in one production cycle. Thus, the expected cycle length for

the vendor and the buyer are mQ
D

and Q
D

, respectively. The ordering cost per unit time is AD
Q

.

When the inventory level reaches to the reorder point R, an order of quantity Q is placed by

the buyer. The expected inventory level before receipt an order is R − DL and the expected

inventory level immediately after the delivery of quantity Q is Q + (R − DL). Hence, the

average inventory over a cycle can be written as Q
2

+ R − DL which implies that the buyer’s

expected holding cost per unit time becomes rbCb[(
Q
2

) +R−DL].

X is normally distributed with finite mean DL and standard deviation σ
√
L. We assume

that X has a cumulative distribution function F and the reorder point R = DL + kσ
√
L.

If X > R, then shortage occurs. Hence, the expected shortage at cycle end is E(X − R)+ =∫∞
R

(x−R)dF (x). The expected shortage cost per unit time is πDE(X−R)+

Q
. The lead time crashing

cost per unit time is DC(L)
Q

.

Therefore, the total expected cost per unit time to the buyer is

ATCb(Q,R,L) = ordering cost + holding cost + shortage cost + lead time crashing cost

=
AD

Q
+ rbCb

(
Q

2
+R−DL

)
+
πD

Q
E(X −R)+ +

DC(L)

Q
(1)

The total expected cost/unit time for vendor is

ATCv = setup cost + holding cost.
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Figure 7 Vendor’s inventory position

The expected cost for the vendor/unit time is SD
mQ

From figure 7 the average inventory of the vendor is

=

[{
mQ

(
Q

P
+ (m− 1)

Q

D

)
− m2Q2

2P

}
−
{
Q2

D
(1 + 2 + ...+ (m− 1))

}]
D

mQ

=
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
See Appendix A

Hence, the expected holding cost per unit time for the vendor is

= rvCv
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
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Therefore, the total expected cost per unit time for the vendor is

ATCv(Q,m) =
SD

mQ
+ rvCv

Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
(2)

Investment in setup cost reduction

We now investigate the effect of an investment on the vendor’s setup cost reduction. In

relation (2), the equation represents the vendor’s total expected cost per unit time with fixed

setup cost. But for more realistic issues, this cost can be considered as variable. We consider

a capital investment for vendor’s setup cost reduction.

If IS is an investment for the setup cost reduction, then it can be expressed as

IS = B ln

(
S0

S

)
= B(lnS0 − lnS) for 0 < S ≤ S0

where S0 is the original setup cost, B = 1
δ
, and δ = a decrease of percentage in S/dollar increase

in IS.

The total expected cost for the vendor per unit time is

ATCv = αB(lnS0 − lnS) +
SD

mQ
+ rvCv

Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
(3)

where α is the annual fractional cost of the capital investment.

The resulting total expected cost per unit time for the buyer is

ATCb =
AD

Q
+ rbCb

(
Q

2
+R−DL

)
+
πD

Q
E(X −R)+ +

D

Q
C(L) (4)

The expected shortage at the cycle end is

E(X −R)+ =

∫ ∞
R

(x−R)dF (x)

= σ
√
Lψ(k)

where ψ(k) = φ(k)− k[1− Φ(k)], φ = standard normal probability density function, and Φ =

cumulative distribution function of the normal distribution. The safety factor k is assumed as
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a decision variable.

The expected joint total cost/unit time for the vendor and buyer can be expressed as

JATC(Q, k, S, L,m) = ATCb(Q, k, L) + ATCv(Q,S,m)

= αB(lnS0 − lnS) +
D

Q

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

Q

2

[
rbCb + rvCv

{
m

(
1− D

P

)
− 1 +

2D

P

}]
+ rbCbkσ

√
L (5)

The problem can be written as

Min JATC(Q, k, S, L,m) = αB(lnS0 − lnS) +
D

Q

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

Q

2
H(m) + rbCbkσ

√
L

subject to 0 < S ≤ S0 (6)

where H(m) = rbCb + rvCv

[
m

(
1− D

P

)
− 1 +

2D

P

]
It is a non-linear program and in order to solve it we just relax the constraint 0 < S ≤ S0.

For a fixed positive integer m, we take the partial derivatives of JATC(Q, k, S, L,m) with

respect to Q, k, S, and L to obtain the optimal solution.

∂JATC(Q, k, S, L,m)

∂Q
= − D

Q2

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

1

2
H(m) (7)

∂JATC(Q, k, L, S,m)

∂k
=

D

Q
πσ
√
L[Φ(k)− 1] + rbCbσ

√
L (8)

∂JATC(Q, k, S, L,m)

∂S
= −αB

S
+

D

mQ
(9)

∂JATC(Q, k, S, L,m)

∂L
=

D

2Q
√
L
πσψ(k) +

D

Q

∂C(L)

∂L
+
rbCbkσ

2
√
L

=
D

Q

[
πσψ(k)

2
√
L
− ci

]
+
rbCbkσ

2
√
L

(10)

For fixed Q, k, S, and m, the function JATC(Q, k, L, S,m) is concave in L as

∂2JATC(Q, k, S, L,m)

∂L2
= − D

4Q
πσψ(k)L−3/2 − 1

4
rbCbkσL

−3/2 < 0.

Hence, for fixed Q, k, S, and m, the minimum value of JATC(Q, k, L, S,m) is attained at

the end of the interval [Li, Li−1]. Now for fixed positive integer m, values of Q, Φ(k), and S
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are obtained by equating equations (7), (8), and (9) to zero as

Q =

2D
[
A+ S

m
+ πσ

√
Lψ(k) + C(L)

]
H(m)


1
2

(11)

Φ(k) = 1− rbCbQ

Dπ
(12)

S =
αBQm

D
(13)

3.2.2 Proposition 1

If we denote Q∗, k∗, and S∗ as optimal values of Q, k, and S, then for fixed m and L ∈ [Li, Li−1],

the expected joint total cost function JATC(Q, k, S, L,m) has a global minimum at (Q∗, k∗, S∗)

obtained from equations (11)-(13) if the constraint 0 < S ≤ S0 is relaxed.

Proof See Appendix B.

The optimal value of m can be obtained when

JATC(m∗ − 1) ≥ JATC(m∗) ≤ JATC(m∗ + 1)

where m∗ is the optimal value of m.

Now we consider the constraint 0 < S ≤ S0. S∗ is already assumed as the optimal value

of S. From equation (13) it is clear that S∗ is positive as values of α,B,Q,m, and D are all

positive. If S∗ > S0, then no investment should be made for the reduction of the setup cost

and we set S = S0. An algorithm is developed to obtain the optimal values for Q, k, L, S, and

m. The optimal reorder point can be found using the optimal value of k.

3.2.3 Solution algorithm 1

Step 1 Set m = 1.

Step 2 For each Li, i = 1, 2, ...n; perform Step 2a−2f.

Step 2a Set Si1 = 0, ki1 = 0 (implies ψ(ki1) = 0.39894).

42



Step 2b Substitute ψ(ki1) into equation (11) and evaluate Qi1.

Step 2c Utilize Qi1 to determine the value of Φ(ki2) from equation (12).

Step 2d For the value of Φ(ki2), find ki2 from the normal table and hence evaluate ψ(ki2).

Step 2e Utilize Qi1 and find Si2 from equation (13).

Step 2f Repeat 2b to 2e until no changes occur in the values of Qi, ki, and Si as well as denote

these values by (Q∗i , k
∗
i , S

∗
i ).

Step 3 If S∗i < S0, then go to Step 4. Else set S∗i = S0 and utilize (11) and (12) to determine

new optimal values of (Q, k) denoted by (Q
′∗
i , k

′∗
i ) by substituting S by S0 and using the

same procedure stated as Step 2. Then go to Step 4.

Step 4 Find JATC(Q∗i , k
∗
i , S

∗
i , Li,m) and Mini=1,2,...nJATC(Q∗i , k

∗
i , S

∗
i , Li,m).

Step 4a If JATC(Q∗i , k
∗
i , S

∗
i , Li,m) = Mini=1,2,...nJATC(Q∗i , k

∗
i , S

∗
i , Li,m),

then JATC(Q∗i , k
∗
i , S

∗
i , Li,m) is the optimal solution for fixed m.

Step 5 Set m = m+ 1.

If JATC(Q∗m, k
∗
m, S

∗
m, Lm,m) ≤ JATC(Q∗m−1, k

∗
m−1, S

∗
m−1, Lm−1,m − 1), repeat Step 2,

Step 3, and Step 4. Otherwise go to Step 6.

Step 6 Set JATC(Q∗m, k
∗
m, S

∗
m, Lm,m) = JATC(Q∗m−1, k

∗
m−1, S

∗
m−1, Lm−1,m− 1).

Then (Q∗, k∗, L∗, S∗,m∗) is the optimal solution. The optimal reorder point can be ob-

tained from R∗ = DL∗ + k∗σ
√
L∗, where R∗ denotes the optimal reorder point.

3.2.4 Distribution free approach

We consider the distribution free approach for the same model stated above. We do not make

any assumption for the distribution of the lead time demand X except that the cumulative

distribution function (c.d.f.) F of the lead time demand belongs to the class = of c.d.f. with

mean DL and standard deviation σ
√
L. Only mean and standard deviation are known. The
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value of E(X −R)+ cannot be determined exactly as the exact probability distribution of the

lead time demand, X is unknown. Thus, a min-max distribution free approach is applied to

solve this problem. The min-max distribution free approach is to determine the least favorable

c.d.f. F in class = for each (Q,R, S, L,m) and then to minimize the total expected joint annual

cost over (Q,R, S, L,m), i.e.,

Min MaxF∈= JATC(Q,R, S, L,m)

subject to 0 < S ≤ S0 (14)

The following proposition is used to approximate the value of E(X − R)+ which was pro-

posed by Gallego and Moon (1993).

3.2.5 Proposition 2

For any F ∈ =, the following inequality always holds.

E(X −R)+ ≤ 1

2

[√
σ2L+ (R−DL)2 − (R−DL)

]
(15)

Moreover the upper bound of the above equation is tight.

We have R = DL + kσ
√
L. By using relation (6) and inequality (15), model (14) can be

written as

Min JATCf (Q, k, S, L,m) = αB(lnS0 − lnS) +
D

Q

[
A+

S

m
+

1

2
πσ
√
L(
√

1 + k2 − k)

+ C(L)
]

+
Q

2
H(m) + rbCbkσ

√
L (16)

where f denotes the distribution free case.

According to the previous normal distribution case, it can be shown that for fixed (Q, k, S)

∂2JATCf (Q, k, S, L,m)

∂L2
< 0

i.e., JATCf (Q, k, S, L,m) is concave in L. Therefore, the minimum value of JATCf (Q, k, S, L,m)

is attained at end points of the interval [Li−1, Li]. Again, for fixed m and L ∈ [Li, Li−1], the
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minimum value of Q, k, and S is obtained by equating

∂JATCf (Q, k, S, L,m)

∂Q
= 0

∂JATCf (Q, k, S, L,m)

∂k
= 0

∂JATCf (Q, k, S, L,m)

∂S
= 0

We obtain the values as

Q =

2D
[
A+ S

m
+ 1

2
πσ
√
L(
√

1 + k2) + C(L)
]

H(m)


1
2

(17)

k√
1 + k2

= 1− 2QrbCb
Dπ

(18)

S =
αBQm

D
(19)

3.2.6 Proposition 3

If we denote Q∗∗, k∗∗, and S∗∗ as optimal values of Q, k, and S, then for fixed L ∈ [Li, Li−1] and

m, the expected joint total cost function for the distribution free approach JATCf (Q, k, L, S,m)

has a global minimum at (Q∗∗, k∗∗, S∗∗) obtained from equations (17)-(19) if the constraint

0 < S ≤ S0 is relaxed.

Proof Similar proof as Proposition 1.

The optimal value of m (say m∗∗) can be obtained from

JATCf (m
∗∗ − 1) ≥ JATCf (m

∗∗) ≤ JATCf (m
∗∗ + 1)

Taking into consideration the constraint 0 < S ≤ S0, we set S = S0 if the optimal value of

S (say S∗∗) is higher than S0. An algorithm for the distribution free approach is considered to

determine (Q∗∗, k∗∗, S∗∗, L∗∗,m∗∗).

3.2.7 Solution algorithm 2

Step 1 Set m = 1.
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Step 2 For each Li, i = 1, 2, ...n; perform Step 2a−2e.

Step 2a Set Si1 = 0, ki1 = 0.

Step 2b Evaluate Qi1 from equation (17).

Step 2c Utilize Qi1 to determine the value of ki2 from equation (18).

Step 2d Utilize Qi1 and find Si2 from equation (19).

Step 2e Repeat 2b to 2d until no changes occur in the values of Qi, ki, and Si as well as denote

these values by (Q∗∗i , k
∗∗
i , S

∗∗
i ).

Step 3 If S∗∗i < S0, then go to Step 4. Else set S∗∗i = S0 and utilize (17) and (18) to determine

new optimal values of (Q, k) denoted by (Q
′∗∗
i , k

′∗∗
i ) by substituting S by S0 and using

the same procedure as stated in Step 2. Then go to Step 4.

Step 4 Find JATC(Q∗∗i , k
∗∗
i , S

∗∗
i , Li,m) and Mini=1,2,...nJATC(Q∗∗i , k

∗∗
i , S

∗
i , Li,m).

Step 4a If JATC(Q∗∗i , k
∗∗
i , S

∗∗
i , Li,m) = Mini=1,2,...nJATC(Q∗∗i , k

∗∗
i , S

∗∗
i , Li,m),

then JATC(Q∗∗i , k
∗∗
i , S

∗∗
i , Li,m) is the optimal solution when m is fixed.

Step 5 Set m = m+ 1.

If JATC(Q∗∗m , k
∗∗
m , S

∗∗
m , Lm,m) ≤ JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, Lm−1,m − 1), repeat Step 2,

Step 3, and Step 4. Else go to Step 6.

Step 6 Set JATC(Q∗∗m , k
∗∗
m , S

∗∗
m , Lm,m) = JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, Lm−1,m− 1).

(Q∗∗, k∗∗, L∗∗, S∗∗,m∗∗) is the optimal solution. The optimal reorder point can be obtained

from R∗∗ = DL∗∗ + k∗∗σ
√
L∗∗, where R∗∗ denotes the optimal reorder point for the

distribution free model.

We note that for both algorithms in Step 3, if the reduced setup cost S for the vendor greater

than the initial setup cost S0, we will take S0 as the vendor’s setup cost and there will be no

need to use vendor’s setup cost reduction.
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Table 3.1

Lead time data

Lead time Normal Minimum Unit crashing

component duration duration cost

i bi (days) ai (days) ci ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

3.3 Numerical experiments

The parameter values used in the following examples are obtained from Ouyang et al. (2004).

Example 1

We consider an example to illustrate the algorithm described above. This example deals with

the model having the lead time demand which follows the normal distribution. Let us consider

D = 600 units/year, A = $200/order, Cb = $100/unit, π = $50/unit, σ = 7 units/week, P =

2000 units/year, S0 = $1500/setup, Cv = $70/unit, rb = $0.2/unit/year, rv = $0.2/unit/year,

α = 0.1/dollar/year, and B = 18000. The lead time has three components and the data for

the lead time are shown in Table 3.1. We obtain some results which are described in Table 3.2.

Applying algorithm 1, we obtain the following results for Example 1. The optimal ordering

quantity Q∗ = 134 units, the lead time L∗ = 28 days, the optimal setup cost for the vendor

S∗ = $1202.6, the number of lots delivered from the vendor to the buyer m∗ = 3, the reorder

point R∗ = 65 units, the minimum joint cost is $6627.4/year.

Now we compare our numerical results to Banerjee’s (1986) and Ouyang et al.’s (2004)

model in order to examine the effect of considering the vendor’s setup cost as variable. The

summarization of these comparisons is shown in Table 3.3 and Table 3.4.

From Table 3.3 and Table 3.4, our model indicates the lowest cost compared to that of

Banerjee’s (1986), Goyal’s (1988), and Ouyang et al.’s (2004) model for both m = 1 and m > 1.
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Table 3.2

Solution of Example 1 (for normal distribution case)

m L∗ Q∗m S∗m R∗m JATC(Q∗m, R
∗
m, S

∗
m, L

∗
m,m)

1 28 212 637.2 61 6981.7

2 28 162 972.7 63 6638.2

3 28 134 1202.6 65 6627.4 a←

4 28 115 1380.7 66 6716.0

a← indicates the minimum expected joint total cost.

Table 3.3

Comparison table (for m = 1)

Banerjee (1986) Ouyang et al. (2004) This model

Reorder point (R) (units) − 58 61

Buyer’s ordering quantity (Q) (units) 290 299 212

JATC ($) 7948.9 7466.7 6981.7

− indicates the reorder point was not considered as a decision variable in Banerjee (1986).
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Table 3.4

Comparison table (for m > 1)

Goyal (1988) Ouyang et al. (2004) This model

Number of lots delivered (m) 2 3 3

Reorder point (R) (units) − 64 65

Buyer’s ordering quantity (Q) (units) 164 144 134

Vendor’s lot size (mQ) (units) 328 432 402

JATC ($) 7875.1 6660.4 6627.4

− indicates the reorder point was not considered as a decision variable in Goyal (1988).

Example 2

The data for Example 2 are the same as Example 1. This is for the distribution free case.

Applying algorithm 2, we obtain results as follows. The optimal ordering quantity Q∗∗ = 204

units, the lead time L∗∗ = 28 days, the optimal setup cost for the vendor S∗∗ = $1227.4, the

number of lots delivered from the vendor to the buyer m∗∗ = 2, the reorder point R∗∗ = 61

units, and the minimum joint cost is $6994/year. Solutions for Example 2 are summarized in

Table 3.5.

3.3.1 Sensitivity analysis

For sensitivity analysis, we change each key parameter by −50%, −25%, +25%, and +50%.

Each parameter is changed one at a time keeping other parameters fixed. The effect of changes

of the key parameters are illustrated in Table 3.7 and Table 3.8.
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Table 3.5

Solution of Example 2 (for the distribution free case)

m L∗∗ Q∗∗m S∗∗m R∗∗m JATCf (Q
∗∗
m , R

∗∗
m , S

∗∗
m , L

∗∗
m ,m)

1 28 258 775.4 58 7244.2

2 28 204 1227.4 61 6994.4 b←

3 28 173 1555.6 63 7066.3

b← indicates the joint total cost for the distribution free case.

Table 3.6

Sensitivity analysis for normal distribution case

Parameters Changes(in %) EACN

−50% −6.32

−25% −2.99

A +25% +3.00

+50% +6.33

−50% −16.65

−25% −7.24

Cb +25% +7.11

+50% +14.01

−50% −7.56

−25% −3.89

Cv +25% +3.23

+50% +6.32

Parameters Changes(in %) EACN

−50% −14.55

−25% −6.59

rb +25% +6.47

+50% +11.89

−50% −7.46

−25% −4.00

rv +25% +4.39

+50% +8.51

−50% −19.21

−25% −6.56

S0 +25% +5.64

+50% +11.91
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Table 3.7

Sensitivity analysis for distribution free case

Parameters Changes(in %) EACN

−50% −5.06

−25% −2.33

A +25% +2.36

+50% +4.87

−50% −15.99

−25% −7.79

Cb +25% +6.97

+50% +14.23

−50% −8.06

−25% −4.56

Cv +25% +4.27

+50% +8.14

Parameters Changes(in %) EACN

−50% −16.15

−25% −8.69

rb +25% +7.57

+50% +15.02

−50% −9.37

−25% −3.86

rv +25% +4.01

+50% +8.96

−50% −17.53

−25% −8.33

S0 +25% +6.70

+50% +11.26
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3.3.2 Evaluation of expected value of additional information (EVAI)

Now we compare results of the distribution free case to the normal distribution case. The

lead time demand distribution is not known. Therefore, some additional information is needed

to get familiar with the nature of the lead time demand distribution. From Table 3.2 and Ta-

ble 3.5, we obtain (Q∗, R∗, S∗, L∗,m∗) = (134, 65, 1202.6, 28, 3) and (Q∗∗, R∗∗, S∗∗, L∗∗,m∗∗) =

(204, 61, 1227.4, 28, 2). Therefore, the added cost will be JATC(Q∗∗, R∗∗, S∗∗, L∗∗,m∗∗)

−JATC(Q∗, R∗, S∗, L∗,m∗) = $6651.86 − $6627.4 = $24.46 which is less than 1% of the joint

total cost for the distribution free case. This amount is said to be the expected value of ad-

ditional information (EVAI) for the buyer. This is the largest amount that a buyer would be

willing to incur to obtain the information of the lead time demand distribution. This concept

was introduced by Moon and Gallego (1993).

3.4 Managerial insights

This chapter deals with a fruitful way for cost reduction in an integrated supply chain model.

The managerial insights of this chapter are given as follows.

• The manager can reduce the setup cost of vendor by investing an amount of fund which

results reduction of total supply chain cost also.

• The reduced cost shown in this study is lesser than the total cost shown in existing literature.

• Manager can decide whether to invest fund or not in collecting market demand information.

3.5 Concluding remarks

This study considered an integrated vendor-buyer supply chain model with the lead time,

ordering quantity of the buyer, reorder point, quantity shifted from the vendor to the buyer,

and the setup cost for the vendor as decision variables. An investment function was used to

minimize the vendor’s setup cost. The lead time demand is distributed normally. In the second

model, the distribution free approach is applied for the lead time demand. We minimized the

expected joint total cost for the buyer and the vendor for both the normal distribution and
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the distribution free cases. Finally, we saved more amount of money compared to the previ-

ous studies related to this problem. The model can be extended by improving the quality of

products produced by the vendor. One immediate extension for this model is to consider an

investment for buyer’s ordering cost reduction. A fruitful research can be done by assuming

a discrete investment to reduce vendor’s setup cost instead of continuous investment. One

another possible extension can be examined by considering the deterioration of the items.

3.6 Appendices of Chapter 3

Appendix A

Area ADEG is divided into two strips. These are (mQ)(Q/P ) and (m−1)(Q/D)(mQ), respec-

tively. Therefore,

Area ADEG = mQ(Q/P ) + (m− 1)(Q/D)(mQ)

= (mQ){Q/P + (m− 1)(Q/D)}

Area AGF = (1/2)(mQ/P )(mQ) = m2Q2/2P

Area of the ladder = [Q+ 2Q+ 3Q+ ...+ (m− 1)Q](Q/D)

Total inventory of the vendor = Area ADEG − Area AGF − Area of the ladder

= mQ

[
Q

P
+ (m− 1)

Q

D

]
− m2Q2

2P
− Q2

D
[1 + 2 + ...+ (m− 1)]

Appendix B

Proof of Proposition 1.

For given value of L and m, the Hessian matrix H is as follows

H =


∂2JATC(·)

∂Q2

∂2JATC(·)
∂Q∂k

∂2JATC(·)
∂Q∂S

∂2JATC(·)
∂k∂Q

∂2JATC(·)
∂k2

∂2JATC(·)
∂k∂S

∂2JATC(·)
∂S∂Q

∂2JATC(·)
∂S∂k

∂2JATC(·)
∂S2


The symbol ‘.’ represents independent variables of the function JATC. Now, the global

minimum is attained only if principal minors of all order are positive. Expressions of all partial

derivatives of the above Hessian matrix are derived below.

53



∂2JATC(·)
∂Q2

=
2D

Q3

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
∂2JATC(·)
∂Q∂k

= − D
Q2
πσ
√
L[Φ(k)− 1]

∂2JATC(·)
∂Q∂S

= − D

mQ2

∂2JATC(·)
∂k∂Q

= − D
Q2
πσ
√
L[Φ(k)− 1]

∂2JATC(·)
∂k2

=
D

Q
πσ
√
Lφ(k)

∂2JATC(·)
∂k∂S

= 0

∂2JATC(·)
∂S∂Q

= − D

Q2m

∂2JATC(·)
∂S∂k

= 0

∂2JATC(·)
∂S2

=
αB

S2

The first order principal minor of |H| is

|H11|(Q∗,k∗,S∗) =

∣∣∣∣∂2JATC(·)
∂Q2

∣∣∣∣
(Q∗,k∗,S∗)

=
2D

Q∗3

[
A+

S∗

m
+ πσ

√
Lψ(k∗) + C(L)

]
> 0

The second order principal minor of |H| is

|H22|(Q∗,k∗,S∗) =
∂2JATC(·)

∂Q2

∂2JATC(·)
∂k2

−
(
∂2JATC(·)
∂Q∂k

)2

=
2D

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ πσ

√
Lψ(k∗) + C(L)

]
− D2

Q∗4
π2σ2L [Ψ(k∗)− 1]2

=
2D2

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ C(L)

]
+

D2

Q∗4
π2σ2L

[
2ψ(k∗)φ(k∗)− (Φ(k∗)− 1)2

]
> 0

as φ(k), ψ(k) > 0 and 2φ(k)ψ(k)− (Φ(k)− 1)2 > 0 for all k > 0 (Ouyang et al., 2004).
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The third order principal minor of |H| is

|H33|(Q∗,k∗,S∗) =

∣∣∣∣∣∣∣∣∣
∂2JATC(·)

∂Q2

∂2JATC(·)
∂Q∂k

∂2JATC(·)
∂Q∂S

∂2JATC(·)
∂k∂Q

∂2JATC(·)
∂k2

∂2JATC(·)
∂k∂S

∂2JATC(·)
∂S∂Q

∂2JATC(·)
∂S∂k

∂2JATC(·)
∂S2

∣∣∣∣∣∣∣∣∣
=

αB

S∗2
|H22| −

D3

Q∗5m2
πσ
√
Lφ(k∗)

>
2D2

Q∗4
π2σ2Lφ(k∗) +

2D2

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ C(L)

]
− D3

Q∗5m2
πσ
√
Lφ(k∗)

=
D2

Q∗4
πσ
√
L

[
2πσ
√
Lφ(k∗) + 2ψ(k∗)

{
A+

S∗

m
+ C(L)

}
− D

Qm2
φ(k∗)

]
> 0

as 2πσ
√
L+ 2ψ(k∗)A+

S∗

m
+ C(L) >

D

Q∗m2

We see that all principal minors of the Hessian matrix are positive. Hence, the Hessian

matrix, H is positive definite at (Q∗, k∗, S∗). Therefore, the total expected annual cost function

has a global minimum at (Q∗, k∗, S∗).
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Chapter 4

Manufacturing quality improvement and setup cost reduction

in an integrated vendor-buyer supply chain system
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4 Manufacturing quality improvement and setup cost re-

duction in an integrated vendor-buyer supply chain

system

In this chapter, a method to improve the quality of a single type of product and reducing ven-

dor’s setup cost in a single-vendor and single-buyer model, is established. The buyer’s demand

is deterministic, but the lead time demand follows firstly a normal distribution and then follows

no specific distribution except known mean and standard deviation. Based on the nature of

lead time demand distribution, this research considers two different models. The procedure of

reducing the vendor’s setup cost and the manufacturing quality improvement of products are

established analytically. In any production system with long run process, the occurrence of

defective items arises. These items are reworked, rejected, or refused based on different policies

of industries. Therefore, it is realistic that a cost to be incurred in order to improve quality

of products. An investment can be done to improve the production process. The role of an

investment is utilized to reduce the setup cost.

4.1 Literature review

Some literatures similar to Chapter 3 has been omitted as this chapter is an extension of the

previous one. Some of the important literatures based on this topic is described. Goyal (1976)

developed a single-supplier single-retailer integrated inventory model as the first research work

in this field. Banerjee (1986) extended Goyal’s (1976) model by assuming a joint economic lot

size model. Goyal (1988) extended Banerjee’s (1986) model with the vendor’s production quan-

tity as an integer multiple of buyer’s ordering quantity. Huang (2002) introduced an imperfect

quality products in an integrated vendor-buyer model.

Porteus (1985) introduced the concept of setup cost reduction in the inventory literature.

Porteus (1985) and Rosenblatt and Lee (1986) first established the relation between the lot size
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and quality imperfection. Porteus (1986) investigated the effect of investment in reducing the

setup cost and quality improvement cost jointly. Ouyang et al. (2002) utilized an investment

for reducing setup cost in an inventory model with the imperfect production and controllable

lead time. Sana (2011) considered a three−layer supply chain model with imperfect produc-

tion. Soni and Patel (2012) investigated an integrated inventory model with defective items

and variable production rate under retailer’s partial trade credit policy.

4.2 Model formulation

This chapter is and extension of chapter 3. The assumptions to formulate the model are

discarded as they are similar to the assumptions in previous chapter.

The buyer orders the quantity Q to the vendor and the vendor produces the quantity mQ.

In order to reduce the setup cost whole mQ amount is produced within a single setup, but Q

quantity is delivered to the buyer after its production. Thus mQ quantity will be delivered after

m units of time. The expected cycle length of the vendor and buyer are mQ
D

and Q
D

, respectively.

The system is continuously investigated in such a manner that whenever the inventory level

reaches the reorder point R, an order quantity Q is placed.

X is distributed as normally with finite mean DL and standard deviation σ
√
L. The

shortage occurs if X > R. The expected shortage at cycle end can be written as E(X −R)+ =∫∞
R

(x− R)dF (x). The expected net inventory level just before placing an order and after the

delivery of item are R−DL and Q+R−DL, respectively.

Thus, the expected holding cost per unit time is rbCb[(Q/2) + R − DL]. The expected

shortage cost per unit time is πD
Q
E(X −R)+.

The ordering cost per unit time AD
Q

and lead time crashing cost per unit time is DC(L)
Q

.

The total expected cost per unit time for the buyer can be calculated as follows

TECb =
AD

Q
+
DC(L)

Q
+ rbCb[(Q/2) +R−DL] +

πD

Q
E(X −R)+ (20)
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The vendor’s expected setup cost per unit time is SD
mQ

.

The average inventory of the vendor is obtained from the similar derivation of Chapter 3.

=

[{
mQ

(
Q

P
+ (m− 1)

Q

D

)
− m2Q2

2P

}
−
{
Q2

D
(1 + 2 + ...+ (m− 1))

}]
D

mQ

=
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
Hence, the expected holding cost per unit time for vendor is

= rvCv
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
Now, we introduce a possible relationship among defective items, quality, and lot size.

During production process, there may be the possibility of producing imperfect items. During

the time of producing a lot size mQ, expected defective units can be approximated by mQθ/2

(Porteus, 1986). Therefore, the expected annual cost for imperfect items is sDmQθ/2. Hence,

the total expected cost per unit time for vendor is

ATCv(Q,m) =
SD

mQ
+ rvCv

Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
+
sDmQθ

2
(21)

Investment in vendor’s setup cost reduction

Now, we investigate the effect of investment on vendor’s setup cost reduction. In relation

(2), the equation represents the vendor’s total expected cost per unit time. The setup cost is

assumed as a fixed parameter. But for more realistic issues, this cost must be a variable and

this can be done by varying the capital investment assigned to reduce the vendor’s setup cost.

If IS is the investment for setup cost reduction, then it can be expressed as

IS = B ln(S0

S
) for 0 < S ≤ S0, i.e., IS = B(lnS0 − lnS), where S0 is the initial setup cost,

B = 1
δ
, and δ = The decrease of percentage in S/dollar increase in IS.

Investment in quality improvement of the product

Similar to the reduction of vendor’s setup cost, the investment in quality improvement of

the product is also taken into account. We assume the capital investment as Iθ for the reduction

of the out-of-control probability θ. Thus, Iθ can be expressed as

Iθ = b ln( θ0
θ

) for 0 < θ ≤ θ0, i.e., Iθ = b(ln θ0− ln θ), where θ0 is the initial probability for which
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the production process may go out-of-control and b = 1
∆

, where ∆ represents the percentage

decrease in θ per dollar increase in Iθ.

Thus the total expected cost for the vendor per unit time is

ATCv = α [B(lnS0 − lnS) + b(ln θ0 − ln θ)] +
SD

mQ

+ rvCv
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
+
sDmQθ

2
(22)

where α is the annual fractional cost of capital investment.

The expected shortage at cycle end can be written as

E(X −R)+ =

∫ ∞
R

(x−R)dF (x)

= σ
√
Lψ(k)

where ψ(k) = φ(k)−k[1−Φ(k)], φ stands for the standard normal probability density function,

and Φ = stands for the cumulative distribution function of normal distribution. In this context,

we consider k as a decision variable. The optimal reorder pint can be calculated by the formula

R = DL+ kσ
√
L.

The expected joint total cost of the buyer and vendor is

JATC(Q, k, S, θ, L,m) = ATCb(Q, k, L) + ATCv(Q,S,m)

= α [B(lnS0 − lnS) + b(ln θ0 − ln θ)]

+
D

Q

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

Q

2

[
rbCb + rvCv

{
m

(
1− D

P

)
− 1 +

2D

P

}]
+ rbCbkσ

√
L+

sDmQθ

2
(23)

Now the problem is to minimize the expected joint total cost function with respect to two
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constraints as 0 < S ≤ S0 and 0 < θ ≤ θ0 i.e.,

Min JATC(Q, k, S, θ, L,m) = α [B(lnS0 − lnS) + b(ln θ0 − ln θ)]

+
D

Q

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

Q

2
H(m) + rbCbkσ

√
L+

sDmQθ

2

subject to 0 < S ≤ S0

0 < θ ≤ θ0 (24)

where H(m) = rbCb + rvCv

[
m(1− D

P
)− 1 +

2D

P

]
This is a constrained non-linear programme. In order to obtain the solution of the problem,

first we neglect two constraints 0 < S ≤ S0 and 0 < θ ≤ θ0. The objective function of the

above problem is a function of six variables Q, k, S, θ, and L where m is a positive integer

which indicates it is a discrete variable. Therefore, taking partial derivatives of the objective

function with respect to Q, k, S, θ, and L, we obtain

∂JATC(Q, k, S, θ, L,m)

∂Q
= − D

Q2

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
+

1

2
H(m) +

sDmθ

2
(25)

∂JATC(Q, k, L, S, θ,m)

∂k
=

D

Q
πσ
√
L[Φ(k)− 1] + rbCbσ

√
L (26)

[φ′(k) = −kφ(k), Φ′(k) = φ(k)]

∂JATC(Q, k, S, θ, L,m)

∂S
= −αB

S
+

D

mQ
(27)

∂JATC(Q, k, S, θ, L,m)

∂θ
= −αb

θ
+
sDmQ

2
(28)

∂JATC(Q, k, S, θ, L,m)

∂L
=

D

2Q
√
L
πσψ(k) +

D

Q

∂C(L)

∂L
+
rbCbkσ

2
√
L

=
D

Q

[
πσψ(k)

2
√
L
− ci

]
+
rbCbkσ

2
√
L

(29)

Again

∂2JATC(Q, k, S, θ, L,m)

∂L2
= − D

4Q
πσψ(k)L−3/2 − 1

4
rbCbkσL

−3/2 < 0
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which shows that for fixed Q, k, S, θ, and m, the function JATC(Q, k, S, θ, L,m) is concave

in L. Thus for fixed Q, k, S, θ, and m, the minimum value of JATC(Q, k, S, θ, L,m) attends

at the end point of the interval [Li, Li−1]. Now for fixed positive integer m, the values of Q,

Φ(k), S, and θ are obtained by equating the equations (25), (26), (27), and (28) to zero as

Q =

2D
[
A+ S

m
+ πσ

√
Lψ(k) + C(L)

]
H(m) + sDmθ


1
2

(30)

Φ(k) = 1− rbCbQ

Dπ
(31)

S =
αBQm

D
(32)

θ =
2αb

sDmQ
(33)

4.2.1 Proposition 1

If we denote Q∗, k∗, S∗, and θ∗ as optimal values of Q, k, S, and θ then for fixed L ∈

[Li, Li−1] and m, the Hessian matrix for JATC(Q, k, S, θ, L,m) is positive definite at the point

(Q∗, k∗, S∗, θ∗) obtained from equations (30)−(33) if the constraints 0 < S ≤ S0 and 0 < θ ≤ θ0

are relaxed.

Proof: See Appendix A.

The optimal value of m can be obtained when

JATC(m∗ − 1) ≥ JATC(m∗) ≤ JATC(m∗ + 1)

where m∗ is the optimal value of m.

We now take two constraints into consideration. S and θ are both positive quantity as α, B,

Q, m, D, b, and s are all positive. If S∗ < S0 and θ∗ < θ0, then S∗ and θ∗ are optimal solutions

of S and θ, respectively. But if S∗ > S0 occurs, then the investment for setup cost reduction

for vendor becomes a negative quantity which does not make any sense. In this situation we

reconsider S∗ = S0 and no investment is considered for setup cost reduction. Similarly for the

case when θ∗ > θ0, we take θ∗ = θ0. We now describe the following algorithm to obtain the
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optimal solution of our model.

4.2.2 Solution algorithm SM 1

Step 1 Set m = 1.

Step 2 For each Li, i = 1, 2, ...n; perform Step 2a−2f.

Step 2a Set Si1 = 0, ki1 = 0, θi1 = 0 (implies ψ(ki1) = 0.39894).

Step 2b Substitute ψ(ki1) into equation (30) and evaluate Qi1.

Step 2c Utilize Qi1 to determine the value of Φ(ki2) from equation (31).

Step 2d For the value of Φ(ki2), find ki2 from the normal table and hence evaluate ψ(ki2).

Step 2e Utilize Qi1 to obtain Si2 and θi2 from equation (32) and (33).

Step 2f Repeat 2b to 2e until no changes occur in the values of Qi, ki, Si, and θi as well as

denote these values by the point (Q∗i , k
∗
i , S

∗
i , θ
∗
i ).

Step 3 Comparison between S∗ and S0, and θ∗ and θ0.

Step 3a If S∗i < S0 and θ∗i < θ0 then (Q∗i , k
∗
i , S

∗
i , θ
∗
i ) is the optimal solution. Go to Step 4.

Step 3b If S∗i > S0 and θ∗i < θ0 then set S∗i = S0 and utilize (30), (31), and (33) to determine

new optimal value of (Q, k, θ) denoted by (Q′i, k
′
i, θ
′) by substituting S by S0 and using

the same procedure stated as Step 2. Then go to Step 4.

Step 3c If S∗i < S0 and θ∗i > θ0 then set θ∗i = θ0 and utilize (30), (31), and (32) to determine

the new optimal value of (Q, k, S) denoted by (Q′′i , k
′′
i , S

′′
i ) by substituting θ by θ0 and

using the same procedure stated as in Step 2. Then go to Step 4.

Step 4 Find JATC(Q∗i , k
∗
i , S

∗
i , θ
∗
i , Li,m) and Mini=1,2,...,nJATC(Q∗i , k

∗
i , S

∗
i , θ
∗
i , Li,m).
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Step 4a If JATC(Q∗i , k
∗
i , S

∗
i , θ
∗
i , Li,m) = Mini=1,2,...,nJATC(Q∗i , k

∗
i , S

∗
i , θ
∗
i , Li,m),

then JATC(Q∗i , k
∗
i , S

∗
i , θ
∗
i , Li,m) is the optimal solution for fixed m.

Step 5 Set m = m+ 1.

If JATC(Q∗m, k
∗
m, S

∗
m, θ

∗
m, Lm,m) ≤ JATC(Q∗m−1, k

∗
m−1, S

∗
m−1, θ

∗
m−1, Lm−1,m− 1), repeat

Step 2, Step 3, and Step 4. Otherwise go to Step 6.

Step 6 Set JATC(Q∗m, k
∗
m, S

∗
m, θ

∗
m, Lm,m) = JATC(Q∗m−1, k

∗
m−1, S

∗
m−1, θ

∗
m−1, Lm−1,m− 1).

Then (Q∗, k∗, L∗, S∗, θ∗,m∗) is the optimal solution and the optimal reorder point can be

obtained from R∗ = DL∗ + k∗σ
√
L∗, where R∗ denotes the optimal solution for R, the

reorder point.

4.2.3 Distribution free approach

Most of the time, the exact distribution of the lead time demand is very difficult to obtain.

Managers need to pay a lot of money to collect the necessary information about lead time de-

mand distribution. In this situation, min-max distribution free approach is very useful to solve

the model, where the lead time demand does not follow any specific probability distribution ex-

cept mean and standard deviation. We consider any distribution function (d.f.) F for the lead

time demand in the class G of d.f.’s with mean DL and standard deviation σ
√
L. The value of

expected shortage cannot be determined exactly as the lead time demand distribution is un-

available. The min-max distribution free approach is used to determine the most unfavorable

distribution function function F in G for each (Q,R,L, S, θ,m) such that the expected joint

total cost for vendor and buyer is maximized and then to minimize it over (Q,R,L, S, θ,m).

Thus, the problem can be stated as

Min MaxF∈G JATC(Q,R, S, θ, L,m)

subject to 0 < S ≤ S0

0 < θ ≤ θ0 (34)

The following proposition is used by Gallego and Moon (1993) to approximate the value of

E(X −R)+.
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4.2.4 Proposition 2

For any F ∈ G, the following inequality always holds.

E(X −R)+ ≤ 1

2

[√
σ2L+ (R−DL)2 − (R−DL)

]
(35)

Moreover the upper bound of the above equation is tight.

From model (24) and the inequality (35), the model (34) is reduced to

Min JATCf (Q, k, S, θ, L,m) = α [B(lnS0 − lnS) + b(ln θ0 − ln θ)]

+
D

Q

[
A+

S

m
+

1

2
πσ
√
L(
√

1 + k2 − k)

+ C(L)
]

+
Q

2
H(m) + rbCbkσ

√
L+

sDmQθ

2

subject to 0 < S ≤ S0

0 < θ ≤ θ0 (36)

where H(m) = rbCb + rvCv

[
m

(
1− D

P

)
− 1 +

2D

P

]
Taking partial derivatives of the objective function with respect to Q, k, S, and θ, then equating

to zero we obtain

Q =

2D
[
A+ S

m
+ 1

2
πσ
√
L(
√

1 + k2 − k) + C(L)
]

H(m) + sDmθ


1
2

(37)

k√
1 + k2

= 1− 2rbCbQ

Dπ
(38)

S =
αBQm

D
(39)

θ =
2αb

sDmQ
(40)

4.2.5 Proposition 3

If we denote Q∗∗, k∗∗, S∗∗, and θ∗∗ as optimal values of Q, k, S, and θ then for fixed

L ∈ [Li, Li−1] and m, the Hessian matrix for JATCf (Q, k, S, θ, L,m) is positive definite at

65



the point (Q∗∗, k∗∗, S∗∗, θ∗∗) obtained from equations (37)−(40) if the constraints 0 < S ≤ S0

and 0 < θ ≤ θ0 are relaxed.

Proof Similar proof as Proposition 1.

For fixedQ∗∗, k∗∗, S∗∗, θ∗∗, and L∗∗ the optimal value of the objective function JATCf (Q, k, S, θ, L,m)

will be obtained when

JATC(m∗∗ − 1) ≥ JATC(m∗∗) ≤ JATC(m∗∗ + 1)

where m∗∗ denotes the optimal value of m. The constraints 0 < S∗∗ ≤ S0 and 0 < θ∗∗ ≤ θ0

will be satisfied also. An algorithm to obtain the optimal value for distribution free model is

illustrated below.

4.2.6 Solution algorithm SM 2

Step 1 Set m = 1.

Step 2 For each Li, i = 1, 2, ..., n; perform Step 2a−2e.

Step 2a Set Si1 = 0, ki1 = 0, θi1 = 0.

Step 2b Substitute Si1, ki1, θi1 into equation (37) and evaluate Qi1.

Step 2c Utilize Qi1 to determine the value of ki2 from equation (38).

Step 2d Utilize Qi1 to obtain Si2 and θi2 from equation (39) and (40).

Step 2e Repeat 2b to 2d until no changes occur in the values of Qi, ki, Si, and θi denote these

values by the point (Q∗∗i , k
∗∗
i , S

∗∗
i , θ

∗
i ∗).

Step 3 Comparison between S∗∗ and S0, as well as θ∗∗ and θ0.

Step 3a If S∗∗i < S0 and θ∗∗i < θ0 then (Q∗∗i , k
∗∗
i , S

∗∗
i , θ

∗∗
i ) is the optimal solution. Go to Step

4.
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Step 3b If S∗∗i > S0 and θ∗∗i < θ0 then set S∗∗i = S0 and utilize (37), (38) and (40) to determine

new optimal value of (Q, k, θ) denoted by (Q∗
′
i , k

∗′
i , θ

∗′) by substituting S by S0 and using

the same procedure stated as Step 2. Then go to Step 4.

Step 3c If S∗∗i < S0 and θ∗∗i > θ0 then set θ∗∗i = θ0 and utilize (37), (38), and (39) to determine

the new optimal value of (Q, k, S) denoted by (Q∗
′′
i , k

∗′′
i , S

∗′′
i ) by substituting θ by θ0 and

using the same procedure stated as in Step 2. Then go to Step 4.

Step 4 Find JATC(Q∗∗i , k
∗∗
i , S

∗∗
i , θ

∗∗
i , Li,m) and Mini=1,2,...,nJATC(Q∗∗i , k

∗∗
i , S

∗∗
i , θ

∗∗
i , Li,m).

Step 4a If JATC(Q∗∗i , k
∗∗
i , S

∗∗
i , θ

∗∗
i , Li,m) = Mini=1,2,...,nJATC(Q∗∗i , k

∗∗
i , S

∗∗
i , θ

∗∗
i , Li,m),

then, JATC(Q∗∗i , k
∗∗
i , S

∗∗
i , θ

∗∗
i , Li,m) is the optimal solution when m is fixed.

Step 5 Set m = m+ 1.

If JATC(Q∗∗m , k
∗∗
m , S

∗∗
m , θ

∗∗
m , Lm,m) ≤ JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, θ

∗∗
m−1, Lm−1,m−1), repeat

Step 2, Step 3, and Step 4. Otherwise go to Step 6.

Step 6 Set JATC(Q∗∗m , k
∗∗
m , S

∗∗
m , θ

∗∗
m , Lm,m) = JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, θ

∗∗
m−1, Lm−1,m− 1).

Then, (Q∗∗, k∗∗, L∗∗, S∗∗, θ∗∗,m∗∗) is the optimal solution and the optimal reorder point

can be obtained from R∗∗ = DL∗∗ + k∗∗σ
√
L∗∗, where R∗∗ denotes the optimal solution

for R, the reorder point.

4.3 Numerical experiments

Example 1

This example deals with a model having the lead time demand, following a normal distri-

bution. According to Ouyang et al. (2004), we consider D = 600 units/year, A = $200/order,

Cb = $100/unit, π = $50/unit, σ = 7 units/week, P = 2000 units/year, S0 = $1500/setup,

θ0 = 0.0002, Cv = $70/unit, rb = $0.2/unit/year, rv = $0.2/unit/year, α = 0.1/dollar/year,

B = 18000, and b = 400. The lead time has three components and Table 4.1 shows the data

for the lead time. The results are given in Table 4.2 and Table 4.3.
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Table 4.1

Lead time data

Lead time Normal Minimum Unit crashing

component duration duration cost

i bi (days) ai (days) ci ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

Table 4.2

Solution of Example 1 for variable setup cost (for normal distribution case)

L m Q k S θ R JTEC

28 1 192.25 1.14 576.76 9.24×10−6 62 7161.33

28 2 142.09 1.31 852.54 6.25×10−6 64 6848.75a

28 3 115.43 1.42 1038.87 5.13×10−6 66 6856.84

a indicates the minimum joint total cost.

Table 4.3

Solution of Example 1 for fixed setup cost (for normal distribution case)

L m Q k S θ R JTEC

28 1 266.67 0.92 1500 6.61×10−6 59 7688.14

28 2 166.74 1.22 1500 5.33×10−6 63 6995.86

28 3 126.12 1.38 1500 4.69×10−6 65 6902.41b

28 3 103.72 1.48 1500 4.28×10−6 67 6967.86

b indicates the minimum joint total cost.

Applying algorithm 1, we obtain the above results for Example 1. The optimal ordering

quantity Q∗ = 142 units, lead time L∗ = 28 days, optimal setup cost for the vendor S∗ = $853,

optimal out-of-control probability θ∗ = 6.25 × 10−6, the number of lots delivered from the

vendor to the buyer m∗ = 3, the reorder point R∗ = 64 units, the minimum joint total cost is
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$6849/year.

Example 2

The data for Example 2 are the same as Example 1 in the distribution free case. Applying

algorithm SM 2, we obtain the results as follows. The optimal ordering quantity Q∗∗ = 155

units, the lead time L∗∗ = 28 days, the optimal setup cost for the vendor S∗∗ = $928, the

number of lots delivered from the vendor to the buyer m∗∗ = 2, the optimal out-of-control

probability θ∗∗ = 5.74× 10−6, the reorder point R∗∗ = 64 units, and the minimum joint cost is

$7164/year. Solutions for Example 2 are summarized in Table 4.4 and Table 4.5.

Table 4.4

Solution of Example 2 for variable setup cost (for distribution free case)

L m Q k S θ R JTEC

28 1 207.83 1.05 623.50 8.55×10−6 61 7401.25

28 2 154.62 1.31 927.75 5.74×10−6 64 7164.34c

28 3 125.99 1.50 1133.89 4.70×10−6 67 7236.62

c indicates the minimum joint total cost.

Table 4.5

Solution of Example 2 for fixed setup cost (for distribution free case)

L m Q k S θ R JTEC

21 1 275.76 0.82 1500 6.44×10−6 45 7848.76

28 2 174.87 1.19 1500 5.08×10−6 63 7266.90

28 3 133.00 1.44 1500 4.43×10−6 66 7256.76d

28 2 110.81 1.63 1500 4.01×10−6 69 7392.18

d indicates the minimum joint total cost.

4.3.1 Sensitivity analysis

For sensitivity analysis, we change each key parameter by −50%, −25%, +25%, and +50%.

Each parameter is changed one at a time keeping other parameters fixed. The effect of changes
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Table 4.6

Sensitivity analysis for normal distribution case

Parameters Changes(in %) EACN

−50% −5.82

−25% −2.82

A +25% +2.68

+50% +5.23

−50% −15.65

−25% −7.39

Cb +25% +6.73

+50% +12.95

−50% −8.76

−25% −4.19

Cv +25% +3.88

+50% +7.51

Parameters Changes(in %) EACN

−50% −15.65

−25% −7.39

rb +25% +6.73

+50% +12.95

−50% −8.76

−25% −4.19

rv +25% +3.88

+50% +7.51

−50% −18.22

−25% −7.56

S0 +25% +5.86

+50% +10.66

of the key parameters are illustrated in Table 4.7 and Table 4.8.

The percentage change in the joint total cost indicates that some parameters like Cb, rb,

and S0 are more sensitive than that of A, Cv, and rv to the optimal cost. From sensitivity

analysis it is seen that when key parameters are increased total system cost also gets increased.

Results of the sensitivity analysis are same for the distribution free case. However, percentage

changes in the joint total cost with the change of key parameters are different in two cases.
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Table 4.7

Sensitivity analysis for distribution free case

Parameters Changes(in %) EACN

−50% −5.06

−25% −2.47

A +25% +2.36

+50% +4.64

−50% −15.99

−25% −7.53

Cb +25% +6.85

+50% +13.16

−50% −9.09

−25% −4.35

Cv +25% +4.04

+50% +7.82

Parameters Changes(in %) EACN

−50% −15.99

−25% −7.53

rb +25% +6.85

+50% +13.16

−50% −9.09

−25% −4.35

rv +25% +4.04

+50% +7.82

−50% −17.41

−25% −7.23

S0 +25% +5.61

+50% +10.19
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4.3.2 Evaluation of expected value of additional information (EVAI)

We compare results of the distribution free case to the normal distribution case. From Table

4.2 and Table 4.4, we obtain (Q∗, R∗, S∗, θ∗, L∗,m∗) = (142, 64, 853, 6.25 × 10−6, 28, 2) and

(Q∗∗, R∗∗, S∗∗, θ∗∗, L∗∗,m∗∗) = (155, 64, 928, 5.74× 10−6, 28, 2). The added cost will be

JATC(Q∗∗, R∗∗, S∗∗, θ∗∗, L∗∗,m∗∗)−JATC(Q∗, R∗, S∗, θ∗, L∗,m∗) = $6863−$6849 = $14 which

is less than 1% of the joint total cost for the distribution free case. This amount is said to be

the expected value of additional information (EVAI) for the buyer. This is the largest amount

that a buyer should incur to obtain the knowledge of the lead time demand distribution.

4.4 Managerial insights

This chapter consists of an integrated vendor-buyer supply chain model with cost reduction

and quality improvement. The managerial insights of this chapter are as follows.

• Manager can reduce the setup cost of vendor and improve quality of products by a capital

investment. Reduction of setup cost results the reduction of total supply chain cost also.

• By incurring a lead time crashing cost retailer can reduce the delivery lead time which leads

to a better service level.

• The distribution free approach is applied to obtain the optimal decisions if managers are not

willing to pay fund to collect market information.

• EVAI suggests the manager whether to invest any fund or not to collect demand information.

4.5 Concluding remarks

This study considered an single-vendor single-buyer supply chain model with controllable

lead time. This research improved the manufacturing quality of products and reduced the

vendor’s setup cost by using an investment function. From numerical results, it was seen that

the total system cost is reduced for the variable setup cost rather than fixed setup cost. The

initial out-of-control probability was also reduced after using the investment function for quality

improvement. The EVAI was less than 1% of the total system cost which suggests managers to
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pay funds for collecting market information. The model can be extended by assuming multi-

item.

4.6 Appendix of Chapter 4

Appendix A

Proof of Proposition 1.

For given value of L and m, the Hessian matrix H is as follows

H =



∂2JATC(·)
∂Q2

∂2JATC(·)
∂Q∂k

∂2JATC(·)
∂Q∂S

∂2JATC(·)
∂Q∂θ

∂2JATC(·)
∂k∂Q

∂2JATC(·)
∂k2

∂2JATC(·)
∂k∂S

∂2JATC(·)
∂k∂θ

∂2JATC(·)
∂S∂Q

∂2JATC(·)
∂S∂k

∂2JATC(·)
∂S2

∂2JATC(·)
∂S∂θ

∂2JATC(·)
∂θ∂Q

∂2JATC(·)
∂θ∂k

∂2JATC(·)
∂θ∂S

∂2JATC(·)
∂θ2


Now

∂2JATC(·)
∂Q2

=
2D

Q3

[
A+

S

m
+ πσ

√
Lψ(k) + C(L)

]
∂2JATC(·)
∂Q∂k

= − D
Q2
πσ
√
L[Φ(k)− 1]

∂2JATC(·)
∂Q∂S

= − D

mQ2

∂2JATC(·)
∂k∂Q

= − D
Q2
πσ
√
L[Φ(k)− 1]

∂2JATC(·)
∂k2

=
D

Q
πσ
√
Lφ(k)

∂2JATC(·)
∂k∂S

= 0

∂2JATC(·)
∂S∂Q

= − D

Q2m
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∂2JATC(·)
∂S∂k

= 0

∂2JATC(·)
∂S2

=
αB

S2

∂2JATC(·)
∂θ2

=
αb

θ2

∂2JATC(·)
∂Q∂θ

=
sDm

2

∂2JATC(·)
∂S∂θ

= 0

∂2JATC(·)
∂k∂θ

= 0

The first order principal minor of H is

|H11|(Q∗,k∗,S∗) =

∣∣∣∣∂2JATC(·)
∂Q2

∣∣∣∣
(Q∗,k∗,S∗)

=
2D

Q∗3

[
A+

S∗

m
+ πσ

√
Lψ(k∗) + C(L)

]
> 0

The second order principal minor of H is as follows

|H22|(Q∗,k∗,S∗) =
∂2JATC(·)

∂Q2

∂2JATC(·)
∂k2

−
(
∂2JATC(·)
∂Q∂k

)2

=
2D

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ πσ

√
Lψ(k∗) + C(L)

]
− D2

Q∗4
π2σ2L [Ψ(k∗)− 1]2

=
2D2

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ C(L)

]
+

D2

Q∗4
π2σ2L

[
2ψ(k∗)φ(k∗)− (Φ(k∗)− 1)2

]
> 0
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as φ(k), ψ(k) > 0 and 2φ(k)ψ(k)− (Φ(k)− 1)2 > 0 for all k > 0 (Ouyang et al., 2004).

The third order principal minor of H is

|H33|(Q∗,k∗,S∗) =

∣∣∣∣∣∣∣∣∣
∂2JATC(·)

∂Q2

∂2JATC(·)
∂Q∂k

∂2JATC(·)
∂Q∂S

∂2JATC(·)
∂k∂Q

∂2JATC(·)
∂k2

∂2JATC(·)
∂k∂S

∂2JATC(·)
∂S∂Q

∂2JATC(·)
∂S∂k

∂2JATC(·)
∂S2

∣∣∣∣∣∣∣∣∣
=

αB

S∗2
|H22| −

D3

Q∗5m2
πσ
√
Lφ(k∗)

>
2D2

Q∗4
π2σ2Lφ(k∗) +

2D2

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ C(L)

]
− D3

Q∗5m2
πσ
√
Lφ(k∗)

=
D2

Q∗4
πσ
√
L

[
2πσ
√
Lφ(k∗) + 2ψ(k∗)

{
A+

S∗

m
+ C(L)

}
− D

Qm2
φ(k∗)

]
> 0

as 2πσ
√
L+ 2ψ(k∗)A+

S∗

m
+ C(L) >

D

Q∗m2

The forth order principal minor of H is

|H44|(Q∗,k∗,S∗) =

∣∣∣∣∣∣∣∣∣∣∣∣

∂2JATC(·)
∂Q2

∂2JATC(·)
∂Q∂k

∂2JATC(·)
∂Q∂S

∂2JATC(·)
∂Q∂θ

∂2JATC(·)
∂k∂Q

∂2JATC(·)
∂k2

∂2JATC(·)
∂k∂S

∂2JATC(·)
∂k∂θ

∂2JATC(·)
∂S∂Q

∂2JATC(·)
∂S∂k

∂2JATC(·)
∂S2

∂2JATC(·)
∂S∂θ

∂2JATC(·)
∂θ∂Q

∂2JATC(·)
∂θ∂k

∂2JATC(·)
∂θ∂S

∂2JATC(·)
∂θ2

∣∣∣∣∣∣∣∣∣∣∣∣
=

αb

θ∗2
|H33| −

sDm

2

{
αB

S∗2
× Dπσ

√
Lφ(k∗)

Q∗
× sDm

2

}

=
αb

θ∗2

[αB
S∗2

{2D2

Q∗4
πσ
√
Lψ(k∗)

[
A+

S∗

m
+ C(L)

]
+
D2

Q∗4
π2σ2
√
L

[2ψ(k∗)φ(k∗)− (Φ(k∗)− 1)2]
}
− D3

Q∗5m2
πσ
√
Lφ(k∗)

]
−

(
sDm

2

)2

× αB

S∗2
× D

Q∗
πσ
√
Lφ(k∗)
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This is enough to show that

2αb

Q∗3θ∗2
ψ(k∗)− s2m2D

2
φ(k∗) > 0 (41)

and

[
A+

S∗

m
+ C(L)

]
+
D2π2σ2L

Q4
[2ψ(k∗)φ(k∗)− (Φ(k∗)− 1)2]

− D3

Q∗5m2
πσ
√
Lφ(k∗) > 0 (42)

i.e.

[
A+

S∗

m
+ C(L) + πσ

√
L

]
− D

Q∗m2
φ(k∗) > 0 (43)

Inequality (22) holds because θ∗ << 1, Q∗;ψ(k∗) > φ(k∗) such that

2αb

θ∗2Q3
ψ(k∗) >

s2Dm2

2
φ(k∗)

Inequality (24) holds because

A+
S∗

m
>

D

Q∗m2
φ(k∗) as φ(k∗) < 1
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Chapter 5

Two-echelon supply chain model with

manufacturing quality improvement and setup cost reduction
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5 Two-echelon supply chain model with manufacturing

quality improvement and setup cost reduction

For quality improvement purposes, any manufacturing unit has to change certain parts of

equipments. Any such changes in the assembly−line manufacturing system or production

process involves a cost known as setup cost. Minimizing the setup cost and improving the

product quality is of prime importance in today’s competitive business arena. This chapter

develops the effect of setup cost reduction and quality improvement in a two-echelon supply

chain model with deterioration under lot−splitting policy. The objective is to minimize the

expected total cost of the entire supply chain model (SCM) by simultaneously optimizing setup

cost, process quality, number of deliveries, and lot size.

5.1 Literature review

Dealing between two parties (vendor-buyer or manufacturer-retailer) there are various policies

that confirms how a product will be delivered, namely the SSMD (Single-setup-multi-delivery)

and the SSSD (Single-setup-single-delivery). Choosing a suitable delivery policy is an impor-

tant criteria. An integrated production inventory model with single-vendor single-buyer was

extended by Hill (1997) as a generalized policy. Cárdenas-Barrón (2007) presented a note

on optimized inventory decisions in a multi-echelon multi-customer supply chain. Cárdenas-

Barrón (2011) discussed the variation of inventory models with two backorder costs using an-

alytical geometry and algebra. Teng et al. (2011) considered the economic lot size of the

integrated vendor-buyer inventory model without derivatives and with a closed form optimal

solution. Asghari et al. (2015) reversed a logistic network design with incentive-dependent

return. Watanable and Kusukawa (2015) evaluated an optimal ordering policy in dual-sourcing

B. Sarkar, A. Majumder, M. Sarkar, B. K. Dey, G. Roy, Two-echelon supply chain model

with manufacturing quality improvement and setup cost reduction, Journal of Industrial and

Management Optimization. Accepted.
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supply chain considering supply disruptions and demand information. Wisittipanich and Heng-

meechai (2015) discussed about a multi-objective differential evolution for just-in-time door

assignment and truck scheduling in multi-door cross docking problems. Park (2015) invented

a partial backordering inventory model where purchasing of products have an important role.

Kusukawa and Alozawa (2015) approached an optimal operation for green supply chain with

quality of recyclable parts and contract for recycling activity. Sarkar and Moon (2014) devel-

oped an improved quality and reduced setup cost with variable backorder costs in a production

process with imperfect quality.

The effect of degradation of items in the inventory model was first studied by authors Ghare

and Schrader (1963). An EOQ model with deterioration with Weibull distribution was later

discussed by Covert and Philip (1973). Misra (1975) and Shah (1977) respectively proposed

an optimal production lotsize model and an order-level lot size model for a system with de-

teriorating inventory. Economic ordering policy with deterioration over infinite time horizon

was developed by Goyal (1987). A literature survey on continuously deteriorating inventory

model was done by Raafat (1991). Inventory models with different types of deteriorating rates

was extended in this direction by some researchers like Goyal (1988), Goswami and Chaud-

huri (1991), Skouri and Papachristos (2003), Skouri et al. (2009), Sarkar (2012), Sarkar et al.

(2013), Sarkar and Sarkar (2013), Sarkar and Sarkar (2013), Sarkar (2013).

5.2 Model formulation

In this section, assumptions to develop the mathematical model, model description with some

lemma, and solution methodology are described.

5.2.1 Assumptions

Following assumptions are considered to develop the model.

1. Two-echelon supply chain model is considered with a buyer and a supplier for single-type
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of products.

2. For saving buyer’s holding cost, a SSMD policy is utilized for transportation of products

between vendor and buyer.

3. As SSMD policy is used to save the holding cost of buyer, thus buyer pays transportation

costs. For SSMD policy, it is assumed that there are some constant transportation costs

and some variable costs. Both constant and variable transportation cost are paid by

buyer.

4. Information of the demand and the inventory position of the buyer are given to the

supplier. Production rate is always greater than demand, i.e., P > D such that there are

no shortages.

5. The model assumes a SSMD policy, which indicates that the products are produced

within a single-setup which is generally in long-run. Thus, during long-run, any time the

production of defective items may occur.

6. The vendor uses autonomation policy (automatically detects the defective item by ma-

chine, no human inspector is needed to inspect the defectiveness of items) to detect the

imperfect production. As a result, if the system moves to out-of-control state from in-

control state, it will continue production of defective items until the whole lot is produced.

7. Two investments are considered to reduce setup cost and to improve quality of products.

8. A constant rate of deterioration is considered for products.

A SSMD policy for a supplier is developed in this model and the average total cost for the

buyer and the supplier which is minimized. In the proposed model the buyer’s ordered quantity

is manufactured at a time and the manufactured products are delivered in an equal amount

over multiple deliveries after a fixed interval of time. The splitting of the ordered quantity into

multiple lots is in accordance with Just−in−time implementation. The total time span T is

split into two parts say, T1, the production time for the supplier and T2, the non-production
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Figure 8 Buyer’s inventory position

time for the supplier. T3 is assumed as the time between two successive deliveries. Now, the

individual inventory costs the buyer and the supplier are calculated as follows:

Buyer’s cost function

The buyer’s cost function is comprised of the following relevant costs.

1. Ordering cost = A
T

2. Holding cost = HbAb

T
, where Ab is the area over which the inventory holds for buyer.

3. Deterioration cost = CddAb

T

4. Transportation cost and handling cost = (mF+V mq)
T
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Figure 9 Supplier’s inventory position
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From Figure 8 and Figure 9, we obtain

1

T
=

D

mq
+

d

2m
, (44)

and
Ab
T

=
q

2
. [See Appendix C] (45)

Using above equations, the buyer’s total cost is obtained as

TCb =
( D
mq

+
d

2m

)
(A+mF + V mq) +

q

2
[Hb + Cdd] (46)

Supplier’s cost function

Now the supplier’s cost function is comprised of the following relevant costs.

1. Setup cost = S
T

2. Holding cost = HsAs

T
, where As is the area over which the inventory holds for supplier.

3. Deterioration cost = CddAs

T

Let y be the number of deteriorating items of the supplier. y can be expressed as y = dAs.

y+dqT/2 denotes the total number of deteriorating units for the entire supply chain. With the

following expressions Q = mq + y and t1 = Q
P

and assuming the initial and the total inventory

for the supply chain, one can obtain

y +
dqT

2
=

dT

2P
{2Dq + (mq + y)(P −D)}.

Hence,

As =
y

d

= qT

(
D

P
+
m− 1

2
− Dm

2P

)
(47)

Considering an investment for quality improvement and setup cost reduction, the capital in-

vestment function is assumed as a logarithmic function as suggested by Porteus (1986). Iθ(θ),

investment to reduce the out-of-control probability θ is given by

Iθ(θ) = b ln
(θ0

θ

)
for 0 < θ ≤ θ0
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It is to be noted that lower value of the probability θ gives higher value of quality level, where

θ0 is the initial probability that the production process may go to out-of-control state and

b = 1/δ, where δ is the decrease of percentage in θ/dollar increase in Iθ(θ).

Now IS(S), the investment for setup cost reduction is expressed as

IS(S) = B ln
(S0

S

)
for 0 < S ≤ S0

where S0 is the initial setup cost, B = 1/∆, ∆ is a decrease of percentage in S/ dollar increase

in IS(S).

Thus, the total investment in quality improvement and setup cost reduction is obtained as

I(θ, S) = Iθ(θ) + IS(S) = G− b ln θ −B lnS,

where G = b ln θ0 +B lnS0

This model considers a possible relationship between lot size and quality by incorporating a

quality-related cost. In an imperfect production process, there is a certain probability θ that a

system may go to out-of-control state. θ is provided and considered to be very small and close

to zero. Once the process goes to out-of-control state it starts producing defective items and

continues to do so unless the entire lot is produced. In such a situation, the expected defective

units in a production lot size Q is approximated to be Q2θ
2

(for more details [See Appendix A]).

Again it is considered s as the cost of replacing a defective item. Thus, the expected annual

defective cost is sDθ
2

[
mq + 2mdq2

2D+dq

(
D
P

+ m−1
2
− Dm

2P

)]
(for more details [See Appendix B]).

Therefore, the supplier’s total cost function is obtained as

TCs =
( D
mq

+
d

2m

)
S + q(Hs + Cdd)

(D
P

+
m− 1

2
− Dm

2P

)
+ α(G− b ln θ −B lnS) +

sDθ

2

[
mq +

2mdq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)]
(48)

The integrated inventory cost for the entire SCM is obtained as TCb + TCs

TC(θ,m, q, S) =
( D
mq

+
d

2m

)
(A+ S +mF + V mq) +

q

2

[
(HB + Cdd)

+ (Hs + Cdd)
((2−m)D

P
+m− 1

)]
+ α

(
G− b ln θ −B lnS

)
+ sD

θ

2

[
mq +

2mdq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)]
(49)
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for 0 < θ ≤ θ0 and 0 < S ≤ S0, α being the fractional cost of capital investment (e.g., the rate

of interest).

5.2.2 Lemma 1

If θ∗, m∗, q∗, S∗ are the optimal values of θ, m, q, S, then TC(θ,m, q, S) is global minimum

solution at θ∗, m∗, q∗, S∗ if the constraints 0 < θ ≤ θ0 and 0 < S ≤ S0 are relaxed.

Proof

For the global minimum solution of the total cost function the principal minor should be

positive definite. For that purpose, the principal minor has to be greater than zero at the point

where the first order partial derivatives with respect to θ,m,q,S equal to zero.

Differentiating TC partially with respect to θ,m,q,S, respectively, one can obtain

∂TC

∂θ
= −αb

θ
+
sD

2

[
mq +

2mdq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)]
(50)

∂TC

∂m
= −

(
D

m2q
+

d

2m2

)
(A+ S +mF + V mq) +

(
D

mq
+

d

2m

)
(F + V q)

+
q

2

[
(Hs + Cdd)

(
1− D

P

)]
+
sDθ

2

[
q +

2dq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)
+

2mdq2
(
1− D

P

)
2D + dq

]
∂TC

∂q
= − D

mq2
(A+ S +mF + V mq) +

(
D

mq
+

d

2m

)
V m

+
1

2

[
(HB + Cdd) + (Hs + Cdd){(2−m)D

P
+m− 1}

]
+

sDθ

2

[
m+

(
4mdq

2D + dq
− 2md2q2

(2D + dq)2

)(
D

P
+
m− 1

2
− Dm

2P

)]
(51)

∂TC

∂S
=

( D
mq

+
d

2m

)
− α

(B
S

)
(52)
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To find optimal values of decision variables, the values of ∂TC
∂θ
, ∂TC
∂m

, ∂TC
∂q
, ∂TC
∂S

have to be set to

zero. One has the following expressions.

θ =
2bα

sD
[
mq + 2mdq2

2D+dq

(
D
P

+ m−1
2
− Dm

2P

)] (53)

m =

√
φ2 −m3φ3

φ1

(54)

q =

√
ρ1

ρ4 +mρ2{1 + 2dqρ3(4D+dq)
(2D+dq)2

}
(55)

S =
2αBmq

2D + dq
(56)

where,

φ1 =
q

2

[
(Hs + Cdd)

(
1− D

P

)]
+

sD2θq

2D + dq
(1 +

dq

P
)

φ2 =
(2D + dq)(A+ S)

2q

φ3 =
3

2

(
1− D

P

)(
sDθdq2

2D + dq

)
ρ1 =

D

m
(A+ S +mF )

ρ2 =
sDθ

2

ρ3 =

(
D

P
+
m− 1

2
− Dm

2P

)
ρ4 =

1

2

[
(HB + Cdd) + (Hs + Cdd){(2−m)D

P
+m− 1}

]
+
dV

2

Now, the Hessian matrix H are calculated as follows:

H =


∂2TC
∂θ2

∂2TC
∂θ∂m

∂2TC
∂θ∂q

∂2TC
∂θ∂S

∂2TC
∂m∂θ

∂2TC
∂m2

∂2TC
∂m∂q

∂2TC
∂m∂S

∂2TC
∂q∂θ

∂2TC
∂q∂m

∂2TC
∂q2

∂2TC
∂q∂S

∂2TC
∂S∂θ

∂2TC
∂S∂m

∂2TC
∂S∂q

∂2TC
∂S2

 (57)

Where TC = TC(θ,m, q, S).

Now, we evaluate principal minors of H.
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The first principal minor of H is

|H11| =
∣∣∣∣α b

θ2

∣∣∣∣ > 0

The second principal minor of H is

|H22| =

∣∣∣∣∣∣ α
b
θ2

x3

x3
2
m3

(
D
q

+ d
2

)
(A+ S) +

sDθdq2(1−D
P )

2(2D+dq)

∣∣∣∣∣∣
=

αb

θ2

[
2

m3

(
D

q
+
d

2

)
(A+ S) +

sDθdq2
(
1− D

P

)
2(2D + dq)

]
− x2

3 > 0 (58)

as θ is very small and it is in the denominator with square power. Thus, the 1st term of the

expression is a large positive quantity than the 2nd term of the expression, even though it is in

power two. Hence, for small value of θ, i.e, the small value of out-of-control probability, H22 > 0.

The third principal minor of H is

|H33| =

∣∣∣∣∣∣∣∣∣
αb
θ2

x3 x2

x3 x4 ξ1

x2 ξ1 x1

∣∣∣∣∣∣∣∣∣
=

αb

θ2
(x4x1 − ξ1

2)− x3(x3x1 − x2ξ1) + x2(x3ξ1 − x2x4)

H33 = x2(x3ξ1 − x2x4)− ξ1

(
αb

θ2
ξ1 +H22

)
> 2x2x3ξ1 − x2

2x4 −
αb

θ2
ξ2

1

=
[
(x2x3)2 + 2x2x3ξ1 + ξ2

1

]
−
[
x2

2(x2
3 + x4) + (1 +

αb

θ2
)ξ2

1

]
= (x2x3 + ξ1)2 −

[
x2

2(x2
3 + x4) + (1 +

αb

θ2
)ξ2

1

]
> 0
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[See Appendix E]

The forth principal minor of H is

|H44| =

∣∣∣∣∣∣∣∣∣∣∣∣

αb
θ2

x3 x2 0

x3 x4 ξ1 x5

x2 ξ1 x1 x6

0 x5 x6
αB
S2

∣∣∣∣∣∣∣∣∣∣∣∣
= x5

∣∣∣∣∣∣∣∣∣
αb
θ2

x3 x2

x2 ξ1 x1

0 x5 x6

∣∣∣∣∣∣∣∣∣− x6

∣∣∣∣∣∣∣∣∣
αb
θ2

x3 x2

x3 x4 ξ1

0 x5 x6

∣∣∣∣∣∣∣∣∣+
αB

S2
H33

=
αb

θ2
[2ξ1x5x6 − x1x

2
5 − x4x

2
6] + [x2

2x
2
5 − 2x3x2x6x5 + x2

3x
2
6] +

αB

S2
H33

=
αB

S2
H33 + (x2x5 − x3x6)2 − αb

θ2
[x1x

2
5 + x4x

2
6 − 2ξ1x5x6]

> (x2x5 − x3x6)2 − αb

θ2
[ξ1x

2
5 + ξ1x

2
6 − 2ξ1x5x6]

> (x2x5 − x3x6)2 − αb

θ2
ξ1[x2

5 + x2
6 − 2x5x6]

> (x2x5 − x3x6)2 − αb

θ2
ξ1(x5 − x6)2

> 0 [See Appendix F] (59)

Thus, the total cost function has the global optimum solution at optimum values of decision

variables if the conditions are satisfied.

5.3 Numerical results

The buyer is staying in urban areas whereas the supplier is staying in rural areas, thus the

holding cost of the buyer is huge comparing with supplier. This is the reason to use more holding

cost for numerical experiment. This type of model can be managed easily by the SSMD policy.

The numerical data is taken as follows: A = $10/ order, P = 100 units/year, S0 = $100/batch,

Hb = $4000/unit/year, Hs = $6/unit/year, D = 40 units, d = 0.02, F = $50/delivery,
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V = $1/unit, Cd = $50/unit and we consider the numerical data b = 10, B = 4800, θ0 = 0.02,

α = $0.1/year, s = $10/defective unit.

Then, the optimal solution is TC = $6297.31/year, m = 2,S = $28.18/order, q = 1.17

units, θ = 0.0021.

5.3.1 Special case 1

A special case arises when the rate of deterioration is considered to be zero. From the following

Table 5.1, we see that the single-supplier-single delivery (SSSD) policy is less favorable over

SSMD policy as the cost increases for SSSD policy. Results are given in Table 5.1.

Table 5.1

Study for non-deterioration case

Total cost Lot size Number of Setup cost θ

deliveries

6297.31 1.17 2 28.17 0.0021

5.3.2 Special case 2

A special case arises when the model follows a single-supplier-single delivery (SSSD) policy

instead of SSMD policy then the total cost of the supply chain model is increased and it is given

in Table 5.2. The values indicate that SSMD is more beneficial than SSSD for this model.

Table 5.2

Study for SSSD case

Total cost Lot size Number of Setup cost θ

deliveries

6342.83 1.22 1 14.65 0.0041
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5.3.3 Sensitivity analysis

This section performs sensitivity analysis of this model. This analysis gives clear idea about

the behaviour of parameters over the cost function. It can also be found out which parameter

is more sensitive to the cost. The analysis is given in Table 5.3.

Table 5.3

Sensitivity analysis for key parameters

Parameters Changes of TC

parameters (in %) (in %)

-50% −5.29

-25% −2.19

S0 +25% 1.70

+50% 3.09

-50% −7.47

-25% −3.31

s +25% 3.73

+50% 7.47

-50% −1.67

-25% −0.83

A +25% 0.82

+50% 1.64

-50% −18.73

-25% −8.74

F +25% 7.88

+50% 15.12

Parameters Changes of TC

parameters (in %) (in %)

-50% −0.01

-25% −0.007

d +25% 0.007

+50% 0.01

-50% −0.007

-25% −0.003

Cd +25% 0.003

+50% 0.007

-50% −0.02

-25% −0.01

Hs +25% 0.01

+50% 0.02

-50% −0.32

-25% −0.16

V +25% 0.16

+50% 0.32

From Table 5.3, the sensitivity of key parameters can be observed easily.

• The negative sensitiveness of setup cost parameter S0 is more sensitive than the positive

sensitiveness parameters. But it is more sensitive in negative percentage change than positive

percentage change. From this observation, it can be found that if setup cost is reduced, total
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cost is reduced.

• The parameter s is almost same sensitive with respect to the total cost. Negative percentage

change and positive percentage change are almost same. Decreasing this cost, total cost can be

reduced effectively. In reverse, if this cost is very high, the total cost will be increased gradually.

• The parameter A which stands for ordering cost for buyer is less sensitive with respect to

other parameters within the cost function. The positive and negative percentage change are

almost same. If ordering cost is increased, then total cost is increased and vice versa.

• Transportation cost parameter F is more sensitive in negative percentage change than posi-

tive percentage change. This parameter is most sensitive parameter comparing to others.

• Sensitivity of this parameter is almost same in negative percentage change than the positive

percentage change. When d increases, total cost increases and when d decreases, total cost

decreases.

• The effect of this parameter Cd, namely, deterioration cost, is like deterioration rate d. The

negative percentage change and positive percentage change is exactly same. Increased deterio-

ration cost implies decreased total cost and decreased deterioration cost imply increased total

cost.

• This parameter Hs is less sensitive with respect to the other parameters. The negative per-

centage change is much effective for total cost compare to other parameters. If holding cost for

supplier reduces, total cost increased reasonably, but when supplier’s holding cost is increased,

total cost reduction is not reasonably decreased.

• The parameter V is not rationally sensitive for total cost. The negative percentage change

and positive percentage change are same for the variable cost/unit for handling and receiving

of order. When this cost increases, total cost increases and vice versa.

5.4 Managerial insights

A two echelon supply chain model was considered in this chapter with single-buyer and single-

supplier under lot-splitting policy. The managerial insights of this chapter are as follows.
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• A capital investment has the ability to reduce setup cost and probability of system failure.

This study suggests managers to invest fund for setup cost reduction and for improving quality

of products.

• For long term agreement, supplier should split the order quantity into a number of small

sub-lots to save the delivery lead time.

• The total supply chain cost is reduced with reduced setup cost and improved quality under

deterioration of products when lot-splitting policy is adopted to deliver products.

5.5 Concluding remarks

The objective of this study was to minimize the cost of the total supply chain while si-

multaneously optimizing lot size, number of deliveries, setup cost, and process quality. Two

logarithmic investment functions for quality improvement and setup cost reduction, respectively

were incorporated in this model. Quality improvement and setup cost reduction played a very

significant role in improving efficiency of businesses and organizations from every sphere by

reducing redundancy in costs and enhancing productivity thereby accounting for the flexibility

of today’s diverse business environment. Any adverse event would have a direct consequence

on the business and customers leading to wastage of time and resource. An accurate expertise

on the approaches of industries and organizations to implement these changes for a sustainable

quality improvement is therefore critical. This model proved the global optimization solution

of decision variables. The model saved almost $7000 per year which is large enough for any

business industry to adopt the policies suggested by this model. A constant demand rate is

one of the limitations of this model. Further research could be done by considering a general

investment function with variable demand. The possible extension of this model would be in-

corporated with delay-in-payments and time-varying deterioration.
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5.6 Appendices of Chapter 5

Appendix A

From Porteus (1986) the expected units of defective items in a lot size Q is

Q− θ́(1− θ́Q)

θ

As θ́ = 1− θ is approximately 1, we use the Taylor series expansion of θ́Q and obtain

θ́Q = e(ln θ́)Q ∼= 1 + (ln θ́)Q+
[(ln θ́)Q]2

2

Hence we have the number of defective items

= Q− θ́(1− θ́Q)

θ

= Q−
1− 1− (ln θ́)Q− (ln θ́)2Q2

2

θ

= Q−
θ

θ́
Q− θ2

2θ́2
Q2

θ

= Q−
θQ− θ2Q2

2

θ

=
θQ2

2
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Appendix B

The expected annual defective cost is

= sD − sDθ́(1− θ́Q)

θQ

= sD −
sD
(

1− 1− (ln θ́)Q− (ln θ́)2Q2

2

)
θQ[

since θ́ = 1− θ ∼= 1 and θ́Q = e(ln θ́)Q ∼= 1 + (ln θ́)Q+
[(ln θ́)Q]2

2

]

= sD −
sD
(
θ

θ́
Q− θ2

2θ́2
Q2
)

θQ

= sD −
sD
(
θQ− θ2Q2

2

)
θQ

= sD − sD
(

1− θQ

2

)
=

sDθQ

2

=
sDθ

2

[
mq +

2mdq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)]
Appendix C

The delivery lot size q, expressed as q = x + DT3 is divided into two components: x and

DT3. x being the number of deteriorating units during T3 and DT3 for consumption.

For smaller rate of deterioration square and higher powers of it can be neglected. Hence,

during time interval T3

x =
T3dq

2

and

q =
T

m

(
D +

dq

2

)
as

T

m
= T3

Now

q = x+DT3
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implies

1

T
=

D

mq
+

d

2m

i.e.,

q

2
=

mq

dT
− D

d

Again, the total deterioration of the buyer is obtained as

dAb = mq −DT

which implies

Ab =
(mq −DT )

d

i.e.,

Ab
T

=
q

2

Appendix D

Differentiating (46) partially with respect to θ,m,q,C, respectively, one can obtain

∂2TC

∂C∂θ
= 0

∂2TC

∂C∂m
= −

(
D

m2q
+

d

2m2

)
∂2TC

∂C∂q
= − D

mq2

∂2TC

∂C2
= α

B

C2

Differentiating (47) partially with respect to θ,m,q,C, respectively, one has

∂2TC

∂θ2
= α

b

θ2

∂2TC

∂θ∂m
=

sD

2

[
q +

2dq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)
+

2mdq2
(
1− D

P

)
2D + dq

]
= x3

∂2TC

∂θ∂q
=

sD

2

[
m+

(
4mdq

2D + dq
− 2md2q2

(2D + dq)2

)(
D

P
+
m− 1

2
− Dm

2P

)]
= x2

∂2TC

∂θ∂C
= 0
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Differentiating (48) partially with respect to θ,m,q,C, respectively, the partial derivatives are

obtained as follows:

∂2TC

∂m∂θ
=

sD

2

[
q +

2dq2

2D + dq

(
D

P
+
m− 1

2
− Dm

2P

)
+

2mdq2
(
1− D

P

)
2D + dq

]
= x3

∂2TC

∂m2
=

2

m3

(
D

q
+
d

2

)
(A+ C) +

sDθdq2
(
1− D

P

)
2(2D + dq)

= x4

∂2TC

∂m∂q
=

D

m2q2
(A+ C +mF + V mF ) +

1

2

(
1− D

P

)
(Hs + Cdd)

+
sDθ

2

[
1 +

(
4dq

2D + dq
− 2dq2

(2D + dq)2

)(
D

P
+
m− 1

2
− Dm

2P

)
+

2mdq
(
1− D

P

)
2D + dq

]
= ξ1

∂2TC

∂m∂C
= −

(
D

m2q
+

d

2m2

)
Differentiating (49) partially with respect to θ,m,q,C, respectively, the partial derivatives are

obtained as follows:

∂2TC

∂q∂θ
=

sD

2

[
m+

(
4mdq

2D + dq
− 2md2q2

(2D + dq)2

)(
D

P
+
m− 1

2
− Dm

2P

)]
= x2

∂2TC

∂q∂m
=

D

m2q2
(A+ C +mF + V mF ) +

1

2

(
1− D

P

)
(Hs + Cdd)

+
sDθ

2

[
1 +

(
4dq

2D + dq
− 2dq2

(2D + dq)2

)(
D

P
+
m− 1

2
− Dm

2P

)
+

2mdq
(
1− D

P

)
2D + dq

]
= ξ1

∂2TC

∂q2
=

2D

mq3
(A+ C +mF ) +

8sD3θmd

(2D + dq)3
= x1

∂2TC

∂q∂C
= − D

mq2

Appendix E

The third principal minor of H is

|H33| =

∣∣∣∣∣∣∣∣∣
α b
θ2

0 sD
2

0 2
m3 (D

q
+ d

2
)(A+ C) D

m2q2
(A+ C) + P−D

2P
(Hs + Cdd)

sD
2

D
m2q2

(A+ C) + P−D
2P

(Hs + Cdd) 2D
mq3

(A+ C +mF )

∣∣∣∣∣∣∣∣∣
= αb

θ2

{ 2D

mq3
(A+ C +mF )

2

m3

(
D

q
+
d

2

)
(A+ C)

−
( D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)
)2}
−
(sD

2

)2 2

m3

(D
q

+
d

2

)
(A+ C)
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which can be written in the form

2

m3

(D
q

+
d

2

)
(A+ C)

{αb
θ2

2D

m(q3)
(A+ C +mF )−

(sD
2

)2}
−
(√αb

θ

[ D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)
])2

is of the form x ∗ y− z2. In order to prove x ∗ y− z2 > 0, we show that x > z and y > z, where

x =
2

m3

(D
q

+
d

2

)
(A+ C)

y =
αb

θ2

2D

mq3
(A+ C +mF )− s2D2

4

z =

√
αb

θ

(
D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)

)
First we show that x− z > 0.

αb

θ2

( 2D

mq3
(A+ C +mF )

2

m3
(
D

q
+
d

2
)(A+ C)

−
(

D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)

)2 )
−
(
SD

2

)2
2

m3

(
D

q
+
d

2

)
(A+ C)

=
2

m3

(
D

q
+
d

2

)
(A+ C)

(
2αbD

mq3θ2
(A+ C +mF )− S2D2

4

)
−αb
θ2

(
D

m2q2
(A+ C) +

(P −D)

2P
(Hs + Cdd)

)2

i.e.
2

m3

(
D

q
+
d

2

)
(A+ C) >

√
αb

θ

(
D

mq
(A+ C) +

1

2

(
1− D

P

)
(Hs + Cdd)

)
⇒ 2

m3

(
D

q
+
d

2

)
(A+ C) +

√
αb

2θ

(
1− D

P

)
(Hs + Cdd) >

√
αb

θ

(
D

mq
(A+ C)

)
It is always true for any positive optimum value of decision variable.

Now we show that y − z > 0.{√αb
θ2

2D

mq3
(A+ C +mF )

}
− SD

4
−
{√αb

θ

( D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)
)}

> 0

Substituting the value of m2 the above expression takes the form

√
αb

θ

√
(Hs + Cdd)(P −D)

P (2D + qd)

[√αb
θ

2D

q2

(A+ C +mF )√
A+ C

− 4D + qd

2

√
(Hs + Cdd)(P −D)

P (2D + qd)

]
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Then y − z > 0 if and only if
√
αb
θ

2D
q2

(A+C+mF )√
A+C

− 4D+qd
2

√
(Hs+Cdd)(P−D)

P (2D+qd)
> 0.

Appendix F

The forth principal minor of H is

|H44| =

∣∣∣∣∣∣∣∣∣∣∣∣

α b
θ2

0 sD
2

0

0 2
m3 (D

q
+ d

2
)(A+ C) D

m2q2
(A+ C) + P−D

2P
(Hs + Cdd) −( D

m2q
+ d

2m2 )

sD
2

D
m2q2

(A+ C) + P−D
2P

(Hs + Cdd) 2D
mq3

(A+ C +mF ) − D
mq2

0 −( D
m2q

+ d
2m2 ) − D

mq2
α B
C2

∣∣∣∣∣∣∣∣∣∣∣∣
= α

b

θ2

[ 2

m3

(D
q

+
d

2

)
(A+ C)

( 2BDα

mq3C2
(A+ C +mF )− D2

m2q4

)
−
( D

m2q2
(A+ C)

)
+

P −D
2P

(Hs + Cdd)
){αB

C2

[ D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)
]
− D

mq2

( D
m2

+
d

2m2

)}
−

( D

m2q
+

d

2m2

){
− D

mq2

[
D

m2q2
(A+ C) +

P −D
2P

(Hs + Cdd)

]
+

( D

m2q
+

d

2m2

)(2D(A+ C +mF )

mq3

)}]
+
(sD

2

)2[( D

m2q
+

d

2m2

)2

− αB

C2

2

m

( D

qm2

+
d

2m2

)
(A+ C)

]
To show that the fourth principal minor of H is greater than 0, we consider parts of it and

solve them separately. Let us first show that
(

2BDα
mq3C2 (A+ C +mF )− D2

m2q4

)
> 0.

D

mq3

{2Bα(A+ C +mF )

C2
− D

mq

}
which is greater than zero if and only if

{
2Bα(A+C+mF )

C2 − D
mq

}
> 0.......

Now we show that
{
− αB

C2

[
D

m2q2
(A+ C) + P−D

2P
(Hs + Cdd)

]
+ D

mq2

(
D
m2 + d

2m2

)}
> 0.

Substituting the value of m2 in the above expression, one can obtain

D(Hs + Cdd)(P −D)

mP (A+ C)2q
− αB(P −D)(Hs + Cdd)

C2P

{ D

2D + qd
+

1

2

}
=

(Hs + Cdd)(P −D)

2P

{ D

mq(A+ C)
− αB(4D + qd)

C2(4D + 2qd)

}
which is grater than 0 if and only if

{
D

mq(A+C)
− αB(4D+qd)

C2(4D+2qd)

}
> 0......

Now, we show that D
mq2

{
D(A+C)
m2q2

+ (P−D)(Hs+Cdd)
2P

}
− 1

m2

{(
D
q

+ d
2

)(
2D(A+C+mF )

mq3

)}
> 0.
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Substituting the value of m2 the above expression takes form

(Hs + Cdd)(P −D)D

Pmq2

[ D

2D + dq
−
(1

2
+

mF

A+ C

)]
which is greater than 0 if and only if D

2D+dq
−
(

1
2

+ mF
A+C

)
> 0.

Now we show that
(

D
m2q

+ d
2m2

)2

− αB
C2

2
m

(
D
qm2 + d

2m2

)
(A+ C) > 0( D

m2q
+

d

2m2

){ D

m2q
+

d

2m2
− 2αB(A+ C)

C2m

}
which is greater than 0 if and only if 1

m2

(
D
q

+ d
2

)
− 2αB

C2m
(A+ C) > 0.

|H44| = −
(

D
m2q

+ d
2m2

) ∣∣∣∣∣∣∣∣∣
α b
θ2

0 sD
2

sD
2

D
m2q2

(A+ C) + P−D
2P

(Hs + Cdd) 2D
mq3

(A+ C +mF )

0 −( D
m2q

+ d
2m2 ) − D

mq2

∣∣∣∣∣∣∣∣∣
+ D

mq2

∣∣∣∣∣∣∣∣∣
α b
θ2

0 sD
2

0 2
m3 (D

q
+ d

2
)(A+ C) D

m2q2
(A+ C) + P−D

2P
(Hs + Cdd)

0 −( D
m2q

+ d
2m2 ) − D

mq2

∣∣∣∣∣∣∣∣∣+ αB
C2H33

=
(

D
m2q

+ d
2m2

) [
αb
θ2

[ (
D2

m3q4
(A+ C) + (P−D)D

2Pmq2
(Hs + Cdd)

)
− 2D(A+C+mF )

mq3

(
D
m2q

+ d
2m2

) ]
+ SD

2

(
SD
2

(
D
m2q

+ d
2m2

)) ]
+ αB

C2H33 + D
mq2

[
αb
θ2

(
− 2D

m4q2

(
D
q

+ d
2

)
(A+ c) + D

m2q2

(
D
m2q

+ d
2m2

)
(A+

C)
(
P−D

2P

)
(Hs + Cdd)

)]
Thus, if we can show

S2D2

4m2

(
D
q

+ d
2

)
+ αb

θ2

[
D2

m3q4
(A+ C) + (P−D)D

2Pmq2
(Hs + Cdd)− 2D(A+C+mF )

mq3

(
D
m2q

+ d
2m2

) ]
> 0

thus, H44 > 0

D2

m3q4
(A+ C) +

(
1− D

P

)
D

2mq2
(Hs + Cdd)− 2D

mq3

(
D
m2q

+ d
2m2

)
(A+ C)− 2DmF

mq3

(
D
m2q

+ d
2m2

)
= D2

m3q4
(A+ C)− 2D2(A+C)

m3q4
− 2Dd

2m3q3
(A+ C)− 2DF

q3

(
D
m2q

+ d
2m2

)
+
(

1− D
P

)
D

2mq2
(Hs + Cdd)

= D2

m3q4
(A+ C)− Dd

m3q3
(A+ C)− 2D2F

m2q4
− DdF

m2q3
+
(

1− D
P

)
D

2mq2
(Hs + Cdd)

= 1
2m3q4

[
(Hs + Cdd)m2q2D

(
1− P

D

)
− 2D2(A+ C)− 2Ddq(A+ C)− 4D2mF − 2mqDdF

]
= 1

2m3q4

[
(Hs + Cdd)m2q2D

(
1− P

D

)
− 2D(A+ C)(D − dq)− 2DmF (2D + dq)

]
= 1

2m3q4

[
(Hs + Cdd)m2q2D

(
1− P

D

)
− 2D(D + dq)(A+ C +mF )− 2D2mF

]
− 2D
m4q2

(
D
q

+ d
2

)
(A+

C) + D
2m4q2

(
D
q

+ d
2

)
(A+ C)

(
1− P

D

)
(Hs + Cdd)

=
D2(D

q
+ d

2)(A+C)

2m4q2

[(
1− P

D

)
(Hs + Cdd)− 4

]
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Chapter 6

Joint effect of price and demand on decision making

in a supply chain management
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6 Joint effect of price and demand on decision making

in a supply chain management

This chapter deals with a manufacturer-retailer supply chain model with decentralized de-

cisions. Both manufacturer and retailer make their decisions independently. Manufacturer’s

profit depends on decisions made by retailer. Depending on the nature of the purchasing cost

of retailer, this study considers two cases. In first case, retailer’s purchase cost fully depends on

decisions made by retailer and in second case manufacturer determines the purchasing cost of

the retailer independently. Single-setup single-delivery (SSSD) and single-setup multi-delivery

(SSMD) policies are considered for first and second cases, respectively. Retailer obtains the op-

timum selling-price of product to maximize its profit. The customer’s demand is price-sensitive,

whereas the lead time demand is considered as stochastic and supposed to follow a normal dis-

tribution. The distribution free approach is considered for known mean and standard deviation.

In every suburban area, a significant number of small retailers exist, whereas there are a

few number of multiplexes or shopping malls. People use to purchase products from small

retailers or retailers. It basically happens due to the economic status of these regions. The

cost of an item has huge importance to sell that particular product. The price is such sensitive

that customers deny to purchase product, if the price becomes higher than the previous price.

These retailers receive their orders from the manufacturer, but instead of joint collaboration

they make their decisions independently. Thus, manufacturer’s profit depends on the quantity

ordered by the retailer. This research describes a model where manufacturer follows firstly

SSSD policy in order to determine the purchase cost for retailer depending on decisions made

by retailer. In the second case, SSMD policy is taken by manufacturer and it makes an agree-

ment with retailer to improve this supply chain by shortening lead time. The manufacturer

maximizes its profit even if the independent decisions are made by retailer. In this case, the

purchasing cost for retailer is totally independent by decisions made by retailer.
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6.1 Literature review

Selling-price plays an important role for demands of any product. Customers always purchase

products of high quality and longevity, but with fare price. This is obvious that demand of

any product should increase if any highly reliable product can be purchased with low cost.

Accordingly, increasing selling-price can dwindle the demand of a particular product. Whitin

(1955) developed concepts of economic price theory and inventory control. Lau and Lau (1988)

extended the classical newsboy problem with stochastic price-demand relationship. Gallego

and Ryzin (1994) investigated dynamic pricing of inventories, where demand is price-sensitive

as well as stochastic and firm’s objective is to maximize its expected profit. Abad (1996) for-

mulated a dynamic and lot-sizing model for perishable items. Dutta and Paul (2001) analyzed

an inventory system where demand rate was influenced by selling-price as well as stock level.

Teng and Chang (2005) discussed an economic production quantity model for deteriorating

products with price and stock dependent demand. Sana (2011) developed an economic order

quantity model with perishable items and quadratic price-sensitive demand. Chen et al. (2012)

investigated the pricing strategy for the manufacturer and warranty period dependant demand.

6.2 Model formulation

This section contains assumptions to formulate a mathematical model, entire model descrip-

tion, lemmas, and solution algorithms.

6.2.1 Assumptions

The following assumptions are considered to develop this model.

1. Due to the economic background of the people of suburban areas, increasing selling-price

is a important factor of decreasing demand. Thus, we assume that demand is dependent

on selling-price of retailer with the relation D(p) = a− bp− cp2; a, b, c > 0 (Sana, 2011).
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2. Continuous review policy is considered i.e., retailer places an order when the inventory

level reaches to the reorder point.

3. The reorder point r= expected lead time demand+safety stock.

4. Lead time has n mutually independent component with normal duration bi, minimum

duration ai, and lead time crashing cost ci for ith component and c1 ≤ c2 ≤ ... ≤ cn.

5. The lead time components are crashed one at a time. The crashing costs of lead time

gradually increase from the first component then the second and so on. We consider

L0 ≡
∑n

j=1 bj and Li is the length of the lead time having components 1, 2, ..., i crashed

to their minimum duration. Li = L0 −
∑i

j=1(bj − aj), i = 1, 2, ..., n. The lead time

crashing cost per cycle is given by C(L) = ci(Li−1−L) +
∑i−1

j=1 cj(bj − aj), L ∈ [Li, Li−1].

(Ouyang et al, 2004).

6. Shortages are considered and fully backlogged.

Demand of the customer is price-sensitive i.e., dependent on the selling-price of products. We

consider the quadratic price-dependent demand function as D(p) = a − bp − cp2 (Sana, 2011)

where a is the customer’s annual demand without price dependency, b and c are ratios of price

which influences the annual demand. The customer’s demand decreases quadratically with the

increase of selling-price of product. The inventory level of retailer gradually decreases with

time, which is equal to demand rate i.e.,

dQ

dt
= −D(p) = a− bp− cp2

which gives Q = D(p)t = (a− bp− cp2)t

The system is continuously reviewed by retailer. When the inventory level fall down to the

reorder point r, an order is placed immediately by retailer such that the expected inventory

level just before and after receipt of the order are r −D(p)L and Q+ r −D(p)L, respectively.

Thus, the average inventory of the retailer over the cycle is Q/2 + r −D(p)L. Total expected
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profit for retailer is

TEPb(Q, r, L, p) = Total revenue−Ordering cost− Holding cost

− Material cost− Shortage cost− Lead time crashing cost

= pD(p)− A

t
− rbCb

(
Q

2
+ r −D(p)L

)
− CbD(p)− π

t
E(X − r)+ − C(L)

t

The above equation can be written as

TEPb(Q, r, L, p) = (p− Cb)D(p)− AD(p)

Q
− rbCb

(
Q

2
+ r −D(p)L

)
− πD(p)

Q
E(X − r)+ − D(p)C(L)

Q
(60)

Expected shortage can be calculated as

E(X − r)+ =

∫ ∞
r

(x− r)f(x)dx = σ
√
Lψ(k), where ψ(k) = φ(k)− k[1− Φ(k)] and

φ(k) = standard normal probability density function

Φ(k) = cumulative density function of normal distribution

In order to optimize the order quantity Q and the safety factor k, we consider the total

cost equation for retailer

TECb =
AD(p)

Q
+ rbCb

(
Q

2
+ r −D(p)L

)
+ CbD(p) +

πD(p)

Q
σ
√
Lψ(k) +

D(p)C(L)

Q
(61)

As the revenue for the retailer pD(p) is independent of the order quantity and safety

factor thus, optimizing the order quantity Q and the safety factor k from (61) is equivalent to

obtaining Q and k from (60). Therefore, taking partial derivatives of (61) with respect to Q

and k and equating to zero, we obtain

Qb =

{
2D(p)[A+ πσ

√
Lψ(k) + C(L)]

rbCb

}1/2

(62)

Φ(k) = 1− rbCbQb

πD(p)
(63)
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The second order partial derivative of (61) with respect to L is negative

∂2ATCb
∂L2

= −rbCbkσ
4L3/2

− πD(p)σψ(k)

4QL3/2

Thus, the optimum value of L can be obtained at the end point of the interval [Li, Li−1].

Now, to determine the optimal selling-price of retailer, we consider equation (60) i.e., the

expected profit of retailer. Putting the value of D(p) and taking partial derivative of retailer’s

profit equation with respect to the selling-price, we obtain

∂TEPb
∂p

= (a− 2bp− 3cp2) + Cb(b+ 2cp) + (b+ 2cp)

(
A

Q
+
πσ
√
Lψ(k)

Q
+
C(L)

Q

)

∂TEPb
∂p

= 0 implies

p∗ =
±
√
B2

1 − 4A1C1 −B1

2A1

We assume

p∗1 =

√
B2

1 − 4A1C1 −B1

2A1

(64)

p∗2 =
−
√
B2

1 − 4A1C1 −B1

2A1

(65)

where A1 = −3c

B1 = 2

{
cCb − b+

αc

Q

}
C1 = Cbb+

bα

Q
+ a

α = A+ πσ
√
Lψ(k) + C(L) [See Appendix A]

(66)

6.2.2 Lemma 1

For all real and positive values of parameters, p∗ is always real and positive if p∗ =
−
√
B2

1−4A1C1−B1

2A1

is chosen, otherwise p∗ > 0 only if b > c(Cb + α/Q) holds.

105



Proof

From (66), A1 = −3c, B2
1 − 4A1C1 = B2

1 + 12cC1 > 0 for c > 0.

Therefore, the value of p∗ is always real for c > 0.

Case 1: p∗ = p∗1 =
−
√
B2

1−4A1C1−B1

2A1
is chosen.

If b < c(Cb + α/Q) then, B1 > 0 gives p∗1 =

√
B2

1+12cC1+B1

6c
> 0.

If b > c(Cb+α/Q) then, B1 < 0. Let B1 = −B, B ∈ R which results p∗1 =

√
B2+12cC1−B

6c
> 0

as
√
B2 + 12cC1 ≤

√
B2 +

√
12cC1 = B +

√
12cC1 > B.

Case 2: p∗ = p∗2 =

√
B2

1−4A1C1−B1

2A1
is chosen.

If b < c(Cb + α/Q) then, B1 > 0 gives p∗2 =

√
B2

1+12cC1−B1

−6c
< 0 as

√
B2

1 + 12cC1 > B1.

If b > c(Cb + α/Q) then, B1 < 0 which gives p∗2 =

√
B2+12cC1+B

6c
> 0, assuming B1 = −B,

B ∈ R.

6.2.3 Lemma 2

If (Q∗b , k
∗, p∗) are the optimal values for (Q, k, p) then for fixed L ∈ [Li, Li−1], the optimal

value of TEPb(Q, k, p, L) attains its global maximum at the point (Q∗b , k
∗, p∗) if the following

inequality holds [πσ
√
Lψ(k∗) + 2A+ C(L)] > πσ

√
L(1− Φ(k∗))Q∗ > 0

Proof

See Appendix B.

Now, we consider that manufacturer follows SSSD policy to deliver the order quantity to

retailer. In this case, manufacturer’s total profit equation is

TEPv(p,Q) = Total revenue− Setup cost− Holding cost−Material cost (67)

= CbD(p)− SD(p)

Q
− rvCv

QD(p)

2P
− CvD(p) (68)

The optimal lot size for manufacturer can be obtained by taking partial derivative with

respect to Q and equating it to zero. The optimal lot size for manufacturer is

Qv =

{
2SP

rvCv

}1/2

(69)
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Clearly, the order quantity for retailer must be equal to the lot size produced by manu-

facturer. In order to determine the purchasing cost for retailer, we equate Q∗b = Q∗v, which

gives

C∗b =
rvCvD(p)α

rbPS
(70)

The manufacturer’s total profit can be obtained by substituting values of the decision

variables of the retailer’s in the manufacturer’s profit function i.e.,

TEPv(Q
∗
b , C

∗
b , p
∗) = C∗bD(p∗)− SD(p∗)

Q∗
− rvCvQ

∗D(p∗)

2P
− CvD(p∗) (71)

Now, we investigate if manufacturer follows the SSMD policy to deliver the lot to retailer.

This policy suggests manufacturer to produce integer multiple of retailer’s ordering quantity in

single-setup to reduce the setup cost. In this case, manufacturer determines the purchase cost

for retailer of its own. The total profit equation for manufacturer is

TEPv(Q,Cb, p,m) = CbD(p)− SD(p)

mQ
− rvCv

2

[
m

(
1− D(p)

P

)
− 1 +

2D(p)

P

]
Q− CvD(p)(72)

Again, substituting values of decision variables of retailer in manufacturer’s total profit

equation for SSMD policy, the maximum profit for the manufacturer can be obtained, when

the following inequality holds

TEPv(Q
∗
b , C

∗
b , p
∗,m− 1) ≤ TEPv(Q

∗
b , C

∗
b , p
∗,m) ≥ TEPv(Q

∗
b , C

∗
b , p
∗,m+ 1)

The following algorithm is used to obtain solutions of the both SSSD and SSMD model

with normally distributed lead time demand.

6.2.4 Solution algorithm 1

Step 1 Set m = 1 and for each Li, i = 0, 1, ..., n perform the following Step 1a-2e.

Step 1a Set ki1 = 0 and obtain ψ(ki1), φ(ki1), and Φ(ki1).

Step 1b Compute Qbi1 from (62).
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Step 1c Compute Φ(ki2) from (63) and hence obtain ki2 from normal table.

Step 2 If b < c(Cb + α/Q) then,

Step 2a Compute pi1 from (65) and Cbi1 from (70).

Step 2b Repeat Step 1-2a until no changes occur in the values of Qbi, ki, pi, and Cbi.

Step 2c Compute TEPb(Qi, ki, pi, Cbi).

Step 2d Obtain maxi=0,1,...,nTEPb(Qi, ki, pi, Cbi), the maximum profit for the retailer and the

optimal reorder point is r∗ = D(p∗)L∗ + k∗σ
√
L∗.

Step 2e For SSSD policy, obtain TEPv(Q
∗
i , p
∗
i , C

∗
bi) from (70).

Step 2f For SSMD policy set m = m+ 1 and obtain TEPv(Q
∗
i , p
∗
i ,m).

Step 2g If TEPv(Q
∗
i , p
∗
i ,m) ≤ TEPv(Q

∗
i , p
∗
i ,m− 1) go to Step 2f otherwise go to Step 2h.

Step 2h Set TEPv(Q
∗
i , p
∗
i ,m

∗) = TEPv(Q
∗
i , p
∗
i ,m− 1), the maximum profit for the manufac-

turer.

Step 3 If b > c(Cb + α/Q), compute p1
i1 from (64) and p2

i1 from (65).

Step 3a Repeat Step 1-1c and Step 3 until no changes occur in the values of Qbi, ki, p
1
i1, and

p2
i1.

Step 3b For both p1
i1, and p2

i1 execute Step 2a-2d.

Step 3c Set maxi=0,1,...,nTEPb(Qi, ki, pi, Cbi)=

max{maxi=0,1,...,nTEPb(Qi, ki, p
1
i , Cbi),maxi=0,1,...,nTEPb(Qi, ki, p

2
i , Cbi)}.

6.2.5 Distribution free approach

The idea of distribution free approach comes into light when difficulties occur for finding the

information about demand information during lead time. This procedure is applicable when
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no information about the lead time demand distribution is available except known mean and

standard deviation. We consider a distribution function (d.f.) F for the lead time demand

in the class G (say) of d.f.’s with the finite mean D(p)L and standard deviation σ
√
L. This

approach suggests to figure out the least favorable d.f. F in G for each of the decision variables

of retailer such that the value of the retailer’s total profit should be minimum. The following

Lemma is used to estimate the expected shortage.

6.2.6 Lemma 3

For any F ∈ G the following inequality always holds

E(X − r)+ ≤ 1

2
σ
√
L[
√

1 + k2 − k].

Moreover the upper bound of the above inequality is tight (Gallego and Moon (1993)).

Using the above inequality, retailer’s total cost equation can be written as

TECf
b (Q, k, p, L) =

AD(p)

Q
+ rbCb

(
Q

2
+ r −D(p)L

)
+ CbD(p)

+
πD(p)

Q
σ
√
L(
√

1 + k2 − k)/2 +
D(p)C(L)

Q
(73)

Using the inequality of Lemma 3, the above cost equation attends the worst possible

distribution of lead time demand i.e., maximum cost and accordingly it makes the total profit

equation for retailer attains its lowest profit. Thus, the total profit equation for retailer

TEP f
b (Q, k, p, L) = (p− Cb)D(p)−

[AD(p)

Q
+ rbCb

(
Q

2
+ r −D(p)L

)
+ CbD(p)

+
πD(p)

Q
σ
√
L(
√

1 + k2 − k)/2 +
D(p)C(L)

Q

]
(74)

has its minimum value for each (Q, k, p, L). Therefore, the problem reduces to obtain the

maximum value of the above equation for each of decision variables (Q, k, p, L).

According to the normal distribution case, using the similar method, optimal values of Q
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and k can be written as

Qf∗
b =

{
2D(p)[A+ πσ

√
L[
√

1 + k2 − k]/2 + C(L)]

rbCb

}1/2

(75)

k√
1 + k2

= 1− 2QrbCb
πD(p)

(76)

Taking partial differential of the retailer’s profit equation with respect to the selling-price

and equating to zero, the optimal selling-price for distribution free case is

pf∗ =
±
√
B2

2 − 4A2C2 −B2

2A2

[See Appendix C] (77)

6.2.7 Lemma 4

For all real and positive values of parameters, p∗ is always real and positive if pf∗ =
−
√
B2

2−4A2C2−B2

2A2
is chosen otherwise pf∗ > 0 only if b > c(Cb + β/Q) holds.

Proof

The proof similar as Lemma 1.

We assume

pf∗1 =

√
B2

2 − 4A2C2 −B2

2A2

(78)

pf∗2 =
−
√
B2

2 − 4A2C2 −B2

2A2

(79)

Now, for SSSD policy the purchase cost for the retailer and the manufacturer’s profit

equation can be calculated as

Cf∗
b =

rvCvD(p)β

rbPS
(80)

and TEPv(Q
f∗
b , C

f∗
b , p

f∗) = Cf∗
b D(pf∗)− SD(pf∗)

Qf∗ − rvCvQ
f∗D(pf∗)

2P
− CvD(pf∗) (81)

Similarly, for SSMD policy the total profit for manufacturer is

TEPv(Q
f∗, Cf∗

b , p
f∗,m) = Cf∗

b D(pf∗)− SD(pf∗)

mQf∗

− rvCv
2

[
m

(
1− D(pf∗)

P

)
− 1 +

2D(pf∗)

P

]
Qf∗ − CvD(pf∗) (82)
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The optimal profit for the manufacturer can be obtained as

TEPv(Q
f∗
b , C

f∗
b , p

f∗,m− 1) ≤ TEPv(Q
f∗
b , C

f∗
b , p

f∗,m) ≥ TEPv(Q
f∗
b , C

f∗
b , p

f∗,m+ 1)

6.2.8 Solution algorithm 2

The following algorithm is used to solve the model for distribution free case

Step 1 Set m = 1 and for each Li, i = 0, 1, ..., n perform the following step 1a-2e.

Step 1a Set ki1 = 0.

Step 1b Compute Qf
bi1 from (75) and ki2 from (76).

Step 2 If b < c(Cb + α/Q) then,

Step 2a Compute pfi1 from (79).

Step 2b compute Cf
bi1 from (80).

Step 2c Repeat Step 1-2b until no changes occur in the values of Qf
bi, ki, p

f
i , and Cf

bi.

Step 2d Compute TEPb(Q
f
i , ki, p

f
i , C

f
bi).

Step 2e Obtain maxi=0,1,...,nTEPb(Q
f
i , ki, p

f
i , C

f
bi), the maximum profit for the retailer and the

optimal reorder point is r∗ = D(pf∗)L∗ + k∗σ
√
L∗.

Step 2f For SSSD policy, obtain TEPv(Q
f∗
i , p

f∗
i , C

f∗
bi ) from (81).

Step 2g For SSMD policy set m = m+ 1 and obtain TEPv(Q
f∗
i , p

f∗
i ,m).

Step 2h If TEPv(Q
f∗
i , p

f∗
i ,m) ≤ TEPv(Q

f∗
i , p

f∗
i ,m− 1) go to Step 2g otherwise go to Step 2i.

Step 2i Set TEPv(Q
f∗
i , p

f∗
i ,m

∗) = TEPv(Q
f∗
i , p

f∗
i ,m− 1), the maximum profit for the manu-

facturer.

Step 3 If b > c(Cb + α/Q), compute p1f
i1 from (78) and p2f

i1 from (79).
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Table 6.1

Lead time data

Lead time Normal Minimum Unit crashing

component duration duration cost

i bi (days) ai (days) ci ($/day)

1 20 6 0.4

2 20 6 1.2

3 16 9 5.0

Step 3a Repeat Step 1-1b and Step 3 until no changes occur in the values of Qf
bi, ki, p

1f
i1 , and

p2f
i1 .

Step 3b For both p1f
i1 , and p2f

i1 execute Step 2b-2e.

Step 3c Set maxi=0,1,...,nTEPb(Q
f
i , ki, p

f
i , C

f
bi)=

max{maxi=0,1,...,nTEPb(Q
f
i , ki, p

1f
i , C

f
bi),maxi=0,1,...,nTEPb(Q

f
i , ki, p

2f
i , C

f
bi)}.

6.3 Numerical results

Example 1

We consider the following example to illustrate the SSSD model with X, having normal

distribution. The values of parameters are a = 1500 units, P = 2000 units, A = $750/order,

S = $800/setup, rv = 0.8/unit/unit time, rb = 0.12/unit/unit time, Cv = $19/unit, π =

$40/unit, σ = 12 units/week, b = 5, c = 0.1. The lead time data is given below.

Using the above parameter values the SSMD policy is not satisfied. To validate this policy

the setup cost for manufacturer must be high. Thus, we use the following parameter values

a = 1000 units, P = 2000 units, A = $4900/order, S = $5000/setup, rv = $0.7, rb = $0.35,

Cv = $12/unit, π = $90/unit, σ = 4 units/week, b = 1, c = 0.01. The lead time data are same.
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Table 6.2

Variable purchase cost for SSSD policy

L D(p) Q k p Cb TEPb TEPv

8 613.84 458.89 1.355 72.39 39.11 18067.86 10207.69

6 614.38 458.85 1.356 72.36 39.05 18131.43 10181.03

4 612.01 458.82 1.350 72.49 39.33 17980.58 10304.13

Table 6.3

Fixed purchase cost for SSSD policy

L Cb D(p) Q k p TEPb TEPv

4 25 729.67 623.51 1.521 66.26 28125.77 1712.97

4 30 690.21 555.00 1.458 68.40 24377.60 5141.67

4 35 649.07 499.63 1.399 70.57 20850.21 8113.57

4 40 606.22 452.96 1.343 72.79 17548.79 10616.51

4 45 561.56 412.31 1.287 75.05 14479.96 12631.09

4 50 514.98 375.89 1.229 75.35 11651.53 14132.90

4 55 466.38 342.44 1.169 79.70 9092.29 15093.12

4 60 415.56 310.962 1.104 82.09 6752.13 15477.82

4 65 362.27 280.60 1.032 84.55 4702.33 15245.53

4 70 306.08 250.46 0.947 87.09 2936.16 14341.13

3 75 245.47 221.84 0.829 89.76 1471.81 12654.38
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Table 6.4

Fixed purchase cost for SSMD policy

m L Cb D(p) Q k p TEPb TEPv

1 4 70 478.66 443.38 0.668 183.74 43448.78 21918.74

2 4 75 467.95 423.81 0.631 186.02 40693.83 24940.25

2 4 80 457.04 405.83 0.594 188.32 38009.85 26558.71

2 4 85 445.93 389.18 0.558 190.64 35396.54 28053.96

2 4 90 434.62 373.67 0.552 192.98 32853.84 29423.13

2 4 95 423.09 359.13 0.486 195.34 30318.89 30663.05

2 4 100 411.34 345.43 0.449 197.72 27980.97 31770.29

2 4 110 387.30 318.77 0.379 202.53 23475.30 33578.79

2 4 120 362.12 259.55 0.265 207.46 19182.89 34808.70

2 4 130 335.83 273.93 0.221 212.52 15188.51 35412.80

2 4 140 308.28 253.42 0.131 217.72 11501.79 35354.28

2 4 150 279.24 233.60 0.030 223.09 8135.02 34565.44

Example 2

We consider same parametric values for SSSD and SSMD policy as assumed in Example 1

for distribution free case. Solutions are summarized in Table 6.5.

The following table indicates the optimal results for retailer and manufacturer for SSSD

policy.

• Both manufacturer and retailer can earn profit if the manufacturer determines the purchasing

cost for retailer depending on retailer’s decisions.

• From Table 6.3 and Table 6.6, it can be found when manufacturer increases the purchasing
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Figure 10 Purchasing cost versus demand

Table 6.5

Variable purchasing cost for SSSD policy

L D(p) Q k p Cb TEPb TEPv

8 566.86 458.82 1.268 74.78 44.23 14657.33 12321.37

6 574.13 458.82 1.295 74.42 43.46 15183.46 12038.75

4 579.69 458.83 1.317 74.14 42.86 15606.21 11811.51

3 576.02 458.82 1.302 74.32 43.25 15371.75 11962.68
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Figure 11 Purchasing cost versus profit by single-setup single-delivery policy
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Figure 12 Purchasing cost versus profit by single-setup multiple-delivery policy
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Table 6.6

Fixed purchasing cost for SSSD policy

L Cb D(p) Q k p TEPb TEPv

4 25 729.07 662.19 1.714 66.29 27995.04 1659.03

4 30 689.46 590.76 1.585 68.74 24236.79 5102.62

3 35 648.06 537.38 1.465 70.63 20703.15 8080.82

3 40 605.03 487.68 1.364 72.85 17398.48 10591.86

3 45 560.16 444.27 1.271 75.12 14328.63 12609.85

3 50 513.36 405.25 1.181 77.43 11501.38 14110.09

3 60 413.33 335.32 1.002 82.20 6611.37 15433.84

3 65 359.64 302.37 0.907 84.67 4570.24 15178.82

3 70 302.92 269.44 0.803 87.23 2815.95 14239.23

3 75 242.15 235.11 0.681 89.91 1366.22 12520.49

Table 6.7

Fixed purchasing cost for SSMD policy

m L Cb D(p) Q k p TEPb TEPv

2 4 70 478.55 445.45 0.567 183.76 43443.88 23199.43

2 4 80 456.93 407.57 0.497 188.34 38009.19 26556.43

2 4 90 434.50 375.10 0.431 193.00 32857.44 29420.11

2 4 100 411.23 346.56 0.367 197.74 27988.68 31766.35

2 4 110 387.34 320.93 0.304 202.58 23405.80 33566.84

2 3 120 361.81 297.64 0.238 207.52 19114.23 34786.78

3 3 130 335.51 275.71 0.171 212.58 15121.41 35440.11

3 3 140 307.94 254.89 0.099 217.78 11436.40 35426.96

3 3 150 278.90 234.76 0.017 223.15 8071.37 34673.71
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Table 6.8

Optimal results for SSSD policy

Case L Cb D(p) Q k p TEPb TEPv

Normal 6 39.11 614.38 458.85 1.356 72.36 18131.43 10181.03

Distribution free 4 579.69 458.83 1.317 74.14 42.86 15606.21 11811.51

cost, the selling-price of product becomes higher which results downfall of demand. In this

case, retailer’s profit decreases and manufacturer’s profit increases. But, after a certain amount

of the purchasing cost, manufacturer also face decrease in profit. This happens because of a

major fall in demand of that particular product due to high selling-price.

•Manufacturer should fix the purchasing cost at such an amount that the difference between the

profit of both parties should minimum. Table 6.3 shows when manufacturer fixes the purchase

cost at $45, the difference between the profits at both ends is minimum.

• From Table 6.4, when SSMD policy is followed by manufacturer, the fixed purchasing cost

is $95 for which the difference between profits is the lowest. The crucial thing is that, by

SSSD policy, for same profit for retailer ($30381.89), manufacturer can increase its profit upto

$30663.05 instead of $28907.09.

• Retailer’s total profit for distribution free case is less than that of normal distribution case.

This is obvious because the most unfavorable distribution function is used for the distribution

free case.

6.3.1 Sensitivity analysis

Key parameters A, S, rb, and rv are varied over -20% to +20% and changes on total profits

of buyer and vendor are analyzed individually. The sensitivity of total profit with changes of

key parameters are given in Table 6.9.
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Table 6.9

Sensitivity analysis

Parameters Changes TEPb TEPv

(in %)

−20% +21.20 −27.52

−10% +9.98 −12.50

A +10% −9.01 +10.44

+20% −17.08 +18.97

−20% −21.12 +22.23

−10% −9.76 +12.23

S +10% +8.89 −11.88

+20% +17.07 −23.42

Parameters Changes TEPb TEPv

(in %)

−20% −16.90 +19.63

−10% −8.84 +11.10

rv +10% +9.83 −13.19

+20% +20.90 −29.01

−20% +15.37 −22.89

−10% +8.00 −11.66

rb +10% −8.81 +12.00

+20% −18.69 +23.61

6.4 Managerial insights

This chapter deals with decentralized supply chain model with single-manufacturer and single-

retailer under variable price dependent demand. The managerial insights are given as follows.

• In a decentralized decision making system, purchasing cost should be determined by manu-

facturer depending on retailers decision. This technique provides a profitable business for each

party.

• Retailer should always estimate the selling-price of product according to economic condition

of the locality at which the business is running. A hike in selling-price results decrease in

customer demand and manager could experience significantly low profit.

6.5 Concluding remarks

This chapter developed a manufacturer-retailer decentralized supply chain model. Manu-

facturer’s profit was dependent on retailer’s decisions. When manufacturer determined the
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purchasing cost depending on the retailer’s decisions, it was found that both manufacturer and

retailer were gainer. If the manufacturer determined retailer’s purchasing cost independently,

without taking retailer’s decisions into consideration, then either manufacturer or retailer or

both of them would face low profit. In that case, manufacturer fixed purchasing cost such that

the difference between the total profit of manufacturer and retailer would be minimum. Oth-

erwise, uncontrolled increase of purchasing cost might result increase of selling-price of retailer

which decreased the annual demand and hence the revenue also. Thus, the retailer might face

a significant loss. Furthermore, for fixed purchase cost, the manufacturer can also follow SSMD

policy to increase its profit.

6.6 Appendices of Chapter 6

Appendix A

∂TEPb
∂p

= (a− 2bp− 3cp2) + Cb(b+ 2cp) + (b+ 2cp)(A+ πσ
√
L+ C(L))/Q

Now,
∂TEPb
∂p

= 0 gives

− 3cp2 + 2cCbp− 2bp+ 2cp
A+ πσ

√
Lψ(k) + C(L)

Q

+ bCb +
b

Q
(A+ πσ

√
Lψ(k) + C(L)) + a = 0

Let α = A+ πσ
√
Lψ(k) + C(L) then,

− 3cp2 + (2cCb − 2b+ 2cα/Q)p+ bCb + bα/Q+ a = 0

Hence, A1p
2 +B1p+ C1 = 0

where A1 = −3c

B1 = 2

{
cCb − b+

αc

Q

}
C1 = Cbb+

bα

Q
+ a
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Appendix B

For a fixed value of L, the Hessian matrix for the function TEPb(Q, k, p) is given by

H =


∂2TEPb

∂Q2
∂2TEPb

∂Q∂k
∂2TEPb

∂Q∂p

∂2TEPb

∂k∂Q
∂2TEPb

∂k2
∂2TEPb

∂k∂p

∂2TEPb

∂p∂Q
∂2TEPb

∂p∂k
∂2TEPb

∂p2


The first order principal minor of H is

|H11|(Q∗,k∗,p∗) = −2AD(p∗)
Q∗2

− πD(p∗)

Q∗3
σ
√
Lψ(k∗)− D(p∗)C(L)

Q∗3
< 0

The second order principal minor of H is

|H22|(Q∗,k∗,p∗) =

[
2AD(p∗)

Q∗3
+
πD(p∗)

Q∗3
σ
√
Lψ(k∗) +

D(p∗)C(L)

Q∗3

]
[
πD(p∗)

Q∗2
σ
√
L(1− Φ(k∗))

]
− π2D2(p∗)

Q4
σ2L(Φ(k∗)− 1)2

We need to show the above equation positive. Thus, it is enough to show that

[πσ
√
Lψ(k∗) + 2A+ C(L)]/Q∗ − πσ

√
L(1− Φ(k∗)) > 0

The above inequality holds only if

[πσ
√
Lψ(k∗) + 2A+ C(L)] > πσ

√
L(1− Φ(k∗))Q∗ > 0

which is the condition for the lemma to be held true.

The second order principal minor of H is

|H33|(Q∗,k∗,p∗) = [−(2b+ 6cp) + 2c(α + Cb)]× |H22|

− πσ
√
L

Q∗
(Φ(k∗)− 1)2D(p∗)

Q∗4
απσ
√
L[(b+ 2cp∗)− (b+ 2cp∗)]

− (b+ 2cp∗)2

Q∗5
α[πσ

√
L(Φ(k∗)− 1)2 − αφ(k∗)]πσ

√
LD(p∗)

= [2c(α + Cb)− (2b+ 6cp)]× |H22|

− (b+ 2cp∗)2

Q∗5
α[πσ

√
L(Φ(k∗)− 1)2 − αφ(k∗)]πσ

√
LD(p∗) > 0
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Principal minors of the Hessian matrix are of alternative sign which indicates that the

Hessian matrix is negative definite. Hence, the function TEPb(Q
∗, k∗, p∗) attains its global

maximum at the point (Q∗, k∗, p∗).

Appendix C

where A2 = −3c

B2 = 2

{
cCb − b+

βc

Q

}
C2 = Cbb+

bβ

Q
+ a

β = A+ πσ
√
L
√

1 + k2 − k]/2 + C(L)
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Chapter 7

Distribution free newsvendor model with consignment policy

and retailer’s royalty reduction
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7 Distribution free newsvendor model with consignment

policy and retailer’s royalty reduction

This chapter deals with a single-period newsvendor problem with consignment policy. The

consignment policy is an agreement between any two parties say the consignor and the con-

signee. Both parties carry some parts of holding cost instead of one. An improved policy for

paying the fixed fee to the consignee is introduced. This study considers no specific probability

distribution for customer’s demand except an educated mean and standard deviation. The so-

lution of this model is obtained by using distribution free approach. A comparison between the

traditional supply chain policy and the consignment policy is established. The price sensitiv-

ity on mean demand is analyzed. Some numerical examples and graphical representations are

given for both traditional and consignment policy. The organization has to decide how much

to stock the product in inventory before observing the customer’s demand. In case of demand

uncertainty, stock owner sometimes faces overstock or understock situation. As products are

perishable, overage products begin to deteriorate. At this point of view, there is a significant

economic importance of this kind of problem.

7.1 Literature review

Arrow (1951) developed the formulation of newsvendor problem. Since then, this type of

problem has been gaining the attention of researchers throughout the world. Today, in supply

chain and inventory management problems, newsvendor problem plays an important role for

short-life cycle products like agricultural, dairy products (Cárdenas-Barrón 2001, 2009; Pal et

al., 2015).

Consignment policy is one of the most efficient policies in supply chain management. In

general, two parties are considered namely consignor and consignee. The upstream party (e.g.,

manufacturer) is referred to the consignor and the consignee denotes the downstream party

(e.g., retailer). Consignment stock is an inventory which is retained by the downstream party

but upstream party holds the ownership of this inventory. No fund transfer is to be taken
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place until and unless an item is sold from the retailer’s stock. The retailer receives per unit

commission per each sold item, which is deducted from the revenue and the rest part is trans-

ferred to the manufacturer. The manufacturer also agrees to pay a fixed fee to the retailer.

As the retailer’s space is used to stock the inventory, the holding cost is divided between the

both parties. According to Chen and Liu (2008), the inventory carrying cost for the retailer is

reduced to 8% to 18% in case of consignment contract from 20% to 36% in case of traditional

system.

In make to order policy, to satisfy customer’s demand, manufacturer must produce goods

in case of insufficient inventory and deliver these to the retailer (Mahajan et al., 2002). Ac-

cording to Valentini and Zavanella (2003), inventory carrying or holding cost mainly consists

of two components as financial component and operational component. In traditional policy,

total carrying cost has to be incurred by the retailer. Thus, manufacturer does not carry any

inventory cost after delivering the product to the retailer. On the other hand, in case of con-

signment policy, the financial component is incurred by the manufacturer and the operational

component is carried by the vendor (Chen and Liu, 2008). Zhang et al., (2010) introduced the

channel coordination in a consignment contract. Ru and Wang (2010) developed a single-period

supplier-retailer supply chain model with consignment contract regarding the issue which party

should have the right to control the inventory. Adida and Ratisoontorn (2011) investigated

how competition among retailers affects the supply chain decisions and profits under different

consignment contracts.

Corbett (2001) developed a stochastic supply chain model with with consignment stock,

cycle and safety stock along with asymmetric information. Gerchak and Khmelnitsky (2003)

examined a consignment policy where there is no scope to verify the retailer’s sales reports.

Braglia and Zavanella (2003) worked on an industrial strategy for supply chain and inventory

management with consignment stock. Yi and Sarkar (2013) developed an integrated inventory

model under consignment stock policy with the buyer’s space limitation and controllable lead

time. Sarker (2014) worked on a critical review to study the consignment stocking policy on

supply chain management. Hu et al. (2014) studied the impact of consumer return policies
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with inventory control under consignment contracts. Wang et al. (2012) modeled a consign-

ment inventory system with deteriorating items, when buyer has warehouse capacity constraint.

The idea of a newsvendor problem comes into the light following the problem how many

newspaper to stock into the inventory by the newsvendor (Gallego, 1995). The newspaper

becomes obsolete if it is not sold on the day of the publication of the paper. Thus, it is very

tough to make the inventory decisions for the vendor under uncertain demand. The same thing

happens for any perishable item and this types of model can also be applied to them. In gen-

eral, some specific probability distribution (e.g., uniform or normal) is considered for demand

uncertainty. To know this distribution, the manager should use a lot of fund. There should

be a convenient method to reduce this cost if the managerial decisions can be made without

considering any specific probability distribution.

7.2 Model formulation

Entire model description with assumptions, solution methodology with algorithm are elabo-

rated in this section.

7.2.1 Assumptions

Following assumptions and notation are used to develop the model.

1. A single period newsvendor model is considered.

2. No specific probability distribution is considered for the customer’s demand. But the

mean and standard deviation of the demand are known.

3. In traditional policy, total inventory carrying cost is carried by the retailer, while in

consignment policy, the financial and the operational part of the inventory holding cost

are divided into the manufacturer and the retailer, respectively.
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4. The manufacturer pays a commission to the retailer per unit item is sold as well as a

fixed fee.

5. During stockout, for each item the manufacturer or retailer has to face a goodwill loss.

7.2.2 Traditional policy

In traditional policy, the total inventory carrying/holding cost is incurred by the retailer.

The retailer purchases the total lot from the manufacturer at a wholesale price, retains the

ownership of it, and sells the product to the customer at a selling-price. The manufacturer

takes no responsibility of goods and incurs no cost for holding after delivering items to the

retailer’s end. The retailer’s total profit for traditional system is

πTSr =

 pµ− wQ− hTSr (Q−D)+; D ≤ Q

(p− w)Q− sr(D −Q)+; Q < D


The retailer’s expected profit can be written as

E(πTSr ) =

 pµ− wQ− hTSr E(Q−D)+; D ≤ Q

(p− w)Q− srE(D −Q)+; Q < D

 (83)

Distribution free approach

As no assumption for the probability distribution of the random demand D is considered, a

class Ω of cumulative distribution is assumed. We suppose any cumulative distribution function

F of D with mean µ and standard deviation σ such that F ∈ Ω.

7.2.3 Lemma 1

(i) E(Q−D)+ ≤ 1

2
[
√
σ2 + (Q− µ)2 − (µ−Q)] (84)

(ii) E(D −Q)+ ≤ 1

2
[
√
σ2 + (Q− µ)2 − (Q− µ)] (85)

Moreover the upper bound of the above inequality is tight (Gallego and Moon, 1993).

Proof
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See appendix A.

Using (84) and (85), (83) can be written as

E(πTSr ) = p(µ+Q)− wQ− hTSr
{

[σ2 + (Q− µ)2]1/2 − (µ−Q)

2

}
− sr

{
[σ2 + (Q− µ)2]1/2 − (Q− µ)

2

}
= p(µ+Q)− wQ− hTSr + sr

2
[σ2 + (Q− µ)2]1/2 − hTSr − sr

2
(Q− µ)

(86)

The revenue of the manufacturer is wQ and the cost incurred by the manufacturer is the

manufacturing cost. The expected profit of the manufacturer is

E(πTSm ) = wQ− cQ = (w − c)Q (87)

In order to maximize the expected total profit of the retailer, we take the derivative of (86)

with respect to Q.

∂E(πTSr )

∂Q
= p− w − hTSr + sr

2
[σ2 + (Q− µ)2]−1/2(Q− µ)

Equating the above equation to zero, we obtain

Q∗r = µ+
σΓ√

1− Γ2
where Γ =

2(p− w)− (hTSr − sr)
hTSr + sr

[See Appendix B] (88)

Using (88), (87) can be written as

E(πTSm ) = (w − c)Q∗r = (w − c)
[
µ+

σΓ√
1− Γ2

]
(89)

7.2.4 Lemma 2

For real Q and µ > 0, E(πTSr ) is bounded above and the upper bound is

p[3µ−Q−
√
σ2 + (Q− µ)2]

2

Proof

From (88), we can see that for real Q, Γ < 1 must holds which implies Γ2 << 1 i.e.,

2(p− w)− (hTSr − sr)
hTSr + sr

< 1

or, hTSr > (p− w) (90)
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Now using (90), (86) can be written as

E(πTSr ) < p(µ+Q)− wQ− (p− w)

[√
σ2 + (Q− µ)2 − (µ−Q)

2

]

− sr

[√
σ2 + (Q− µ)2 − (Q− µ)

2

]

= p

[
µ+Q−

√
σ2 + (Q− µ)2 − (µ−Q)

2

]

− w

[
Q−

√
σ2 + (Q− µ)2 − (µ−Q)

2

]

− sr

[√
σ2 + (Q− µ)2 − (Q− µ)

2

]

≤ p

[
µ+Q−

√
σ2 + (Q− µ)2 − (µ−Q)

2

]
holds if and only if

Q−
√
σ2 + (Q− µ)2 − (µ−Q)

2
> 0 and

√
σ2 + (Q− µ)2 − (Q− µ)

2
> 0(91)

From the above conditions (91), we have

Q+ µ >
√
σ2 + (Q− µ)2 (92)

−Q+ µ > −
√
σ2 + (Q− µ)2 (93)

Solving the above equations we get µ > 0. Thus, for µ > 0,

E(πTSr ) < p

[
µ+Q−

√
σ2 + (Q− µ)2 − (µ−Q)

2

]
=
p[3µ−Q−

√
σ2 + (Q− µ)2]

2

7.2.5 Consignment policy

The revenue for the retailer comes from the per unit commission and the fixed fee paid by the

manufacturer. In this policy, the retailer does not carry the total inventory holding cost as the

ownership of products is retained by the manufacturer. The operational part of the holding

cost which includes storage space, material handling etc., is carried by the retailer. But, the

financial component (opportunity cost while investing the capital, taxes etc.) is incurred by the
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manufacturer. Thus, the total cost faced by the retailer in this policy consists of the operational

part of the holding cost and the goodwill loss during stockout.

The expected total profit of the retailer for consignment policy is

E(πCPr ) =

 αµ− hCPr E(Q−D)+ + A; D ≤ Q

αQ− srE(D −Q)+ + A; Q < D

 (94)

Using (84) and (85), (94) can be written as

E(πCPr ) = α(µ+Q)− hCPr
{

[σ2 + (Q− µ)2]1/2 − (µ−Q)

2

}
− sr

{
[σ2 + (Q− µ)2]1/2 − (Q− µ)

2

}
+ A

= α(µ+Q)− hCPr + sr
2

√
σ2 + (Q− µ)2

+
hCPr − sr

2
(µ−Q) + A

(95)

In maximize the profit of the retailer, we take the derivative of (95) with respect to Q which

gives
∂E(πCPr )

∂Q
= α− (hCPr + sr)(Q− µ)

2
√
σ2 + (Q− µ)2

− hCPr − sr
2

Now, equating the above equation to zero, we obtain

QCP∗
r = µ+

σΓCP√
1− Γ2

CP

where Γ =
2α− (hCPr − sr)

hCPr + sr
[See Appendix B] (96)

Now, at the manufacturer’s end, though the entire lot is delivered to the retailer’s warehouse

the manufacturer keeps the ownership of the merchandize. The financial part of the holding

cost is carried by the manufacturer. The selling-price is fixed by the manufacturer and the

retailer transfer the balance amount after deducting the per unit commission. This balance

amount is the source of revenue for the manufacturer. No fund transfer is to be taken place if

the item is unsold. Besides this the manufacturer also agreed to pay a fixed fee to the retailer.

The expected total profit of the manufacturer is

πCPm =

 (p− α)µ− cQ− hCPm E(Q−D)+ − A; D ≤ Q

(p− α− c)Q− smE(D −Q)+ − A; D > Q

 (97)
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Using (84) and (85), the above equation can be written as

E(πCPm ) = p(µ+Q)− αµ− αQ− cQ− hCPm
{

[σ2 + (Q− µ)2]1/2 − (µ−Q)

2

}
− sm

{
[σ2 + (Q− µ)2]1/2 − (Q− µ)

2

}
− A

= p(µ+Q)− cQ− αQ− αµ− hCPm + sm
2

√
σ2 + (Q− µ)2

+
hCPm − sm

2
(µ−Q)− A

(98)

The expected joint total profit for manufacturer and retailer under consignment policy is

E(πCPJ ) = E(πCPr + πCPm ) = E(πCPr ) + E(πCPm ) i.e.,

E(πCPJ ) = α(µ+Q)− hCPr + sr
2

√
σ2 + (Q− µ)2 +

hCPr − sr
2

(µ−Q) + A

+ p(µ+Q)− cQ− αQ− αµ− hCPm + sm
2

√
σ2 + (Q− µ)2

+
hCPm − sm

2
(µ−Q)− A

= (α + p)(µ+Q)− cQ− αQ− αµ

− (hCPr + hCPm ) + (sr + sm)

2

√
σ2 + (Q− µ)2

+
(hCPr + hCPm )− (sr + sm)

2
(µ−Q)

(99)

In order to maximize the expected joint total profit, we take the derivative of (99) with

respect to Q
∂E(πCPJ )

∂Q
= p− c− (hCPr + hCPm ) + (sr + sm)

2
√
σ2 + (Q− µ)2

− (hCPr + hCPm )− (sr + sm)

2

(100)

Equating the above equation to zero, we obtain

QCP∗
J = µ+

σλ√
1− λ2

where λ =
2(p− c)− ((hCPr + hCPm )− (sr + sm))

(hCPr + hCPm ) + (sr + sm)
(101)

[See Appendix B]

Evaluation of per unit commission

In order to obtain the per unit commission α given by the manufacturer to the retailer, we
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equate QCP∗
r = QCP∗

j and obtain the value of α as

α =
hr − sr

2
+

hr + sr
2(HCP + SCP )

(2(p− c)− (HCP − SCP )) (102)

where HCP = (hCPr + hCPm ) and SCP = (sr + sm)

Evaluation of the fixed fee paid by the manufacturer to the retailer

In consignment policy, retailers expects to earn at least as much as in traditional policy.

This is the manufacturer’s responsibility to ensure that the retailer’s expected profit for CP

reaches or exceeds the expected profit for TP. i.e.,

Max z = E(πCPm )

subject to E(πCPr ) ≥ E(πTSr ) (103)

A ≤ p(µ+QTS
r )− wQTS

r −
hTSr + sr

2

√
σ2 + (QTS

r − µ)2

− hTSr − sr
2

(QTS
r − µ)− α(µ+QCP

r ) +
hCPr + sr

2

√
σ2 + (QCP

r − µ)2

+
hCPr − sr

2
(QCP

r − µ)

(104)

A point should be noted that this fixed fee is not always positive. This fee is calculated

comparing the retailer’s expected profit under CP and TP. The responsibility for the manufac-

turer is to confirm the more profit of the retailer in CP than that of TP. If this happens, then

replacing the inequality sign of (104) to equality, the fixed fee becomes negative; otherwise it

is positive. A positive fixed fee is regarded as an ‘admission fee’ which is a slotting allowance

paid by the manufacturer to the retailer and a negative fixed fee is referred to as a ‘royalty’

paid by the retailer to the manufacturer (Chen and Liu, 2008).

7.2.6 Proposed way to evaluate the fixed fee in CP

In CP the manufacturer holds the ownership of the product. The retailer just provides the

warehouse space to hold the item. In return, the retailer is offered with a per unit commission

on selling an item and a fixed fee. On the other hand, a part of holding cost has to carried
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out by the retailer. An awkward situation for the retailer comes into the way while making

the consignment contract with the manufacturer. This is a difficult decision for the retailer to

agree with per unit commission and the fixed fee. Specially, this fixed fee as it is not always

positive which means the retailer has to give a royalty to the manufacturer. This may create an

issue to sign a consignment contract as the per unit commission is the only source of revenue

for the retailer.

This proposed method can reduce the royalty, which has to be paid by the retailer to the

manufacturer in case of negative fixed fee. We convert the inequality sign of (104) to equality

which shows

A = E(πTSr )− E(πCPr )

The value of A will be negative if

E(πCPr ) > E(πTSr ) (105)

Now, we obtain the ratio

r =
∣∣∣E(πTSr )

E(πCPr )

∣∣∣ (106)

If (105) holds, then r < 1 and

An = rA =
∣∣∣E(πTSr )

E(πCPr )

∣∣∣A < A (107)

Thus, the royalty which is to be given by the retailer can be reduced in this way. The

expected profit for the retailer and the manufacturer for this new fixed cost will be

E(πCPrn ) = α(µ+QCP
r )− hCPr

{
[σ2 + (QCP

r − µ)2]1/2 − (µ−QCP
r )

2

}
− sr

{
[σ2 + (QCP

r − µ)2]1/2 − (QCP
r − µ)

2

}
+ An

= α(µ+QCP
r )− hCPr + sr

2

√
σ2 + (QCP

r − µ)2

+
hCPr − sr

2
(µ−QCP

r ) + An

(108)
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and

E(πCPmn ) = p(µ+QCP
r )− αµ− αQCP

r − cQCP
r − hCPm

{
[σ2 + (QCP

r − µ)2]1/2 − (µ−QCP
r )

2

}
− sm

{
[σ2 + (QCP

r − µ)2]1/2 − (QCP
r − µ)

2

}
− An

= p(µ+QCP
r )− cQCP

r − αQCP
r − αµ−

hCPm + sm
2

√
σ2 + (QCP

r − µ)2

+
hCPm − sm

2
(µ−QCP

r )− An, respectively.

(109)

7.2.7 Solution algorithm

The following algorithm is used to obtain the optimal solution of the model.

For traditional policy

Step 1 Input all parameter values µ, σ, p, w, c, sTSr , sCPr , hTSr , hCPr , hCPm , and sCPm .

Step 2 Evaluate the order quantity for the retailer QTS
r from (88).

Step 3 Utilize the value of QTS
r to obtain the retailer’s total expected profit E(πTSr ) from (86)

and the manufacturer’s total expected profit E(πTSm ) from (89).

For consignment policy

Step 4 Evaluate the value of per unit commission α for the retailer using (102).

Step 5 Obtain the value of the order quantity in consignment policy QCP
r for the retailer from

(96).

Step 6 Evaluate the fixed cost A from (104).

Step 7 IfA > 0, then evaluate the expected profit of the retailer E(πCPr ) and the manufacturer

E(πCPm ) from (95) and (98), respectively.

Step 8 If A < 0, then execute the following steps
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Table 7.1

Optimal solutions for traditional system

hr QTS
r E(πTSr ) E(πTSm ) Joint profit

0.63c 236.07 854.25 1416.40 2270.65

0.73c 206.67 500.00 1240.00 1740.40

Step 8a Evaluate An from (107).

Step 8b Utilize the value of An to evaluate the new expected profit for the retailer and the

manufacturer i.e., E(πCPrn ) and E(πCPmn ), respectively from (108) and (109).

7.3 Numerical experiments

Example 1

We use following parameter values for traditional policy. µ = 100, σ = 200, p = $30,

w = $25, c = $19, and sr = $20. Now using the solution algorithm, the optimal solution for

the traditional system model are summarized in Table 7.1.

Example 2

We use same parameter values as used in Example 1. Example 2 is used for consignment

policy. The inventory holding cost is divided into both parties. The optimal solutions for

consignment policy are summarized in Table 7.2. This solution is obtained for general consign-

ment policy. The optimal solutions for the proposed method to evaluate the royalty are given

in Table 7.3.
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Figure 13 Graphical representation of order quantity versus profit for consignment policy

Table 7.2

Optimal solutions for consignment policy

(hr, hm) (sr, sm) α QCP
r E(πCPr ) E(πCPm ) Joint profit A

(0.21c,0.42c) (0,20) 3.87 638.82 854.25 2132.19 2986.44 218.44

(0.26c,0.47c) (0,20) 4.56 390.35 500.00 1671.27 2171.27 −128.13
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Figure 14 Graphical representation of order quantity, standard deviation versus profit for con-

signment policy

Table 7.3

Optimal solutions for the proposed method in consignment policy

(hr, hm) (sr, sm) α QCP
r E(πCPr ) E(πCPm ) Joint profit An

(0.26c,0.47c) (0,20) 4.56 390.35 526.14 1645.13 2171.27 −101.99
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Figure 15 Graphical representation of order quantity versus expected profit for traditional policy
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Figure 16 Graphical representation of order quantity, standard deviation versus profit for tra-

ditional policy
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Table 7.4

Optimal solutions for price sensitivity on demand

β α QCP
r E(πCPr ) E(πCPm ) Joint profit A An

0.1 4.56 387.35 465.48 1582.79 2048.27 −205.77 −135.29

0.2 4.56 384.35 430.08 1495.18 1925.26 −283.42 −143.34

0.3 4.56 381.35 423.74 1378.53 1802.27 −361.07 −122.32

0.4 4.56 378.35 451.05 1228.22 1679.27 −438.72 −67.66

7.3.1 Price sensitivity on demand

According to the variation of selling-price the demand varies following the relation D = a−βp,

where a is annual demand and β is the fraction of price which influences the demand. In case

of distribution free approach only an educated mean and standard deviation is known. There

are no other information regarding the probability distribution of the demand. We consider

that the mean demand µ is price-sensitive and follows the linear relationship of demand with

the selling-price as µ = a− βp. Example 3 summarizes the optimal results by replacing µ with

a− βp.

Example 3

We use the same parameter values as used in Example 2 considering a = 100 and the

holding costs as (hr, hm) ≡ (0.26c, 0.47c). The optimal results are summarized in Table 7.4.

Table 7.1 shows the maximum expected profit for the vendor and the buyer with different

holding cost assumption. Table 7.2 represents the optimal expected profit for both parties for

consignment policy and changes of expected profit with different holding costs. Table 7.3 indi-

cates the optimal results under the proposed method to reduce the royalty for the retailer. It

is observed that the royalty can be reduced without interrupting the joint profit for the vendor

and the buyer. Table 7.4 gives linear-price sensitivity on mean demand. The changes of optimal

profit for the buyer and the vendor with changes in the price fraction β which influences the
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Table 7.5

Sensitivity analysis for holding cost components

Parameters Changes Joint profit

(in %) (in %)

−20% 40.31568

−15% 28.83955

−10% 17.79346

−5% 8.092732

hCPr +5% −6.70292

+10% −12.1953

+15% −16.6257

+20% −20.1179

Parameters Changes Joint profit

(in %) (in %)

−20% 80.65674

−15% 57.18234

−10% 35.95507

−5% 16.94367

hCPm +5% −14.9342

+10% −27.864

+15% −38.7594

+20% −47.5653

mean demand.

7.3.2 Sensitivity analysis

Table 7.5 represents the sensitivity analysis for holding costs for the vendor and the buyer in

consignment policy. It is found that the manufacturer’s holding cost is more sensitive than the

retailer’s holding cost to the joint optimal profit.

7.4 Managerial insights

This chapter highlights a comparison between traditional and consignment policy under a

manufacturer-retailer supply chain system. The managerial insights are given as follows:

• A consignment contract saves fund in favor of retailer as the financial and operational part

of holding cost is divided into retailer and manufacturer, respectively.
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• Demand is considered as random, but free of any specific distribution with known mean and

standard deviation. The distribution free approach is applied to solve the model which can

save fund for collecting demand data from market.

• An effective procedure is established to reduce retailer’s royalty to strengthen the negotiation

between manufacturer and retailer in achieving a consignment contract.

7.5 Concluding remarks

In this study, a comparison between the traditional policy and the consignment policy for

a newsvendor problem with the manufacturer and the retailer was shown under distribution

free approach. The demand distribution is completely unknown except mean and standard

deviation depending on which the entire model was developed. The optimal decisions was ob-

tained for both traditional and consignment policy. It was observed that the joint profit for

the consignment policy is greater than that of the traditional policy. To reduce the royalty for

the retailer to the manufacturer a new methodology was provided. The royalty for the retailer

was reduced without affecting the joint total profit for both parties. The price-sensitivity on

demand was examined, which proved that increment of a fraction of price may result reduction

of total expected profit.
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7.6 Appendices of Chapter 7

Appendix A

(Q−D)+ =
|Q−D|+ (Q−D)

2

E|Q−D| ≤
√
E(Q−D)2 (By Cauchy Schwartz inequality)

=
√
E(Q2 − 2QD +D2)

=
√
Q2 − 2Qµ+ E(D2) (As E(D) = µ)

=
√
σ2 + (Q− µ)2 (As σ2 = E(D2)− µ2)

Now, E(Q−D)+ =
E|Q−D|+ E(Q−D)

2

≤
√
σ2 + (Q− µ)2 − (µ−Q)

2

Similarly, we can prove that

E(D −Q)+ ≤
√
σ2 + (Q− µ)2 − (Q− µ)

2

Appendix B

Optimal order quantity for traditional policy

∂E(πTSr )

∂Q
= 0

i.e., p− w − 1

2

√
σ2 + (Q− µ)2(Q− µ)(hTSr + sr)−

hTSr − sr
2

= 0

i.e.,
(Q− µ)√

σ2 + (Q− µ)2
=

2(p− w)− (hTSr − sr)
hTSr + sr

or,
(Q− µ)2

σ2 + (Q− µ)2
= Γ2[

Γ =
2(p− w)− (hTSr − sr)

hTSr + sr

]
or, Q = µ+

σΓ√
1− Γ2
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Optimal order quantity for consignment policy

∂E(πCPr )

∂Q
= 0

i.e., α− (hCPr + sr)(Q− µ)√
σ2 + (Q− µ)2

− hCPr − sr
2

= 0

i.e.,
(Q− µ)2

σ2 + (Q− µ)2
=

[
2α− hCPr + sr
hCPr + sr

]2

= Γ2
CP[

2α− hCPr + sr
hCPr + sr

= ΓCP

]
i.e., QCP

r = µ+
σΓCP√
1− Γ2

CP

Optimal order quantity for joint policy

∂E(πCPJ )

∂Q
= 0

i.e., p− c− 1

2

(hr + hm + sr + sm)(Q− µ)√
σ2 + (Q− µ)2

− hr + hm − (sr + sm)

2
= 0

i.e.,
(hr + hm + sr + sm)(Q− µ)√

σ2 + (Q− µ)2
= 2(p− c)− (hr + hm − sr − sm)

i.e.,
(Q− µ)2

σ2 + (Q− µ)2
=

[
2(p− c)− (hr + hm − sr − sm)

(hr + hm + sr + sm)

]2

= λ2[
λ =

2(p− c)− (hr + hm − sr − sm)

(hr + hm + sr + sm)

]
i.e., Q = µ+

σλ√
1− λ2
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Chapter 8

A multi-retailer supply chain model with backorder

and variable production cost
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8 A multi-retailer supply chain model with backorder

and variable production cost

This chapter considers an multi-retailer supply chain model, where a single-vendor manufac-

tures goods in a batch production process and supplies to a set of buyers over multiple times.

Instead of assuming a fixed production rate, variable production rate is considered by the ven-

dor and also the production cost of the vendor is treated as a function of production rate. The

continuous review inventory policy is applied by buyers to inspect the inventory level and a

crashing cost is incurred by all buyers to reduce lead time. The lead time demand is normally

distributed. The unsatisfied demand at buyer’s end are partially backordered. A service-level

constraint is incorporated corresponding to each buyer. A model is formulated to minimize the

expected joint cost of the vendor-buyers supply chain system.

8.1 Literature review

Similar literatures used in previous chapters have been omitted in this chapter. Literatures

related to specific contributions in this chapter are only discussed.

Banerjee and Burton (1994) developed a comparison between coordinated and indepen-

dent replenishment policies in a single-vendor multi-buyer supply chain model. Banerjee and

Banerjee (1994) developed a multi-buyer inventory model using electronic data interchange with

order-up-to inventory control policy. Sarmah et al. (2008) considered a single supplier multi

buyer coordinated supply chain model with trade credit policy. Hoque (2008) created three

different single-vendor multi-buyer models by synchronizing the production flow with equal and

unequal sized batch transfer for first two models and the last last model, respectively.

The production rate is assumed to be constant in classical supply chain model whereas, in

many cases, the machine production rate may change (Khouja and Mehrez, 1994). Conard and

McClamrock’s (1987) analysis stated that 10% change in processing rate results 50% change in

machine tool cost. Moreover, the possibility of failure of production process gradually increases
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with the increasing production rate. As a result, the product quality may deteriorate at some

percentage. Thus, it is reasonable to consider the production rate as a decision variable. Unit

production cost also depends on the production rate and treated to be one of the decision

variables.

8.2 Model formulation

In this section assumptions, model development, and solution procedure with algorithm are

described thoroughly.

8.2.1 Assumptions

Following assumptions are considered to develop the model.

1. This chapter assumes a single-vendor multi-buyer supply chain model for single-type of

products.

2. To satisfy the demand of each buyer, vendor supplies a total of Q quantity such that

Q =
∑n

i=1 qi.

3. The vendor manufactures mQ quantity against the order of qi quantity of buyer i but

the shipment should be in quantity Q over m times. The shipment procedure follows the

relation qi = di
Q
D

i.e., qi
di

= Q
D

.

4. The inventory is continuously reviewed by each buyer. According to this policy, an order

is placed whenever the level of inventory decreases to a particular inventory level (reorder

point).

5. Production rate is a variable quantity, which varies within the range Pmin (Pmin > D =∑n
i=1 di) and Pmax.

6. The unit production cost of the vendor is a function of P .
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7. Partial backorder is considered with backorder ratio βi for ith retailer.

8. For ith retailer, we assume Li,0 ≡
∑ni

j=1 bi,j. Li,r is the length of lead time having the

components 1, 2, ..., r crashed to their minimum duration. Thus, Li,r can be expressed as

Li,r = Li,0 −
∑r

j=1(bi,j − ai,j), r = 1, 2, ..., n; and the lead time crashing cost per cycle

Ci(Li) is expressed as Ci(Li) = ci,r(Li,r−1 − Li) +
∑r−1

j=1 ci,j(bi,j − ai,j), L ∈ [Li,r, Li,r−1].

9. The lead time crashing cost entirely belongs to the buyer’s cost component.

10. The time horizon is infinite.

Total expected cost for buyers

At this stage, we derive all cost components for each buyer. The ordering cost for ith buyer

is Abidi
qi

as the expected cycle time for each buyer is qi
di

. The inventory level is continuously

reviewed by the each buyer. Thus, the ith buyer places an order qi only when the level of

inventory reaches down to a specified indicator say, reorder point ri. The net inventory level

for buyer i just before and after receipt of an order is ri − diLi and qi + ri − diLi, respectively.

Therefore, the approximated average inventory for buyer i over the cycle is qi
2

+ ri−diLi. Now,

ri can be expressed as DiLi + kiσi
√
Li, which makes the average inventory for ith buyer as

qi
2

+ kiσi
√
Li. Again, (1 − βi) is the fraction of demand, which is not backordered. Hence,

the holding cost for buyer i per unit time is hbi[
qi
2

+ ri − diLi + (1 − βi)E(Xi − ri)
+]. As

π0i and πi are the marginal profit and stockout cost per unit item, respectively for buyer i,

{πi + π0i(1 − βi)}diqiE(Xi − ri)
+ is the shortage cost per item per unit time. According to

assumption, the expression of the lead time crashing cost/unit time is R(Li)
di
qi

for buyer i.

Total expected cost for buyer i is

TECbi =Ordering cost+holding cost+shortage cost+Lead time crashing cost

Thus, TECbi leads to the following expression

TECbi(qi, ki, Li) =
[Abidi
qi

+ hbi

{qi
2

+ kiσi
√
Li + (1− βi)E(Xi − ri)+

}
+ {πi + π0i(1− βi)}

di
qi
E(Xi − ri)+ +R(Li)

di
qi

]
(110)
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Xi is the lead time demand for buyer i having a normal distribution with diLi and σi
√
Li

as mean and standard deviation, respectively. Shortages occur only when Xi > ri for each ith

buyer. The expected shortage at cycle end for ith buyer is E(Xi − ri)+ =
∫∞
ri

(xi − ri)dF (x) =

σi
√
Liψ(ki) where ψ(ki) = φ(ki) − ki[1 − Φ(ki)], φ stands for the standard normal probability

density function, and Φ = stands for the cumulative distribution function of normal distribution.

According to assumption 3 and using E(Xi − ri)+ = σi
√
Liψ(ki), (110) becomes

TECbi(Q, ki, Li) =
[AbiD
Q

+ hbi

{
Q

2D
di + kiσi

√
Li + (1− βi)σi

√
Liψ(ki)

}
+ {πi + π0i(1− βi)}

D

Q
σi
√
Liψ(ki) +R(Li)

D

Q

]
(111)

Total expected cost for the vendor

The setup cost for vendor per unit time is AvD
mQ

.

The average inventory of the vendor is[{
mQ

(
Q

P
+ (m− 1)

Q

D

)
− m2Q2

2P

}
−
{
Q2

D
(1 + 2 + ...+ (m− 1))

}]
D

mQ

=
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
Figure (7)

Therefore, the holding cost per unit time for vendor is

hv
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
The production cost for the vendor is assumed to be the function of P . The expression of

unit production cost is C(P ) =
(
a1
P

+ a2P
)

(Khouja and Mehrez, 1994). The production rate

which minimizes the unit production cost is P ∗ =
√

a2
a1

. Therefore, the total expected cost of

vendor is expressed as

TECv=Setup cost+Holding cost+Material cost i.e.,

TECv(m,Q, P ) =
AvD

mQ
+
Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+D

(a1

P
+ a2P

)
(112)

In order to obtain the centralized decisions for both vendor and buyer to minimize the

entire supply chain cost, the total cost expression of both the ends must be combined together.
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Therefore, the expected joint total cost for both vendor and buyers (JTEC) is obtained.

JTEC(Q, ki, Li, P,m) =
n∑
i=1

D

Q

[
Abi + {πi + πoi(1− βi)}σi

√
Liψ(ki) +

Av
m

+R(Li)

]
+

n∑
i=1

hbi

[
Q

2D
di + kiσi

√
Li + (1− βi)σi

√
Liψ(ki)

]
+

Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+D

(a1

P
+ a2P

)
(113)

Now, the aim is to obtain the optimal solution for all decision variables such that the

joint expected total cost is minimized. The problem becomes an unconstrained minimization

problem with five decision variables. Therefore, in order to obtain the optimal supply chain

cost, we need to obtain derivatives of the objective function (total cost function) with respect

to all decision variables and equate them with zero. Now, according to the assumption, m is

an integer and therefore, it can be treated as discrete decision variable and differentiability of

the cost function with respect to m is not possible. Thus, after taking derivatives with respect

to Q, ki, Li, and P , we obtain

∂JTEC(Q, ki, Li, P,m)

∂Q
=

n∑
i=1

hbi
2D

di +
hv
2

[
m(1− D

P
)− 1 +

2D

P

]
−

n∑
i=1

D

Q2

[
Abi + {πi + π0i(1− βi)}σi

√
Liψ(ki)

+ Av/m+R(Li)
]

∂JTEC(Q, ki, Li, P,m)

∂ki
=
D

Q
{πi + π0i(1− βi)}σi

√
Li(Φ(ki)− 1) + hbiσi

√
Li

+ (1− βi)σi
√
Li(Φ(ki)− 1)

∂JTEC(Q, ki, Li, P,m)

∂Li
=

D

2Q
{πi + π0i(1− βi)}σiψ(ki)L

−1/2
i − Dci,r

Q

+ (kiσi + (1− βi)σiψ(ki))
hbiL

−1/2
i

2
∂JTEC(Q, ki, Li, P,m)

∂P
=

D

P 2

[
Q

2
hv(m− 2)− a1

]
+ a2D

(114)
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Again, we note that the second order partial derivative of the joint total cost function with

respect to Li is

∂2JTEC(Q, ki, Li, P,m)

∂L2
i

= − D

4Q
{πi + π0i(1− βi)}σiψ(ki)L

−3/2
i

− (kiσi + (1− βi)σiψ(ki))
hbiL

−3/2
i

4
(115)

which is a negative term for 0 < βi < 1 and all positive values of parameters and decision

variables present in (115). Therefore, for fixedQ, ki, P , andm, the function JTEC(Q, ki, Li, P,m)

is concave in Li. Thus, for fixed Q, ki, P , and m, the minimum value of JTEC(Q, ki, Li, P,m)

attains at the end point of the interval [Li,j, Li,j−1]. Now for fixed positive integer m, and for

any fixed value of Li, values of Q, Φ(ki), and P can be obtained by equating every individual

equation of the system (114) to zero.

Q =

{
2D{Av/m+

∑n
i=1(Abi + [πi + π0i(1− βi)]σi

√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(
1− D

P

)
− 1 + 2D

P

] }1/2

(116)

Φ(ki) = 1− hbi
D
Q

(πi + π0i(1− βi)) + (1− βi)
(117)

P =

{
2a1 −Qhv(m− 2)

2a2

}1/2

(118)

8.2.2 Solution algorithm

Step 1 Set m = 1 and for all buyers i = 1, 2, ..., n assign values of all parameters and perform

the following steps.

Step 2 For every combination of Li,r, r = 1, 2, ..., Ni, i = 1, 2, ..., n perform Step 2a−2e.

Step 2a Set kj1i = 0 for each buyer i.

Step 2b Substitute kj1i , (i=1,2,...,n) into (128) and evaluate Qj1.

Step 2c Utilize Qj1 to determine the value of Φ(kj2i ) for each i from (129).
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Step 2d Using the value of Φ(kj2i ), obtain the value of kj2i from normal table.

Step 2e Repeat 2b to 2d until no changes occur in the values of Qj and kji denote these values

by the point Qj∗ and kj∗i , respectively.

Step 3 Evaluate the value of P j∗ from (130) using the value of Qj∗.

Step 4 Denote the latest updated values of Qj, kji , and P j by Qj∗∗, kj∗∗i , and P j∗∗.

Step 5 Obtain JTEC(Qj∗∗, kj∗∗i , P j∗∗, Li,r,m) andMinj=1,2,...,Ni
JATC(Qj∗∗, kj∗∗i , P j∗∗, Li,r,m)

for all i.

Step 6 Set m = m+ 1.

If JATC(Q∗∗m , k
∗∗
im, P

∗∗
m , Li,m,m) ≤ JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, θ

∗∗
m−1, Lm−1,m − 1), repeat

Step 2 and Step 3. Otherwise go to Step 7.

Step 7 Set JATC(Q∗∗m , k
∗∗
m , S

∗∗
m , θ

∗∗
m , Lm,m) = JATC(Q∗∗m−1, k

∗∗
m−1, S

∗∗
m−1, θ

∗∗
m−1, Lm−1,m− 1).

Then, (Q∗∗, k∗∗, L∗∗, S∗∗, θ∗∗,m∗∗) is the optimal solution and the optimal reorder point

can be obtained from R∗∗ = DL∗∗ + k∗∗σ
√
L∗∗, where R∗∗ denotes the optimal solution

for R, the reorder point.

8.3 Numerical experiments

Following parameter values are used to interpret the model numerically. d1 = 200 units/week,

d2 = 300 units/week, d3 = 200 units/week, Av = $4000/setup, Ab1 = $100/setup, Ab2 =

$150/setup, Ab3 = $100/setup, hv = $10/unit/week, hb1 = $11/unit/week, hb2 = $11/unit/week,

hb3 = $12/unit/week, σ1 = 9, σ2 = 10, σ3 = 15, π01 = $150/unit, π02 = $140/unit,

π03 = $152/unit, π1 = $50/unit, π2 = $50/unit, π3 = $51/unit. Table 8.1 for lead time

data is given below.

From Table 8.2, 8.3, and 8.4, the optimal values of decision variables are obtained from

different backorder ratios. Table 8.2, 8.3, and 8.4 represent optimal results for β = 0.0, 0.5, and
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Table 8.1

Lead time data

Buyer i Lead time component Normal duration Minimum duration Unit crashing cost

(bi,r) (ai,r) (ci,r)

1 1 20 6 0.1

2 20 6 1.2

3 16 9 5.0

2 1 20 6 0.5

2 16 9 1.3

3 13 6 5.1

3 1 25 11 0.4

2 20 6 2.5

3 18 11 5.0

Table 8.2

Total optimal cost for βi = 0, i = 1, 2, 3

m L1 L2 L3 Q k1 k2 k3 p C(p) TEC

3 3 4 4 469.943 1.789 1.765 1.755 1328.543 28.339 30287.838

3 4 4 4 466.458 1.792 1.769 1.759 1329.199 28.338 30270.744

3 4 3 4 469.925 1.789 1.765 1.755 1328.547 28.339 30282.853

3 4 4 3 471.373 1.787 1.764 1.754 1328.274 28.339 30276.958

3 4 3 3 474.778 1.784 1.760 1.751 1327.633 28.340 30288.206

3 3 4 3 474.797 1.784 1.760 1.751 1327.630 28.340 30293.196

3 3 3 4 473.367 1.785 1.762 1.752 1327.899 28.340 30299.351

3 3 3 3 478.160 1.781 1.757 1.747 1326.996 28.341 30303.874
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Table 8.3

Total optimal cost for βi = 0.5, i = 1, 2, 3

m L1 L2 L3 Q k1 k2 k3 p C(p) TEC

3 3 4 4 471.905 1.561 1.541 1.525 1328.174 28.340 30153.094

3 4 4 4 468.487 1.565 1.544 1.529 1328.817 28.339 30131.424

3 4 3 4 471.879 1.561 1.541 1.525 1328.179 28.340 30148.556

3 4 4 3 473.274 1.560 1.539 1.524 1327.916 28.340 30146.095

3 4 3 3 476.604 1.556 1.536 1.520 1327.289 28.341 30162.393

3 3 4 3 476.631 1.556 1.536 1.520 1327.284 28.341 30166.934

3 3 3 4 475.255 1.558 1.537 1.522 1327.543 28.340 30169.646

3 3 3 3 479.920 1.553 1.532 1.517 1326.664 28.342 30182.676

Table 8.4

Total optimal cost for βi = 0.8, i = 1, 2, 3

m L1 L2 L3 Q k1 k2 k3 p C(p) TEC

3 3 4 4 474.268 1.322 1.308 1.283 1327.729 28.340 30016.004

3 4 4 4 470.930 1.326 1.312 1.287 1328.357 28.339 29989.695

3 4 3 4 474.234 1.322 1.308 1.283 1327.736 28.340 30011.853

3 4 4 3 475.563 1.320 1.306 1.281 1327.485 28.340 30012.957

3 4 3 3 478.804 1.317 1.302 1.277 1326.875 28.341 30034.312

3 3 4 3 478.840 1.317 1.302 1.277 1326.868 28.341 30038.465

3 3 3 4 477.529 1.318 1.304 1.279 1327.115 28.341 30037.601

3 3 3 3 482.040 1.313 1.299 1.273 1326.265 28.342 30059.281
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Table 8.5

Summarization of optimal values

β m L1 L2 L3 Q k1 k2 k3 p C(p) TEC

0.0 3 4 4 4 470.930 1.326 1.312 1.287 1328.357 28.339 29989.695

0.5 3 4 4 4 468.487 1.565 1.544 1.529 1328.817 28.339 30131.424

0.8 3 4 4 4 470.930 1.326 1.312 1.287 1328.357 28.339 29989.695

0.8, respectively. We obtain many solutions in each table for different lead time. Final optimal

decisions for optimal lead time are displayed by Table 8.5.

Therefore, we see that minimum cost is attend at 4 weeks of lead time for every buyer and

the optimal shipment is 3 for each of the three backorder ratio values.

8.3.1 Sensitivity analysis

We change some key parameters by −50%, −25%, +25%, and +50%. Each parameter

is changed one at a time keeping other parameters fixed. The effect of changes of the key

parameters are illustrated in Table 8.6.

Variations of key parameters Abi, hb1, Av, and hv are considered. For the sake of simplicity,

cost parameters of buyer 1 is taken under consideration. Observations made from sensitivity

analysis are described as follows:

• Vendor’s cost components are more sensitive than buyer’s cost components.

• Holding cost of buyer is more sensitive that ordering cost, which is true for all buyers.

• Vendor’s holding cost is also more sensitive than vendor’s setup cost, but the rate of sensitivity

is less than that of the buyer.
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Table 8.6

Sensitivity analysis for different key parameters

Parameters Changes(in %) TECN

−50% −0.41

−25% −0.22

Ab1 +25% +0.19

+50% +0.38

−50% −1.23

−25% −0.49

hb1 +25% +0.57

+50% +1.14

Parameters Changes(in %) TECN

−50% −5.01

−25% −2.65

Av +25% +2.47

+50% +4.75

−50% −5.81

−25% −3.00

hv +25% +2.86

+50% +5.70

8.4 Managerial insights

This chapter provides a two-echelon single-vendor multi-buyer supply chain model with vari-

able production rate. The managerial insights of this chapter are as follows:

• The managerial decisions are made under variable production rate. This assumption is more

realistic than a fixed production rate.

• Production cost is also considered as variable and a special type of cost function is assumed

to obtain more generalized decisions than fixed production cost.

• Manager can reduce lead time and enhance the service level by incurring a lead time crashing

cost.

8.5 Concluding remarks

This study proposed a single vendor and multiple buyers supply chain model. Variable lead

time was considered at the buyer’s end. The lead time demand was assumed to follow a normal

distribution. The vendor’s production rate was considered as variable rather than as a fixed
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entity. Moreover, the unit production cost was also considered as a variable (Khouja and

Mehrez, 1994) that was dependent on the production rate, and a special type of function was

considered to establish the relation between the production rate and the unit production cost.

At the end of the production, the finished goods were delivered to a number of buyers through

a multiple delivery policy.
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Chapter 9

Relation between quality of products and production-rate in a

single-vendor multi-retailer joint economic lot size model

with variable production cost
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9 Relation between quality of products and production-

rate in a single-vendor multi-retailer joint economic

lot size model with variable production cost

This chapter deals with a single-vendor multi-buyer supply chain model with imperfect quality

and variable production rate. The vendor supplies the order quantity of the buyer over multiple

shipments. The production rate of the vendor is considered as flexible because production rate

may change for various situations. The quality of products is dependent on the production

rate. Manufacturing quality deteriorates with an increasing rate of production. The relation

between process quality and production rate is established in this context. Moreover, the unit

production cost is also considered to be a function of the production rate. End products are

delivered to satisfy the demand of buyers over multiple time segments. The lead time is variable

and a lead time crashing cost is incorporated by buyers to reduce the lead time, whereas the

lead time demand is considered to be stochastic and to follow a normal distribution. The target

of this study is to examine how the flexibility of the production rate affects the entire supply

chain cost under a single-setup multi-delivery policy. A supply chain consists of many facili-

ties, which play very important role in establishing a perfect coordination among themselves in

order to satisfy the end customer’s demand. However, the situation, where parties concentrate

on reducing their own cost is not suitable for modern supply chain management. Instead of

having a single-sided optimal strategy, present-day manufacturers or vendors are interested for

building their own set of retail outlets. Thus, obtaining optimal decisions to minimize the entire

supply chain cost has recently been given a great deal of attention as opposed to minimizing

individual costs of each player (vendor, buyer, etc.) separately. Moreover, vendors receive more

profit if they deliver products to a large number buyers rather than to a single buyer.
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9.1 Literature review

Sarmah et al. (2008) introduced a single-manufacturer multi-buyer coordinated supply chain

policy with a trade-credit option. Jha and Shankar (2013) incorporated a service-level constraint

in a multi-buyer integrated production inventory model. Guan and Zhao (2011) developed a

multi-retailer inventory model with continuous review policy. The system optimizes the deci-

sions of pricing and inventory management with the aim of maximizing profit.

In the classical supply chain model, the rate of production is assumed to be constant. How-

ever, in many cases the machine production rate may easily change (Khouja and Mehrez, 1994).

Machine tool cost also increases with increasing production rate. According to the analysis of

Conard and McClamrock (1987), a 10% change in the processing rate results in a 50% change

in the machine tool cost. Moreover, as the production rate increases, the probability of failure

to the process may gradually increase, which causes the product quality to deteriorate at some

percentage. Thus, it is reasonable to assume the production rate as a decision variable rather

than a constant parameter. The unit production cost also depends on the production rate and

is treated as decision variable.

Porteus (1986) explained the gradual fall of the product quality with an increased amount

of production. The process approaches to the out-of-control state from the in-control state as

the number of produced units increases. Rosenblatt and Lee (1986) considered the elapsed time

until the production process reaches the out-of-control state to be an exponentially distributed

random variable.

9.2 Model formulation

This section consists of assumptions, formation of mathematical model with graphical repre-

sentation, solution methodology with algorithm.
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9.2.1 Assumptions

Following assumptions are considered to develop the model.

1. The model consists of a single-vendor and multi-buyer for single type of products.

2. To satisfy the demand of each buyer, the vendor supplies a total of Q items such that

Q =
∑n

i=1 qi.

3. When the i-th buyer orders the quantity qi, the vendor manufactures mQ items but the

shipment should be carried out m times with a quantity of Q such that qi = di
Q
D

, i.e.,

qi
di

= Q
D

.

4. Continuous review inventory policy is achieved by each buyer.

5. The production rate is a variable quantity which varies within the range Pmin (Pmin >

D =
∑n

i=1 di) and Pmax.

6. The unit production cost is dependent on the production rate P .

7. The quality of the product deteriorates with increasing production rate.

8. The elapsed time after the production system goes out-of-control is an exponentially

distributed random variable and the mean of the exponential distribution is a decreasing

function of the production rate (Khouja and Mehrez, 1994).

9. Shortages are allowed and are fully backordered.

10. For the i-th retailer, we assume Li,0 ≡
∑ni

j=1 bi,j. Li,r is the length of the lead time with

components 1, 2, ..., r crashed to their minimum duration. Thus, Li,r can be expressed as

Li,r = Li,0−
∑r

j=1(bi,j − ai,j), r = 1, 2, ..., n; and the lead time crashing cost/cycle Ci(Li)

is expressed as Ci(Li) = ci,r(Li,r−1 − Li) +
∑r−1

j=1 ci,j(bi,j − ai,j), L ∈ [Li,r, Li,r−1].

11. The lead time crashing cost belongs entirely to the buyer’s cost component.

12. The time horizon is infinite.
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Total expected cost for buyers

The expected cycle time for each buyer is qi
di

. Thus, the ordering cost for the i-th buyer is

Abidi
qi

. The i-th buyer places an order qi only when the level of inventory reaches to the reorder

point ri. The net inventory levels for buyer i are ri − diLi and qi + ri − diLi just before and

after an order quantity is received, respectively. Therefore, the approximate average inventory

for buyer i over this cycle is qi
2

+ ri− diLi. The reorder point for buyer i is ri = DiLi + kiσi
√
Li

Therefore, the average inventory for the i-th buyer becomes qi
2

+ kiσi
√
Li. The holding cost for

buyer i per unit time is hbi[
qi
2

+ri−diLi]. The shortage cost per unit for buyer i is πi
di
qi
E(Xi−ri)+

and the lead time crashing cost per unit for buyer i can be expressed as R(Li)
di
qi

.

Generally, the total expected cost for buyer i is

TECbi =ordering cost+holding cost+shortage cost+lead time crashing cost

Thus, TECbi can be written as

TECbi(qi, ki, Li) =
[Abidi
qi

+ hbi

{qi
2

+ kiσi
√
Li

}
+

πidi
qi

E(Xi − ri)+ +R(Li)
di
qi

]
. (119)

Xi is the lead time demand for buyer i having a normal distribution with diLi and σi
√
Li

as the mean and standard deviation, respectively. Shortages occur only when Xi > ri for

each i-th buyer. The expected shortage at cycle end for the i-th buyer is E(Xi − ri)
+ =∫∞

ri
(xi− ri)dF (x) = σi

√
Liψ(ki), where ψ(ki) = φ(ki)− ki[1−Φ(ki)], φ stands for the standard

normal probability density function, and Φ = stands for the cumulative distribution function

of the normal distribution.

According to assumption 3 and using E(Xi − ri)+ = σi
√
Liψ(ki), (119) becomes

TECbi(Q, ki, Li) =
[AbiD
Q

+ hbi

{
Q

2D
di + kiσi

√
Li

}
+ πiσi

√
Liψ(ki)

D

Q
+R(Li)

D

Q

]
(120)

163



Total expected cost for the vendor

The setup cost for the vendor per unit time is AvD
mQ

.

The average inventory of the vendor is[{
mQ

(
Q

P
+ (m− 1)

Q

D

)
− m2Q2

2P

}
−
{
Q2

D
(1 + 2 + ...+ (m− 1))

}]
D

mQ

=
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
(Figure7)

Therefore, the holding cost per unit time for the vendor is

hv
Q

2

[
m

(
1− D

P

)
− 1 +

2D

P

]
In order to establish a relation between the production rate and the process quality, we

assume f(P ) as an increasing function of the production rate P which defines the number of

failure of production process with an increased production rate. Accordingly, 1/f(P ) becomes

a decreasing function, which denotes the mean time to failure (Khouja and Mehrez, 1994).

Therefore, it can be implied from the above discussion that when the production rate is in-

creased, the mean time to failure decreases.

The number of defective units in a production cycle is given by

N =

0 if η ≥ t

αP (t− η(P )) if η ≤ t (Rosenblatt and Lee, 1986).

The expected units of defective items in a lot size Q is given by

E(N) = αP

[
Q

P
+

1

f(P )
e(−Qf(P )

P
) − 1

f(P )

]
.

For small f(P ), Maclaurin series is a valid approximation for e(−Qf(P )
P

), which yields

e(−Qf(P )
P

) = 1− Qf(P )

P
+

(Qf(P ))2

2P 2
.

From the above two equations, we obtain E(N) = αf(P )Q
2

2P
and thus, the expected rework

cost becomes D
Q
E(N) = RDαf(P ) Q

2P
.

The following observations are needed to obtain the unit production cost function.
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The labour and energy costs rise to a large value as the production rate increases. The

unit tool cost is a minimum at a particular production rate, after which the tool cost increases.

Therefore, a ‘U-shaped’ convex cost function can be inferred at this stage (Hax and Candea,

1984).

According to the above discussion, the expression of the expected total cost for the vendor

becomes

TECv(m,Q, P ) =
AvD

mQ
+
Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+RDαf(P )

Q

2P
+DC(P ). (121)

The objective of this article is to obtain centralized decisions for both the vendor and the

buyers to minimize the joint total supply chain cost. Therefore, the expected joint total cost

for both the vendor and buyers (JTEC) can be expressed as

JTEC(Q, ki, Li, P,m) =
n∑
i=1

[AbiD
Q

+ hbi

{
Q

2D
di + kiσi

√
Li

}
+

D

Q
πiσi

√
Liψ(ki) +R(Li)

D

Q

]
+

AvD

mQ
+
Q

2
hv

[
m

(
1− D

P

)
− 1 +

2D

P

]
+ RDαf(P )

Q

2P
+DC(P ). (122)

The necessary condition forQ, ki, Li, P , andm to be optimal is that the partial derivatives of

JTEC with respect to the above decision variables vanish separately, and the global minimum

of the objective cost function exists if the second order partial derivatives are all positive.

According to our assumption, m, the number of shipment, is a positive integer. Thus, it is not

reasonable to take the derivative of JTEC with respect to m. Besides this, the second order

partial derivative of JTEC with respect to Li is negative:

∂2JTEC(Q, ki, Li, P,m)

∂L2
= − D

4Q
πiσiψ(ki)L

−3/2
i − 1

4
hbikiσiL

−3/2
i < 0.

Therefore, for fixed Q, ki, P , and m, the function JTEC(Q, ki, Li, P,m) is concave in Li,

which yields the conclusion that the minimum value of JTEC(Q, ki, Li, P,m) is attained at an

endpoint of the interval [Li,j, Li,j−1] for fixed Q, ki, P , and m. On the other hand, the positive
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integer property of m resists to obtain the derivative of JTEC with respect to itself. Therefore,

for fixed Q, ki, P , and Li, there exists a positive integer m such that the following inequality

always holds true.

JTEC(Q, ki, Li, P,m− 1) ≥ JTEC(Q, ki, Li, P,m), (123)

JTEC(Q, ki, Li, P,m) ≤ JTEC(Q, ki, Li, P,m+ 1). (124)

Now, after obtaining the partial derivatives with respect to Q, ki, and P , we have

∂JTEC

∂Q
=

n∑
i=1

[ hbi
2D

di −
AbiD

Q2
− πiσi

√
Liψ(ki)D

Q2
−R(Li)

D

Q2

]
− AvD

mQ2
+
hv
2

[
m(1−D/P )− 1 + 2D/P

]
+

RDαf(P )

2P
, (125)

∂JTEC

∂ki
=

D

Q
πiσi

√
Li[Φ(ki)− 1] + hbiσi

√
Li, (126)

∂JTEC

∂P
= (m− 2)hv

QD

2P 2
+DC ′(P ) +

RαDQ

2P 2
(Pf ′(P )− f(P )). (127)

Satisfying the necessary condition for the optimality of JTEC, the following expressions

are obtained:

Q =

{
2D{Av/m+

∑n
i=1(Abi + πiσi

√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(
1− D

P

)
− 1 + 2D

P

]
+ RDαf(P )

P

}1/2

, (128)

Φ(ki) = 1− hbiQ

Dπi
, (129)

1

P 2
=

2hvDC(P )

2QD(2−m) + hvRαDQ(f(P )− Pf ′(P ))
. (130)

Here, we use a special type of unit production cost function as introduced by Khouja and

Mehrez (1994):

C(P ) =
(a1

P
+ a2P

)
, (131)
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Figure 17 Production rate versus mean time to failure

where a1 and a2 are positive real numbers which provides the best fit of the production cost

function (see Figure 17).

When the machines are inoperative i.e., the production process ceases, there is no chance

of any defective products to be created or the probability of the process going out-of-control is

zero. As the machines change into operation mode, chances of the arrival of defective goods

appear. We consider an increasing function f(P ) of production rate P such that the mean

time to failure 1
f(P )

becomes a decreasing function of P (See Figure 18). We introduce three

different cases with three different functions to define the mean time to failure.
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Figure 18 Production rate versus production cost

9.2.2 Special functions for mean time to failure

Case 1:
1

f(P )
=

1

b1P
(The quality function f(P ) is linear in P ), (132)

Case 2:
1

f(P )
=

1

b2P + c2P 2
(The quality function f(P ) is quadratic in P ), (133)

Case 3:
1

f(P )
=

1

b3P + c3P 2 + d3P 3
(The quality function f(P ) is cubic in P ). (134)

where b1, b2, c2, b3, c3 and d3 are non-negative real numbers that provide the best fit for the

function f(P ) as well as 1
f(P )

. Figure 18 separately describes the reduction of the mean time

of system failure with an increasing production rate for the above three cases. As we gradually

shift from Case 1 to Case 3, the decrement of the function 1
f(P )

becomes larger and larger.

The expressions for the total cost function and the decision variables as obtained from

(122), (128), and (130) for the three different cases are given. We denote Qp, k
p
i , and Pp for

Case p; p = 1, 2, and 3, denote the three cases described above, respectively.
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Case 1: f(P ) is linear in P

Q1 =

 2D{Av/m+
∑n

i=1(Abi + πiσi
√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(

1− D
P1

)
− 1 + 2D

P1

]
+ RDαb1P1

P1

1/2

, (135)

Φ(k1
i ) = 1− hbiQ1

Dπi
, (136)

P1 =

[
2a1D −Q1hvD(m− 2)

2Da2

]1/2

, (137)

the joint total is given by

JTEC1(Q1, ki, Li, P1,m) =
n∑
i=1

[AbiD
Q1

+ hbi

{
Q1

2D
di + kiσi

√
Li

}
+

D

Q1

πiσi
√
Liψ(ki) +R(Li)

D

Q1

]
+

AvD

mQ1

+
Q1

2
hv

[
m

(
1− D

P1

)
− 1 +

2D

P1

]
+ RDαb1P1

Q1

2P1

+D

(
a1

P1

+ a2P1

)
. (138)

Case 2: f(P ) is quadratic in P

Q2 =

 2D{Av/m+
∑n

i=1(Abi + πiσi
√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(

1− D
P2

)
− 1 + 2D

P2

]
+

RDα(b2P2+c2P 2
2 )

P2

1/2

, (139)

Φ(k2
i ) = 1− hbiQ2

Dπi
, (140)

P2 =

[
2a1D −Q2hvD(m− 2)

2Da2 +RαDQ2b

]1/2

, (141)

the joint total is given by

JTEC2(Q2, ki, Li, P2,m) =
n∑
i=1

[AbiD
Q2

+ hbi

{
Q2

2D
di + kiσi

√
Li

}
+

D

Q2

πiσi
√
Liψ(ki) +R(Li)

D

Q2

]
+

AvD

mQ2

+
Q2

2
hv

[
m

(
1− D

P2

)
− 1 +

2D

P2

]
+ RDα(b2P2 + c2P

2
2 )
Q2

2P2

+D

(
a1

P2

+ a2P2

)
. (142)
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Case 3: f(P ) is cubic in P

Q3 =

 2D{Av/m+
∑n

i=1(Abi + πiσi
√
Liψ(ki) +R(Li))}∑n

i=1
hbi
D
di + hv

[
m
(

1− D
P3

)
− 1 + 2D

P3

]
+

RDα(b3P3+c3P 2
3 +d3P 3

3 )

P3

1/2

, (143)

Φ(k3
i ) = 1− hbiQ3

Dπi
, (144)

P3 =

[
2Da1 −Q3hvD(m− 2)

2(d3RαDQ3P3 +Da2) +RαDQ3c2

]1/2

, (145)

the joint total is given by

JTEC3(Q3, ki, Li, P3,m) =
n∑
i=1

[AbiD
Q3

+ hbi

{
Q3

2D
di + kiσi

√
Li

}
+

D

Q3

πiσi
√
Liψ(ki) +R(Li)

D

Q3

]
+

AvD

mQ3

+
Q3

2
hv

[
m

(
1− D

P3

)
− 1 +

2D

P3

]
+ RDα(b3P3 + c3P

2
3 + d3P

3
3 )
Q3

2P3

+D

(
a1

P3

+ a2P3

)
. (146)

Now, a suitable procedure is established to optimize the above models. The explicit form

of ki is difficult to obtain from (129). Moreover, (145) shows that the function contains the

variable P3 in both the right-hand and left-hand side and so an explicit expression of P3 cannot

be obtained. In these circumstances, a closed form solution is very difficult to obtain. We

introduce an efficient algorithm to obtain the optimal solutions of the decision variables as well

as the expected joint total cost function. The following algorithm elaborately describes the

procedure for obtaining the optimal solution of the model for all cases.

9.2.3 Solution algorithm

Step 1 Set m = 1 and for all buyers i = 1, 2, ..., n; assign values of all parameters and perform

the following steps.
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Step 2 For every combination of Li,r, r = 1, 2, ..., Ni, i = 1, 2, ..., n perform Steps 3a−3e.

Step 2a Set kp1ij = 0 for each buyer i(p = 1, 2, 3 represents cases 1,2, and 3, respectively).

Step 2b Substitute kp1ij , (i=1,2,...,n) into (135), (139) and (143) to evaluate Qj1
1 , Qj1

2 , and Qj1
3 .

Step 2c Utilize Qj1
p to determine values of Φ(kp2ij ) for each i from (136), (140), and (144).

Step 2d Using values of Φ(kp2ij ), obtain values of kp2ij from the normal table for each i and each

p.

Step 2e Repeat steps 2b to 2d until no changes occur in the values of Qj
p and kpij and denote

these values by Qj∗
p and kjp∗i , respectively.

Step 3 Evaluate P j∗
p from (137), (141), and (145) using the Qj∗

p for each p.

Step 4 Denote the latest updated values of Qj
p, k

pj
i , and P j

p by Qj∗∗
p , kpj∗∗i , and P j∗∗

p for

p = 1, 2, 3.

Step 5 Obtain JTEC(Qj∗∗
p , kpj∗∗i , P j∗∗

p , Lpi,r,mp) and Minj=1,2,...,Ni
JATC(Qj∗∗

p , kpj∗∗i , P j∗∗
p , Lpi,r,mp)

for all i and p = 1, 2, 3.

Step 6 Set mp = mp + 1.

If JATC(Q∗∗p,mp
, kp∗∗i,mp

, P ∗∗p,mp
, Lpi,mp

,mp) ≤ JATC(Q∗∗p,mp−1, k
p∗∗
mp−1, P

∗∗
p,mp−1, Li,mp−1,mp−1),

repeat Steps 2 to 6. Otherwise, go to Step 7.

Step 7 Set JATC(Q∗∗p,mp
, kp∗∗i,mp

, P ∗∗p,mp
, Lpi,mp

,mp) = JATC(Q∗∗p,mp−1, k
p∗∗
mp−1, P

∗∗
p,mp−1, L

p
i,m−1,mp−

1).

Then, (Q∗∗p , k
p∗∗
i , P ∗∗p , L

p∗∗
i ,m∗∗p ) is the optimal solution and the optimal reorder point can

be obtained from Rp∗∗
i = diL

p∗∗
i + kp∗∗i σ

√
Lp∗∗, where Rp∗∗

i denotes the optimal reorder

point for buyer i and case p, p = 1, 2, 3.
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9.3 Numerical experiments

Example 1

Following input values are used to illustrate the model numerically:

d1 = 200 units/year, d2 = 100 units/year, d3 = 100 units/year, Av = $4000/setup, Ab1 =

$100/setup, Ab2 = $150/setup, Ab3 = $100/setup, hv = $10/unit/week, hb1 = $11/unit/week,

hb2 = $11/unit/week, hb3 = $12/unit/week, σ1 = 9, σ2 = 10, σ3 = 15, π1 = $50/unit,

π2 = $50/unit, π3 = $51/unit, a1 = 35000, and a2 = 0.1. Three quality functions for three

cases described above are as follows:

Case 1
1

f(P )
=

1

10−4P
, (147)

Case 2
1

f(P )
=

1

10−4P + 10−6P 2
, (148)

Case 3
1

f(P )
=

1

10−4P + 10−6P 2 + 10−9P 3
. (149)

The lead time data is given in Table 9.1.

Table 9.1

Lead time data

Buyer i Lead time component Normal duration Minimum duration Unit crashing cost

(bi,r) (ai,r) (ci,r)

1 1 20 6 0.1

2 20 6 1.2

3 16 9 5.0

2 1 20 6 0.5

2 16 9 1.3

3 13 6 5.1

3 1 25 11 0.4

2 20 6 2.5

3 18 11 5.0
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Using the above data, we obtain optimal values of the decision variables at which the joint

total supply chain cost is minimized. Results are shown in Table 9.2.

Table 9.2

Optimal values of decision variables

m L1 L2 L3 k1 k2 k3 C(P ) Q P JTEC

Case 1 7 4 4 4 1.3158 1.3158 1.2778 118.57 171.10 554.27 54579.68

Case 2 8 4 4 4 1.3845 1.3845 1.3477 118.66 151.08 548.26 54896.47

Case 3 9 4 4 4 1.4289 1.4289 1.3928 118.78 139.11 541.89 55052.57

Table 9.3

Optimal values of reorder points and mean time to failure

r1 r2 r3 1/f(P )

Case 1 39 34 46 18

Case 2 40 35 48 3

Case 3 41 36 49 2

Example 2

This example illustrates a case, where the mean time to failure is independent of P . We use

the same data as it is used in Example 1, except for 1
f(P )

. As the mean time until the machine

shifts to the out-of-control mode is independent of the production rate, the expression 1
f(P )

can

be considered as 1
f(P )

= 1
β
, where β is a constant. Conversely, we can say that the quality of

the product deteriorates at a constant rate β, which is uninfluenced by the rate of production.

The optimal results are shown in Table 9.4.

9.3.1 Numerical discussion

Table 9.2 shows optimal results of decision variables for the three cases separately. The lead

times, at which the total supply chain cost is at a minimum, is four weeks for all buyers for
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Figure 19 Order quantity versus production rate versus expected joint total cost

Table 9.4

Optimal values of decision variables for independent mean time to failure

β m L1 L2 L3 k1 k2 k3 C(P ) Q P JTEC

0.25 8 4 4 4 1.3781 1.3781 1.3411 118.56 152.87 554.59 54788.14

0.50 8 4 4 4 1.4021 1.4021 1.3655 118.52 146.27 559.20 55029.71

0.75 9 4 4 4 1.4552 1.4552 1.4195 118.51 132.37 559.11 55251.83

0.10 9 4 4 4 1.4735 1.4735 1.4382 118.46 127.81 562.82 55460.46
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each case. Table 9.3 shows optimal reorder points of buyers and the actual mean time to failure

for all cases. The expected joint total cost for Cases 1,2, and 3 are $54579.68, $54896.47, and

$55052.57, respectively. An increased total cost can be observed for Case 2 compared to Case

1 and the similar phenomenon happens for Case 3 compared to Case 2. Whereas, the situation

is reversed for the mean time to system failure. This phenomenon is quite obvious because a

larger time after when the production process shifts to the out-of-control stage implies a lower

chance of defective items to being produced, which reduces the total supply chain cost. Now, if

we look at the quality function (f(P )) as demonstrated in three different cases, we can observe

that small changes in the production rate may result in larger deviations in the quality function

of Case 3 than those of Case 1 and Case 2. Moreover, Cases 2 and 3 can be reduced to Case 1

by assigning c2, c3, and d3 to be zero. Similarly, Case 3 coincides with Case 2 if d3 vanishes.

Thus, if same values of the coefficients of the linear and quadratic terms are used in quality

functions for all cases, we observe the total cost from Case 1 to Case 3 increases.

Table 9.4 illustrates the case of independency of the total cost with the production rate.

The constant β is varied as 0.25, 0.50, 0.75, and 1.00, which implies that the mean time to

failure 1
β

gives values as 4 weeks, 2 weeks, 1.33 weeks, and 1 week, respectively. We observe

an increased total cost with increasing β. This is because when β increases, the mean time

to failure decreases. As a result chances of defective goods to be produced by the machine

becomes large, resulting an increment of the total cost.

9.3.2 Sensitivity analysis

In this section, the deviation of the expected joint total cost with the change of all cost

parameters present in the supply chain system is studied. Cost parameters are gradually

increased from 10% up to 50% from their actual values as used in above examples, with a step

length of 10%. Changes in the total cost with varying parameters are presented in Figure 20

to Figure 24.

The variation of total cost with vendor’s cost components (setup cost, holding cost, and
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Figure 20 Setup cost versus expected joint total cost

Figure 21 Vendor’s holding cost versus expected joint total cost
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Figure 22 Ordering cost versus joint total expected cost

Figure 23 Buyer’s holding cost versus expected joint total cost
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Figure 24 Rework cost versus expected joint total cost

rework cost) are represented in Figure 20, 21, and 24. Similarly, the buyer’s cost components

(ordering and holding cost) are illustrated in Figure 22 and 23. Observations made from these

figures are described as follows.

The rate of change in total cost is linear with respect to all cost parameters of the vendors

used to develop this model. The total cost is more sensitive for holding cost than that of the

setup cost. The rate of change of JTEC with respect to the setup and holding costs is the

same for all of the cases. Therefore, a set of three parallel straight lines can be observed for

Cases 1, 2, and 3 in Figure 20 and 21, separately. However, the deviation rate of the total cost

for the three different cases is different regarding the rework cost. From Figure 24, we observe

that JTEC for Cases 2 and 3 are more sensitive than Case 1. On the other hand, figure 22 and

23 demonstrate the changes in the total cost with increasing ordering and holding cost of the

buyers, respectively. As, the three buyers are used to obtain the optimal decisions of the model,

we increase the cost components of the three buyers simultaneously, which means Figure 22

denotes the change in JTEC with the percentage increase in ordering costs for three buyers at

a time. A similar phenomenon is shown in Figure 23 for the percentage increase in holding cost.
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Again, we observe a linear rate of change in JTEC for both the ordering and holding costs at

the buyer’s end. The total cost is more sensitive towards the holding cost than the ordering cost.

9.4 Managerial insights

A relation production rate and product quality is established under single-vendor and multi-

buyer supply chain model model. The managerial insights of this chapter are stated as follows:

• A significant managerial insight lies behind the effect of increasing production rate on quality

of product. An increasing rate of production can damage the product quality which results a

hike in total supply chain cost.

• Three different types of quality function is considered such that manager can take necessary

actions to restrict the quality deterioration under different scenario.

• Optimal decisions is made by assuming variable production cost for more realistic solution.

9.5 Concluding remarks

This research proposed a supply chain model with a single-vendor and multi-buyer. The lead

time was variable and the lead time demand was considered as stochastic following a normal

distribution. The vendor’s production rate was considered as variable rather than as a fixed

entity. The relation between the production rate and the mean time to failure of the produc-

tion process was studied. In this context, three cases using three different types of functions

containing the relation between the production rate and mean time to machine failure were

established. The effects of mean time to failure for the three cases stated above on the en-

tire supply chain cost was examined, which provides a tremendous managerial insight for the

industry. Again, the model was also studied when the mean time to failure was independent

of the production rate. Moreover, the unit production cost was also considered as a variable

that was dependent on the production rate, and a special type of function was considered to

establish the relation between the production rate and the unit production cost (Khouja and
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Mehrez ,1994). At the end of the production, the finished goods were delivered to a number of

buyers through a multiple delivery policy.
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Chapter 10

A study on three different dimensional

facility location problems
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10 A study on three different dimensional facility loca-

tion problems

In supply chain strategy, designing a network is one of the most important part. This model

deals with various dimensional facility location models. Initially, this study begins with two

echelon facility location model of dimension two. Then, it is extended to three dimensional

model by adding commodity type and then, different types of transportation modes are added

to make it four dimensional model. Delivery lead time and outside suppliers are assumed to

meet the retailer’s demand too. Some lemmas are constructed to compare the optimal solution

for each of the problem. The procedure of reducing the total cost of the supply chain network by

applying a small change in constraint set is studied. This is described by another lemma. Some

numerical examples are allowed to illustrate the models. The meaning of dimension of a facility

location model is discussed. Two echelon supply chain model has been developed in this chapter.

In first step, commodities are transported between manufacturing plants and warehouses. In

the second step, same for warehouses and retailers. But, no item or commodity type or type

of transportation mode has been considered in problem P1. Thus, only commodities of single

product type along with single type of transportation mode have been used. Hence, the costs

of transportation and continuous decision variables can be represented by a two dimensional

array which makes the continuous decision variables, transportation costs as well as the entire

problem as dimension two. But, one thing is to be remembered that all variables, costs and

demands, do not lie in this category because capacities of plants or warehouses, inventory costs

are fixed. They do not depend on product type, type of transportation mode or locations

of retailers. Therefore, they always posses dimension one. Same situation happens with the

binary variables too, as they only confirm that a manufacturing plant or a warehouse is opened

or not at a particular site. Demand of the retailers depends on retailer’s locations and product

types. But since, in two dimensional problem, no product types have been assumed, so the

demand becomes dimension one. Therefore, dimension two means, the highest dimension that

the problem preserves. In the similar way, from two dimension to three dimension is extended
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by adding type of products. Problem P2 represents three dimensional model. Problem P3 is

of dimension four where the type of transportation mode is set to extend the dimension of the

model. One important thing is to be noted that two types of dimension is used to extend the

problem P1. The first one is product type which is dependant on demands of the retailer. The

second one is transportation mode which no longer depends on the demand. The aim of this

study is to compare these three models to examine how they differ. Two lemmas have been

described to compare them. Then, a small change has been applied on a particular constraint

set and the difference between the previous and new values of the objective functions of the

described models have been studied. Another lemma is described for this too.

10.1 Literature review

The facility location problem plays an important role in supply chain strategy. It has been

studied for a long time ago. The first research work was done by Weber (1909) in his industrial

location theory. It was extended by Hakimi (1964). The concept of supply chain management

(SCM) was established by Weber and Oliver (1982). Since 1970, the global competition level

among various companies throughout the world increased by many folds (for instance Erengüc

et al., 1999). SCM was introduced independent of OR (Operations Research). Then, it was

gradually appeared to be the combination of OR and SCM. In the same way, facility location

problem also entered into SCM after its independent appearance. Facility location models are

used to design various distribution networks along with facilities which have a great importance

in strategic supply chain. Chopra et al. (2006) showed an excel based solution of facility location

model. According to ReVelle et al. (2008), future studies led to different location models such

as analytic model, continuous model, discrete location model and network model. Sana (2012)

introduced an inventory model in supply chain environment. Teng et al. (2012) developed a

supply chain model where the optimal economic order quantity for buyer-distributor-vendor

B. Sarkar, A. Majumder, A study on three different dimensional facility location problems,

Economic Modelling. 2013, 30, 879-887.
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was derived without derivative. Sarkar (2012a) considered a two-echelon supply chain model

with probabilistic deterioration.

This model deals with discrete location policy as it is more convenient for designing distri-

bution networks. Melo et al. (2009) mentioned, in his review article that, six different groups

of discrete facility location problem entitled as median problems, center problems, covering

problems, uncapacitated facility location problems (UFLP), capacitated facility location prob-

lems (CFLP) and supply chain network design (SCND) problems. The first three problems

were well discussed in Owen and Daskin (1998)’s study. Further extension of the above first

five groups involves multi products, multi echelon networks, stochastic or dynamic costs, de-

mands etc. in a facility location model. The combination of these extensions of those five

models formed the SCND group. The two-echelon, multi-commodity, capacitated facility lo-

cation problem was introduced by Pirkul and Jayaraman (1998), aiming to locate different

facilities in a supply chain so that the total network cost was minimized. This model was again

extended by them by assuming raw material vendors for supplying goods to plants. It was a

mixed integer programming problem and also a lagrangian relaxation based heuristic procedure

was proposed to solve this model. A supply chain model was considered by Wu et al. (2006)

with facility setup cost function. The aim of that model was to determine the location along

with number of facilities. Two-echelon supply chain network was introduced by Amiri (2006).

That model was based on heuristic approach along with lagrangian relaxation. He assumed

multi capacity level of each facility apart from the single capacity level used in the previous

studies. A multi-stage multi-customer supply chain with optimizing inventory decision was

introduced by Cárdenas-Barrón (2007). Hinojosa et al. (2008) studied a dynamic supply chain

with inventory. A simple derivation for optimal manufacturing batch size with rework was

developed by Cárdenas-Barrón (2008). An economic production quantity model with inflation

in the imperfect production was found out by Sarkar and Moon (2011). Sarkar et al. (2011)

considered an economic manufacturing quantity model for imperfect production and inflation

and time varying demand. Cárdenas-Barrón (2011) studied the vendor-buyer integrated inven-

tory system with arithmetic and geometric inequality. Chen et al. (2011) developed a joint
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inventory location problem. They considered the risk of probabilistic facility disruption. Teng

et al. (2011) did a simple derivation for an economic lot size in an integrated vendor-buyer

system. Cárdenas-Barrón et al. (2012) developed a manufacturing inventory model in a supply

chain model with three layers. There was an improved algorithm to show the optimal solution

of the model. Roy et al. (2012) obtained optimal replenishment order in a three layer supply

chain with uncertain demand. Pal et al. (2012) assumed a multi item economic order quantity

model where the demand rate decreases quadratically with increasing sales price and increases

exponentially increasing level of price breaks. Some inventory models were developed which

deal with variable demand, imperfect production, delay in payments and variable deteriora-

tion rate. The reliability in an imperfect production process was also included (for instances

Sarkar, 2012b; Sarkar 2012c; Sarkar 2012d). An alternative heuristic algorithm to solve a ven-

dor managed inventory system was proposed by Cárdenas-Barrón et al. (2012). They used

multi-product and multi-constraint in that model. Pal et al. (2012) considered a multi-echelon

supply chain for reworkable items in multiple markets with supply disruption. Farahani et al.

(2012), in their review article, studied the covering problems in facility location model. Kucuk-

deniz et al. (2012) assumed the integrated use of fuzzy for convex programming in capacitated

multi-facility location model. Sadjady and Davoudpour (2012) discussed two-echelon multi-

commodity supply chain network design with mode selection. Also, a Lagrangian relaxation

based heuristic solution procedure was implemented by them. The solving procedures are used

to solve the facility location problem as branch and bound algorithm, plant growth simulation

algorithm, combination of lagrangian-heuristic and ant colony algorithm (for instances Chen

and Ting, 2008; Tong and Zhong-tuo, 2008, Dupont, 2008).

10.2 Model formulation

The description of mixed integer linear programming (MILP) model with some lemmas are

illustrated.

185



10.2.1 Assumptions

Some assumptions are considered to develop this model.

1. The model deals with two-echelon supply chain network.

2. All plants and warehouses have with fixed capacities.

3. Delivery lead time is considered here.

4. The demand of each retailer is satisfied.

5. Outsider suppliers are considered to fulfill the demands of the retailers too.

6. An annual fixed cost is needed for each warehouse and plant to be opened.

7. Plant and warehouse at each site have a fixed inventory holding.

10.2.2 Problem P1

Here, a capacitated facility location problem in dimension two is assumed. The dimensions

are considered as two locations in between which the commodity are to be shifted. This model

deals with two-echelon supply chain. i.e., the commodities are to be delivered from plants to

warehouses and from warehouses to retailers.

Objective function

Minf =
∑
i∈I

∑
j∈J

TCijxijDi +
∑
k∈K

∑
j∈J

PTCjkyjkWCj

+
∑
i∈I

OSCiDisi +
∑
j∈J

ICjIj +
∑
k∈K

JCkJk +
∑
j∈J

TCWjzj

+
∑
k∈K

TCPkck +
∑
i∈I

∑
j∈J

MDiTWRijxij +
∑
j∈J

∑
k∈K

MWCjTPRjkyjk
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subject to the constraints ∑
j∈J

xij ≥ 1 (150)

si ≥ 1 (151)∑
k∈K

yjk ≥ 1 (152)∑
i∈I

Dixij + Ij ≤ WCjzj (153)∑
j∈J

WCjyjk + Jk ≤ PCkck (154)

zj, ck ∈ {0, 1}∀j ∈ J, k ∈ K (155)

0 ≤ xij, yjk, si ≤ 1 (156)

10.2.3 Problem P2

Now, product type is added as another new dimension.

Objective function

Minf =
∑
i∈I

∑
j∈J

∑
p∈P

TCijpxijpDip +
∑
k∈K

∑
j∈J

∑
p∈P

PTCjkpyjkpWCj

+
∑
i∈I

∑
p∈P

OSCipDipsip +
∑
j∈J

∑
p∈P

ICjpIjp +
∑
k∈K

∑
p∈P

JCkpJkp +
∑
j∈J

TCWjzj

+
∑
k∈K

TCPkck +
∑
i∈I

∑
j∈J

∑
p∈P

MpDipTWRijpxijp +
∑
j∈J

∑
k∈K

∑
p∈P

MpWCjTPRjkpyjkp
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subject to the constraints ∑
j∈J

xijp ≥ 1 (157)

sip ≥ 1 (158)∑
k∈K

yjkp ≥ 1 (159)∑
i∈I

∑
p∈P

Dipxijp +
∑
p

Ijp ≤ WCjzj (160)∑
j∈J

∑
p∈P

WCjyjkp +
∑
p

Jkp ≤ PCkck (161)

zj, ck ∈ {0, 1}∀j ∈ J, k ∈ K (162)

0 ≤ xijp, yjkp, sip ≤ 1 (163)

10.2.4 Problem P3

Again, another dimension is added here. Now, the type of transportation mode is set as new

additional dimension.

Objective function

Minf =
∑
t∈T

∑
i∈I

∑
j∈J

∑
p∈P

TCt
ijpx

t
ijpDip +

∑
t∈T

∑
k∈K

∑
j∈J

∑
p∈P

PTCt
jkpy

t
jkpWCj

+
∑
i∈I

∑
p∈P

∑
t∈T

OSCt
ipDips

t
ip +

∑
j∈J

∑
p∈P

ICjpIjp +
∑
k∈K

∑
p∈P

JCkpJkp

+
∑
j∈J

TCWjzj +
∑
k∈K

TCPkck +
∑
t∈T

∑
i∈I

∑
j∈J

∑
p∈P

MpDipTWRt
ijpx

t
ijp

+
∑
t∈T

∑
j∈J

∑
k∈K

∑
p∈P

MpWCjTPR
t
jkpy

t
jkp
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subject to the constraints ∑
t∈T

∑
j∈J

xtijp ≥ 1 (164)∑
t∈T

stip ≥ 1 (165)∑
t∈T

∑
k∈K

ytjkp ≥ 1 (166)∑
t∈T

∑
i∈I

∑
p∈P

Dipx
t
ijp +

∑
p

Ijp ≤ WCjzj (167)∑
t∈T

∑
j∈J

∑
p∈P

WCjy
t
jkp +

∑
p

Jkp ≤ PCkck (168)

zj, ck ∈ {0, 1}∀j ∈ J, k ∈ K (169)

0 ≤ xtijp, y
t
jkp, s

t
ip ≤ 1 (170)

Now, we discuss about the objective functions of the above three problems. The objective

functions of problem P1, P2, and P3 minimize the total cost of the supply chain network.

The first term represents variable cost of transportation for the fulfilment of retailer’s demand.

The second term gives the variable manufacturing and transportation cost for the goods to be

produced as well as transported from plants to warehouses. The third term shows the variable

transportation cost for shifting of product from outside suppliers to retailers. The forth and

fifth terms indicate the variable inventory cost for holding of any item in the warehouses and

plants, respectively. The sixth and seventh terms represent the fixed annual cost for opening

and maintaining the warehouses and plants, respectively. The last two terms show the variable

lead time cost for the transportation of goods between warehouses to retailers and plants to

warehouses, respectively.

Now, we discuss about the constraint sets contained by the above stated three problems.

Constraint set (150) states that all demands of each retailer has to be met. In the same way,

constraint sets (157) and (164) are same as (150) but for (157), demands are met for each prod-

uct type also, and (164) is quite identical to (157), the summation varies over j ∈ J and the type

transportation mode t ∈ T . Thus, these constraint sets satisfy assumption (153). Constraint

sets (151), (158) and (165) fulfill the criteria of assumption (154) i.e., demand of each retailer is
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to be fulfilled by outside suppliers. Constraint sets (152), (159), and (166) are exactly same as

the constraint sets (150), (157), and (164) respectively which state that atleast one plant must

be open to supply products to the warehouses. Constraint sets (153), (160), and (167) indicate

that demands of the retailers and the inventory holding of each warehouse must not exceed

the capacity level of that warehouse. Constraint sets (154), (161), and (168) are identical to

constraint sets (153), (160), and (167). The only difference is that these are for each plants i.e.,

the warehouse capacity and inventory holding of each plant can not exceed the limit of capacity

level of that plant. Finally, constraint sets (155), (162), and (169) indicate the binary property

of decision variables. Constraint sets (156), (163), and (170) are the non-negativity constraints.

10.2.5 Comparison of Problem P1 and Problem P2

We construct a lemma to compare the problems.

Lemma 1

If the commodity type is added to extend the dimension of problem P1, forming problem

P2, and if all the parameters of P1 (costs, demands of the retailers, capacities of plants and

warehouses, inventory holding) and their values are unchanged, then, the optimal cost of P2

exceeds the optimal cost of P1.

Proof

Let only one product p1 be used to define the problem P1. If we consider P 1 as the set of

product type for problem P1, then,

P 1 = {p1}.

Similarly, if P 2 be the set of all products of P2, then,

P 2 = {p1, p2, ...pn} = {p1} ∪ {p2, p3, ...pn}.

This is because, all the parameters and their values corresponding to the product p1 of problem

P1 are unchanged. Since, the dimension is increased, thus, we add the products p2, p3, ...pn to

problem P2 other than p1 to extend the dimension.
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Thus, the objective function of P1 can be written as,

F = MinfP1 =
∑
i∈I

∑
j∈J

TCijp1xijp1Dip1 +
∑
k∈K

∑
j∈J

PTCjkp1yjkp1WCj

+
∑
i∈I

OSCip1Dip1sip1 +
∑
j∈J

ICjp1Ijp1 +
∑
k∈K

JCkp1Jkp1 +
∑
j∈J

TCWjzj

+
∑
k∈K

TCPkck +
∑
i∈I

∑
j∈J

Mp1Dip1TWRijp1xijp1

+
∑
j∈J

∑
k∈K

Mp1WCjTPRjkp1yjkp1

The objective function of P2 can be written as,

G = MinfP2 = F +Q

where,

Q =
∑
i∈I

∑
j∈J

∑
pr∈P 2

TCijprxijprDipr

+
∑
k∈K

∑
j∈J

∑
pr∈P 2

PTCjkpryjkprWCj +
∑
i∈I

∑
pr∈P 2

OSCiprDiprsipr

+
∑
j∈J

∑
pr∈P 2

ICjprIjpr

+
∑
k∈K

∑
pr∈P 2

JCkprJkpr +
∑
i∈I

∑
j∈J

∑
pr∈P 2

MprDiprTWRijprxijpr

+
∑
j∈J

∑
k∈K

∑
pr∈P 2

MprWCjTPRjkpryjkpr

for r = 2, 3, ..., n.

The constraint set (150), (151), and (152) of problem P1 become∑
j∈J

xijp1 ≥ 1 (171)

sip1 ≥ 1 (172)∑
k∈K

yjkp1 ≥ 1 (173)
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Again, the set of constraints (157), (158), and (159) of problem P2 transform into∑
j∈J

xijp1 ≥ 1 (174)∑
j∈J

xijpr ≥ 1 (175)

sip1 ≥ 1 (176)

sipr ≥ 1 (177)∑
k∈K

yjkp1 ≥ 1 (178)∑
k∈K

yjkpr ≥ 1 (179)

for r = 2, 3, ..., n.

Clearly, the constraints (171), (172), and (173) are identical to (174), (176), and (178).

The constraint sets (175), (177), and (179) are added for problem P2. As, all demands are

to be fulfilled for each product for each retailer, hence, at least one of xijpr > 0 such that

0 < xijpr ≤ 1, for r = 1, 2, ..., n.

In the same way, from (172), (173), and from (176) to (179), we can say that at least one

of sipr > 0 such that 0 < sipr ≤ 1 and that of yjkpr also for r = 1, 2, ...n.

Thus, we can easily say that, F > 0 and Q > 0 and

G = F +Q > F .

Therefore, G > F .

10.2.6 Comparison of Problem P2 and Problem P3

We construct another lemma to compare the problems.

Lemma 2

If the type of transportation mode is considered to extend the dimension of problem P2 to

form a new problem P3, and if all the parameters of P2 and their values are unchanged, then,
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the value of the objective function of the present problem P3 is less than or equal to problem P2.

Proof

As, problem P2 contains no transportation mode as its dimension, thus we can consider

only one transportation mode t1 to transport goods from one node to another.

If T 1 is the set of all transportation mode for P2, then, T 1 = {t1}. Let T 2 be the set of all

transportation mode for P3. As, mode of transportation is added to P3 to make this problem

dimension four, we consider ,

T 2 = {t1, t2, ..., tn} i.e., T 2 = {t1} ∪ {t2, t3, ..., tn} = T 1 ∪ {t2, t3, ..., tn}.

The objective function of P2 can be written as,

F1 = MinfP2 =
∑
i∈I

∑
j∈J

∑
p∈P

TCt1
ijpx

t1
ijpDip +

∑
k∈K

∑
j∈J

∑
p∈P

PTCt1
jkpy

t1
jkpWCj

+
∑
i∈I

∑
p∈P

OSCt1
ipDips

t1
ip +

∑
j∈J

∑
p∈P

ICjpIjp +
∑
k∈K

∑
p∈P

JCkpJkp +
∑
j∈J

TCWjzj

+
∑
k∈K

TCPkck +
∑
i∈I

∑
j∈J

∑
p∈P

MpDipTWRt1
ijpx

t1
ijp

+
∑
j∈J

∑
k∈K

∑
p∈P

MpWCjTPR
t1
jkpy

t1
jkp

The objective function of P3 can be written as,

Minf = F1 +
∑
t∈T 2

∑
i∈I

∑
j∈J

∑
p∈P

TCtr
ijpx

tr
ijpDip +

∑
t∈T 2

∑
k∈K

∑
j∈J

∑
p∈P

PTCt2
jkpy

tr
jkpWCj

+
∑
i∈I

∑
p∈P

∑
t∈T 2

OSCtr
ipDips

tr
ip +

∑
t∈T 2

∑
i∈I

∑
j∈J

∑
p∈P

MpDipTWRtr
ijpx

tr
ijp

+
∑
t∈T 2

∑
j∈J

∑
k∈K

∑
p∈P

MpWCjTPR
tr
jkpy

tr
jkp

Constraint sets (157), (158), and (159) becomes∑
j∈J

xt1ijp ≥ 1 (180)

st1ip ≥ 1 (181)∑
k∈K

yt1jkp ≥ 1 (182)
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Constraint sets (164), (165), and (166) becomes∑
j∈J

xt1ijp +
∑
t∈T 2

∑
j∈J

xtrijp ≥ 1 (183)

st1ip +
∑
t∈T 2

strip ≥ 1 (184)∑
k∈K

yt1jkp +
∑
t∈T 2

∑
k∈K

ytrjkp ≥ 1 (185)

for r = 2, 3, ..., n.

From the above constraint sets, it can be easily seen that transportation mode is indepen-

dent of demand.

Let C1 = {ct11 , ct12 , ..., ct1m} be the set of all costs for P2 and C2 = {ctr1 , ctr2 , ..., ctrs } be the set

of all costs for P3.

Now, if ct1i > ctrj , for i = 1, 2, ...,m; j = 1, 2, ..., s; and r = 2, 3, ..., n.

then, min{ct1i , c
tr
j } = ctrj and the values of the continuous variables multiplied with ct1i becomes

zero. Thus, the value of F1 for P3 becomes lower than that of P2.

Now, for i = 1, 2, ...,m; j = 1, 2, ..., s and r = 2, 3, ..., n;

Case 1

If all ct11 , c
t1
2 , ..., c

t1
m < ctrj ∀c

tr
j .

Then, all the continuous variables multiplied with all ctrj ∀j and r will be zero. We can say,

G1 = F1.

Case 2

If ct1i > ctrj , for some ct1i , c
tr
j ,

Then, the continuous variables, multiplied with those ct1i for some i, will be zero. From the

set of constraints (183), (184), and (185), we can see that no particular transportation mode is

needed to fulfill the demand, i.e., mode of transportation is independent of demand. So from

Case 1, we can say,

G1 < F1.
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Case 3

If ct1i > ctrj ∀c
t1
i , then, it is obvious that,

G1 < F1.

From above three cases, we can say that G1 ≤ F1.

10.2.7 Change in constraint set

Lemma 3

If the demand constraint sets for outside suppliers of the above three problems P1, P2,

and P3 are changed from each retailer to for all retailers i.e., if the demand is divided into all

retailers, then, the total cost will be minimized.

Proof

The demand constraint sets for outside suppliers of problem P1 is,

si ≥ 1 (186)

which is converted into, ∑
i∈I

si ≥ 1 (187)

for the sake of simplicity, we consider the above constraint sets as,

si = 1 (188)

and ∑
i∈I

si = 1 (189)

also let us consider the set I = {1, 2..., n}.
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constraint set (188) can be written as 

s1 = 1

s2 = 1

....

sn = 1


(190)

which shows si = 1∀i ∈ I.

But, from constraint sets (189), we get

s1 + s2 + ...+ sn = 1 (191)

which implies that, si < 1 for each i or si = 1 for any i and the rest of si are zero. Both of

them shows that the objective value of the original problem P1 exceeds the objective value of

the modified P1. Similar proof may be allowed for problem P2 and P3.

10.3 Numerical experiments

Now, we show the numerical examples of the above problems in different dimensions using

LINGO 13.0 optimization software. We first show this example for two dimensions. Then, we

proceed to the next higher dimensions. We consider that there are two plants, two warehouses

and two retailers. Moreover we consider one outside supplier who supplies commodities to the

retailers. For the sake of simplicity, we assume the set of retailers, warehouses and plants as

I = {A,B}, J = {A,B}, and K = {A,B}, where A and B are name of the locations of different

facilities and retailers so that goods are shifted between A to A, A to B, B to A, and B to B.

The transportation of products between A to A and B to B imply that products are shifted

between any two locations of same region. If we suppose A as a particular country then, the

shipment of goods may be considered as between any two states of the same country.

Now, we study for two dimensional problem i.e., problem P1. By our assumptions, the

transportation and inventory costs, retailer’s demand, lead times and capacity levels of plants
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and warehouses are given below.

Capacities of warehouses and plants

WCA = 120 units WCB = 120 units

PCA = 400 units PCB = 400 units

Demands of each location

DA = 12 units DB = 8 units

Total cost for a warehouse and plant at each site to be opened

TCWA = $ 6000 TCWB = $ 4500

TCPA = $ 10000 TCPB = $ 8000

Production and transportation cost per unit of product from plants to warehouses

PTCAA = $ 81 PTCAB = $ 97

PTCBA = $ 110 PTCBB = $ 77

Transportation cost per unit of product from warehouses to retailers

TCAA = $ 90 TCAB = $ 100

TCBA = $ 120 TCBB = $ 80

Unit inventory holding cost for warehouses and plants

ICA = $ 11 ICB = $ 15

JCA = $ 8 JCB = $ 11

Transportation cost per unit of product to the retailers from outside suppliers

OSCA = $ 82 OSCB = $ 90

Unit lead time cost

M = $ 10

Delivery lead time per unit of product from warehouses to retailers and from plants to ware-

houses
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TWRAA = 2 days TWRAB = 3 days

TWRBA = 4 days TWRBB = 2 days

TPRAA = 3 days TPRAB = 4 days

TPRBA = 5 days TPRBB = 3 days.

Now, we proceed to the next higher dimension i.e., dimension 3. Here, we add the commodity

or product type as an extra dimension. So the model deals with two echelon, capacitated, multi

commodity facility location problem. All the notation used in this model, are stated on problem

P2. The set P is added here and we consider P={p1, p2}. All the costs, capacity level of plants

and warehouses, demands of the retailers and lead time used to solve the problem P1, are

unchanged. All extra costs, demands and lead times added here, caused by the addition of the

extra dimension only. Now, we put all values.

Capacity levels of warehouses and plants

WCA = 120 units WCB= 120 units

PCA = 400 units PCB = 400 units

Demands of the retailers for each product

DAp1 = 12 units DBp1 = 8 units

DAp2 = 10 units DBp2 = 9 units

Total cost for each warehouse and plant to be opened

TCWA = $ 6000 TCWB = $ 4500

TCPA = $ 10000 TCPB = $ 8000

Production and transportation cost per unit of each product from plants to warehouses

PTCAAp1 = $ 81 PTCABp1 = $ 97

PTCBAp1 = $ 110 PTCBBp1 = $ 77

PTCAAp2 = $ 79 PTCABp2 = $ 98

PTCBAp2 = $ 120 PTCBBp2 = $ 70

Transportation cost per unit of each product transported from warehouses to retailers
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TCAAp1 = $ 90 TCABp1 = $ 100

TCBAp1 = $ 120 TCBBp1 = $ 80

TCAAp2 = $ 88 TCABp2 = $ 115

TCBAp2 = $ 125 TCBBp2 = $ 75

Inventory holding cost per unit of each product at each warehouse and plants

ICAp1 = $ 11 ICBp1 = $ 15

ICAp2 = $ 12 ICAp2 = $ 17

JCAp1 = $ 9 JCBp1 = $ 12

JCAp2 = $ 10 JCBp2 = $ 14

Transportation costs per unit of each product via outside supplier

OSCAp1 = $ 82 OSCBp1 = $ 90

OSCAp2 = $ 80 OSCBp2 = $ 92

Delivery lead time per unit of each product from warehouses to retailers and from plants to

warehouses

TWRAAp1 = 2 days TWRABp1 = 3 days

TWRBAp1 = 4 days TWRBBp1 = 2 days

TWRAAp2 = 2 days TWRABp2 = 3 days

TWRBAp2 = 5 days TWRBBp2 = 4 days

TPRAAp1 = 3 days TPRABp1 = 4 days

TPRBAp1 = 5 days TPRBBp1 = 4 days

TPRAAp2 = 4 days TPRABp2 = 3 days

TPRBAp2 = 6 days TPRBBp2 = 5 days

Unit lead time cost for each product

Mp1 = $ 10

Mp2 = $ 12
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Now, we extend the dimension again i.e., dimension 4. Problem P2 is converted into prob-

lem P3. Here, we add the mode of transportation as an extra dimension. We consider two types

of transportation mode available here. Thus, we assume the set T of different transportation

mode as T = {t1, t2}. Again, in the similar manner, we do not change the transportation

and inventory costs, the capacity levels, demands of the retailers and lead times used in the

previous three dimensional model. The extra costs, lead times are just due to the addition of

new dimension. Now, according to our assumption, we consider as follows:

Capacity levels of warehouses and plants

WCA = 120 units WCB = 120 units

PCA = 400 units PCB = 400 units

Demands of each item to each retailers

DAp1 = 12 units DBp1 = 8 units

DAp2 = 10 units DBp2 = 9 units

Total cost for each warehouse and plant to be opened

TCWA = $ 6000 TCWB = $ 4500

TCPA = $ 10000 TCPB = $ 8000

Production and transportation costs per unit of each product delivered from plants to

warehouses via each transportation mode

PTCt1
AAp1

= $ 81 PTCt1
ABp1

= $ 97 PTCt1
BAp1

= $ 110 PTCt1
BBp1

= $ 77

PTCt1
AAp2

= $ 79 PTCt1
ABp2

= $ 98 PTCt1
BAp2

= $ 120 PTCt1
BBp2

= $ 70

PTCt2
AAp1

= $ 100 PTCt2
ABp1

= $ 110 PTCt2
BAp1

= $ 120 PTCt2
BBp1

= $ 90

PTCt2
AAp2

= $ 97 PTCt2
ABp2

= $ 115 PTCt2
BAp2

= $ 130 PTCt2
BBp2

= $ 82

Transportation costs per unit of each product delivered from warehouses to retailers via each

transportation mode

200



TCt1
AAp1

= $ 90 TCt1
ABp1

= $ 100 TCt1
BAp1

= $ 120 TCt1
BBp1

= $ 80

TCt1
AAp2

= $ 88 TCt1
ABp2

= $ 115 TCt1
BAp2

= $ 125 TCt1
BBp2

= $ 75

TCt2
AAp1

= $ 110 TCt2
ABp1

= $ 120 TCt2
BAp1

= $ 140 TCt2
BBp1

= $ 100

TCt2
AAp2

= $ 105 TCt2
ABp2

= $ 140 TCt2
BAp2

= $ 145 TCt2
BBp2

= $ 92

Inventory holding cost per unit of each product at each warehouse and plant

ICAp1 = $ 11 ICBp1 = $ 15

ICAp2 = $ 12 ICBp2 = $ 17

JCAp1 = $ 9 JCBp1 = $ 12

JCAp2 = $ 10 JCBp2 = $ 14

Transportation costs per unit of each product delivered to each retailers via outside supplier

through each transportation mode

OSCt1
Ap1

= $ 82 OSCt1
Bp1

= $ 90

OSCt1
Ap2

= $ 80 OSCt1
Bp2

= $ 92

OSCt2
Ap1

= $ 92 OSCt1
Bp1

= $ 102

OSCt2
Ap2

= $ 91 OSCt2
Bp2

= $ 100

Lead time per unit of each product for the shipment between warehouses to retailers

TWRt1
AAp1

= 2 days TWRt1
ABp1

= 3 days TWRt1
BAp1

= 4 days TWRt1
BBp1

= 2 days

TWRt1
AAp2

= 2 days TWRt1
ABp2

= 3 days TWRt1
BAp2

= 5 days TWRt1
BBp2

= 4 days

TWRt2
AAp1

= 0.5 days TWRt2
ABp1

= 1 days TWRt2
BAp1

= 1.5 days TWRt2
BBp1

= 0.5 days

TWRt2
AAp2

= 1 days TWRt2
ABp2

= 1.5 days TWRt2
BAp2

= 2 days TWRt2
BBp2

= 1 days

Lead time per unit of each product for the shipment between plants to warehouses

TPRt1
AAp1

= 3 days TPRt1
ABp1

= 5 days TPRt1
BAp1

= 6 days TPRt1
BBp1

= 3 days

TPRt1
AAp2

= 3 days TPRt1
ABp2

= 4 days TPRt1
BAp2

= 7 days TPRt1
BBp2

= 5 days

TPRt2
AAp1

= 1 days TPRt2
ABp1

= 2 days TPRt2
BAp1

= 2.5 days TPRt2
BBp1

= 1 days

TPRt2
AAp2

= 2 days TPRt2
ABp2

= 2.5 days TPRt2
BAp2

= 3 days TPRt2
BBp2

= 2 days
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Unit lead time cost for each product

Mp1 = $ 10

Mp2 = $ 12

The solutions are described below.

Numerical results for dimension two are given in Table 10.1 and Table 10.2.

Case 1

Table 10.1

Result based on actual problem P1

Continuous variable Value Binary variables value

xAB 1.00000 zB 1

xBB 1.00000 cB 1

yAB 1.00000

yBB 1.00000

sA 1.00000

sB 1.00000

Minimum cost= $ 45844

Total variable= 18

Total constraint= 33

Case 2

Change of constraint set (151), demands are satisfied for all retailers instead of for each retailer.

Constraint set (151) become, ∑
i∈I

si ≥ 1 (192)
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Table 10.2

Result based on changed constraint set of problem P1

Continuous variable Value Binary variables value

xAB 1.00000 zB 1

xBB 1.00000 cB 1

yAB 1.00000

yBB 1.00000

sB 1.00000

Minimum cost= $ 44860

Total variable= 18

Total constraint= 32

Numerical results for dimension three are given in Table 10.3 and Table 10.4.

Case 1

Table 10.3

Result based on actual problem P2

Continuous variable Value Binary variables value

xAAp1 1.00000 zA 1

xBAp1 1.00000 cA 1

xAAp2 1.00000 cB 1

xBAp2 1.00000

yAAp1 1.00000

yBBp1 1.00000

yABp2 1.00000

yBBp2 1.00000

sAp1 1.00000

sAp2 1.00000

sBp1 1.00000

sBp2 1.00000
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Minimum cost= $ 78797

Total variable= 32

Total constraint= 65

Case 2

Change of constraint set (158), demands are met for all the retailers but for each product, and

constraint set (158) becomes, ∑
i∈I

sip ≥ 1 (193)

Table 10.4

Result based on changed constraint set of problem P2

Continuous variable Value Binary variables value

xAAp1 1.00000 zA 1

xBAp1 1.00000 cA 1

xAAp2 1.00000 cB 1

xBAp2 1.00000

yAAp1 1.00000

yBBp1 1.00000

yABp2 1.00000

yBBp2 1.00000

sAp2 1.00000

sBp1 1.00000

Minimum cost= $ 76987

Total variable= 32

Total constraint= 63

Numerical results for dimension three are given in Table 10.5 and Table 10.6.
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Case 1

Table 10.5

Result based on actual problem P3

Continuous variable Value Binary variables value

xt1BBp1 1.00000 zB 1

xt2ABp1 1.00000 cA 1

xt2BBp2 1.00000

yt2AAp1 1.00000

yt2BBp1 1.00000

yt2BBp2 1.00000

st1Ap1 1.00000

st1Bp1 1.00000

st1Ap2 1.00000

st1Bp2 1.00000

Minimum cost= $ 59048

Total variable= 52

Total constraint= 105

Case 2

Change of constraint set (165), demands are met for all the retailers and for all transportation

mode too but for each product, and constraint set (165) becomes,∑
i∈I

∑
t∈T

stip ≥ 1 (194)
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Table 10.6

Result based on changed constraint set of problem P3

Continuous variable Value Binary variables value

xt1BBp1 1.00000 zB 1

xt2ABp1 1.00000 cA 1

xt2BBp2 1.00000

yt2AAp1 1.00000

yt2BBp1 1.00000

yt2BBp2 1.00000

st1Bp1 1.00000

st1Ap2 1.00000

Minimum cost= $ 57236

Total variable= 52

Total constraint= 103

10.3.1 Numerical discussion

In the above tables, non-zero decision variables along with their values are allowed and rest of

the decision variables are all zero. First, discuss about Case 1 of the above tables i.e., Table 10.1,

Table 10.3 and Table 10.5. From the above numerical experiments, the cost $ 45844 is found

for problem P1 and $ 78797 is found for problem P2 as minimum cost. The cost is increased

due to the additional product. Problem P1 consists of single product only, also each cost for P1

has not been changed for problem P2, moreover the additional costs for the new product have

been added too, resulting the increment of minimum cost. But in case of problem P3, the cost

is decreased. It is really an interesting matter that using the type of transportation mode as an

extra dimension causes reduction of cost. From Table 10.3 and Table 10.5, the first one has 14

non-zero decision variables but the second one has 13, which has made the objective function of

problem P3 lower than that of problem P2. Thus, allotment of goods in cheaper transportation
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mode can dwindle the total minimum cost of the network. Now, from Table 10.2, Table 10.4

and Table 10.6, we see a small change, in constraint sets (151), (153), and (165), which has

reduced the total network cost. We have just varied the summation over i ∈ I, the set of retailer

location which indicates that the demand of one retailer is divided into all retailers. From the

tables for Case 2 above, it can be seen that at least one supply of product via outside suppliers

to the retailers is stopped with respect to the tables for Case 1, resulting reduction of total cost.

10.4 Managerial insights

A facility location model is considered in this chapter for three different dimensions. The

managerial insights of this chapter are as follows:

• Three different dimensional facility location problems are compared in this chapter to suggest

managers adopting proper action to reduce entire supply chain cost.

• An procedure is developed to reduce the system cost by applying a small change in constraint

set, which would help the managers very easily.

10.5 Concluding remarks

Three different dimensions in the facility location problem was considered to match the real

life situation of locating different facilities for industrialization. The variations between the

objective functions of three different dimensional problems were investigated. This chapter

concluded that the increment or reduction of cost depends on the type of the dimension used.

Two separate type of dimensions were used such as product type and transportation mode.

Types of products depend on the retailer’s demand, hence, these create the increments of costs.

Again, the mode of transportation is independent of the retailer’s demand which indicates the

reduction of the cost. Lastly, a small change in the constraint sets was considered which results

the decrement of total cost.
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Conclusions and future extensions

This dissertation covered many practical problems related to modern supply chain manage-

ment. The research model in Chapter 3 developed the procedure to diminished the entire

supply chain cost by an investment to reduce the vendor’s setup cost. Chapter 4 used an-

other investment function to reduce the probability of imperfect production of items along

with reduction of vendor’s setup cost. Chapter 5 optimized the joint supplier-buyer’s cost

under lot-splitting policy and deterioration of products. The investment functions are also

incorporated to reduce the setup cost and imperfect production. Chapter 6 concluded that

in decentralized supply chain model, manufacturer should determine the retailer’s purchasing

cost depending on retailer’s decision to achieve a profitable business. Chapter 7 compared a

tradition and consignment policy in a supply chain. This chapter observed that the joint profit

for the consignment policy is greater than joint profit of the traditional policy. To reduce the

royalty for the retailer a new method was provided. By using the proposed method the royalty

for the retailer was reduced without affecting the joint profit of the supply chain. Chapter 8

minimized the cost of an one-vendor multi-retailer supply chain model with partial backorder.

The model relaxed the classical assumption of fixed production rate with variable production

rate and a ‘U’-shaped function for variable production cost was also utilized to make the model

a realistic one. Chapter 9 analyzed the relation between production rate and the mean time

to failure of a production process. Three cases with three different types of functions were

provided, which contains the relation between production rate and mean time to machine fail-

ure. Chapter 10 compared three facility location problems with three different dimensions. The

study proved that the increment or reduction of cost depends on the type of the dimension used.

Future extensions

There are many possible extensions of the research models stated above. Some of them are

pointed below.

• The single-setup multi-delivery policy can be extended by unequal shipment.
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• The dimension of a facility location problem can be extended by generalized n dimension

for n ∈ N (Set of natural numbers).

• A fruitful research can be done by assuming a discrete investment to reduce setup cost

and quality improvement of products instead of continuous investment.

• An integrated supply chain model can de extended with three or more echelon with

multi-type of products.

• The consignment policy can be extended by variable selling-price and controllable lead

time.
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