
SOME DEVELOPMENTS OF SOFT COMPUTING 

METHODS FOR TSP UNDER UNCERTAIN 

OPTIMIZATION PARADIGMS 

 

 

 

 

Thesis submitted to the 

VIDYASAGAR UNIVERSITY 

For the Award of Degree of 

DOCTOR OF PHILOSOPHY 

IN 

SCIENCE 

 

 

 

BY 

SAMIR MAITY 

Department of Computer Science 

Vidyasagar University 

Midnapore-721102, INDIA 

 

SEPTEMBER, 2016 



.



Dedicated to the great philanthropist
Jean-Paul Sartre

iii



.

iv



CERTIFICATE

This is to certify that the thesis entitled -”SOME DEVELOPMENTS OF
SOFT COMPUTING METHODS FOR TSP UNDER UNCERTAIN OP-
TIMIZATION PARADIGMS” submitted by Sri Samir Maity for the award
of degree of DOCTOR OF PHILOSOPHY IN SCIENCE to the Vidyasagar
University, Midnapore is a record of bonafide research work carried out by him
under our guidance and supervision. Sri Maity has worked in the Department of
Computer Science, Vidyasagar University as per the regulations of this Uni-
versity.

In our opinion, this thesis is of the standard required for the award of the de-
gree of DOCTOR OF PHILOSOPHY IN SCIENCE.

The results, embodied in this thesis, have not been submitted to any other Uni-
versity or Institution for the award of any degree or diploma.

Dr. Arindam Roy Prof. Manoranjan Maiti
Assistant Professor Former Professor
Dept. of Computer Science Dept. of Applied Mathematics with
and Applications, Oceanology and Computer Programming,
Prabhat Kumar College, Vidyasagar University,
Contai-721401, Midnapore-721102,
INDIA INDIA

v



.

vi



DECLARATION

I, Samir Maity, do hereby declare that, I have not submitted the results em-
bodied in my thesis- ”SOME DEVELOPMENTS OF SOFT COMPUTING
METHODS FOR TSP UNDER UNCERTAIN OPTIMIZATION PARADIGMS”
or a part of it for any degree/diploma or any other academic award anywhere be-
fore.

Samir Maity
(Reg. No:366/Ph.D./Sc. 03-04-2013)

Department of Computer Science,
Vidyasagar University

Midnapore, West Bengal, India

Date:

vii



.

viii



ACKNOWLEDGEMENT

This work never would have been started, much less finished, without two
supervisors- Prof. Manoranjan Maiti and Dr. Arindam Roy. Despite my own
uncertainties, they always expressed confidence that I could and would discover
something interesting. Specially to spend the time with honorable Prof. Maiti
is a memorable journey of my ordinary life. Personally to share and cheer the
views and ides with him beyond the subjects born me again a new human being.
I owe them many thanks for always ready accessibility, wise advice, excellent
teaching, and principled advising.

A graceful thanks to the writers of some books in Bengali literature, critics
and also from my best subjects History, Philosophy, Psychology and Sociology,
that have given me ideas and breaks from the day to day life obstructions.

Lastly I confer special thanks from deep of my heart to all of my very closed
neighbours.

Samir Maity
(Reg. No:366/Ph.D./Sc. 03-04-2013)

Department of Computer Science,
Vidyasagar University

Midnapore, West Bengal, India

Date:

ix



.

x



PUBLICATION
The list of Published Papers:

1. S. Maity, A. Roy, M. Maiti, A Modified Genetic Algorithm for solving uncer-
tain Constrained Solid Travelling Salesman Problems, Computers & In-
dustrial Engineering, (Elsevier), 83(2015), 273-296, (SCI), Impact Factor
2.082.

2. S. Maity, A. Roy, M. Maiti, An imprecise Multi-Objective Genetic Algo-
rithm for uncertain Constrained Multi-Objective Solid Travelling Salesman
Problem, Expert Systems With Applications, (Elsevier), 46(2016), 196-
223, (SCI), Impact Factor 2.986.

3. S. Maity, A. Roy, M. Maiti, Constrained Solid Travelling Salesman Prob-
lem Solving by Rough GA Under Bi-Fuzzy Coefficients, Advances in In-
telligent Systems and Computing 404, (Springer), DOI 10.1007/978-81-
322-2695-6-36, (2015).

4. M. Maiti, S. Maity, A. Roy, An Improved Genetic Algorithm and Its Appli-
cation in Constrained Solid TSP in Uncertain Environments, Proceedings
in Mathematics & Statistics 125, (Springer), DOI 10.1007/978-81-322-
2301-6-14, (2016)

5. A. Roy, S. Maity, M. Maiti, Constrained solid travelling salesman problem
using Adaptive Genetic Algorithm in uncertain environment, IEEE, ICIEV,
Japan, DOI:10.1109/ICIEV.2015.7334044, (2016).

The list of Communicated Papers

1. Rough Genetic Algorithm for Constrained Solid TSP with Interval Valued
Costs and Times.
Communicated to Journal of Fuzzy Information and Engineering (Elsevier)

2. A Rough Multi-Objective Genetic Algorithm for uncertain Constrained Multi-
Objective Solid Travelling Salesman Problem.
Communicated to International Journal of Discrete Applied Mathematics
(Elsevier)

3. An Intelligent Hybrid Algorithm for four Dimensional TSP (4DTSP).
Communicated to International Journal of Industrial Information Integra-
tion (Elsevier)

xi



4. A new Evolutionary Hybrid Algorithm for restricted 4- Dimensional TSP
(r-4DTSP) in Uncertain Environment.
Communicated to Journal of Swarm and Evolutionary Computation (Else-
vier).

xii



List of Acronyms
3DTSP Three Dimensional Travelling Salesman Problem
4DTSP Four Dimensional Travelling Salesman problem
ACO Ant Colony Optimization
AGA Adaptive Genetic Algorithm
BKS Best Known Solution
BRCSTSP Bi-random CSTSP
CCP Chance Constraint Programming
CMOTSP Constraint Multi-objective TSP
CMOSTSP Constrained Multi-objective STSP
CSTSP Constrained Solid Travelling Salesman Problem
CSTSPwR CSTSP with Restricted Vehicles
Cr Credibility
CV Critical Value
CPU Central Precessing Unit
CSTSP Constraint Solid Travelling Salesman Problem
DM Decision Maker
DMP Decision Making Problem
Equ. Equation
EVM Expected Value Model
Ex-Tr Expectation-Trust
FGA Fuzzy Genetic Algorithm
FNLP Fuzzy Non-Linear Programming
FRCSTSP Fuzzy Rough CSTSP
Fu-Ra Fuzzy Random
Fu-Ro Fuzzy Rough
FV Fuzzy Variable
GA Genetic Algorithm
GRG Generalized Reduced Gradient
HA Hybrid Algorithm
HIA Hybrid Intelligent Algorithm
iMOGA imprecise Multi-Objective Genetic Algorithm
IGA Improved Genetic Algorithm
LFN Linear Fuzzy Number
MOGA Multi-Objective Genetic Algorithm
MONLP Multi-Objective Non-Linear Programming

xiii



MPSO Modified Particle Swarm Optimization
NLP Non-Linear Programming
Nes Necessity
Nes - Nes Necessity-Necessity
ODM Optimistic Decision Maker
OR Operations Research
PDM Pessimistic Decision Maker
Pos Possibility
Pos-Pos Possibility-Possibility
PSO Particle Swarm Optimization
rACO-GA rough set based ACO-GA
r-4DTSP restricted four dimensional TSP
R-MOGA Rough-Multi Objective Genetic Algorithm
RaCSTSP Random CSTSP
ReGA Rough Extended GA
RFCSTSP Random Fuzzy CSTSP
RoCSTSP Rough CSTSP
RSGA Rough Set based GA
SGA Simple/Standard Genetic Algorithm
STSP Solid Travelliing Salesman Problem
TSP Travelling Salesman Problem
TP Transportation Problem
TFN Triangular Fuzzy Number
TrFN Trapezoidal Fuzzy Number
VVH Very Very High
VVHP Very Very High Pheromone
VVL Very Very Low
VVY Very Very Young
VY Very Young
Y Young

xiv



List of Tables

1.1 Search Category Examples . . . . . . . . . . . . . . . . . . . . 6

2.1 Development of various ACO Algorithms . . . . . . . . . . . . 50
2.2 Applications of ACO algorithms . . . . . . . . . . . . . . . . . 54

3.1 Probability Distribution . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Test TSPLIB problems by IGA . . . . . . . . . . . . . . . . . . 112
4.2 Input Data: Crisp cost in CSTSP (Model 4.1A) . . . . . . . . . 113
4.3 Input Data: Crisp safety values in CSTSP (Model 4.1A) . . . . 113
4.4 Input Data: FCSTSP (Model 4.1B) . . . . . . . . . . . . . . . . 113
4.5 Input Data: Fuzzy safety in FCSTSP (Model 4.1B) . . . . . . . 114
4.6 Input Data: Rough costs in RCSTSP (Model 4.1C) . . . . . . . 114
4.7 Input Data: Rough safety in CSTSP (Model 4.1C) . . . . . . . . 115
4.8 Input Data: Fuzzy-rough costs in CSTSP (Model 4.1D) . . . . . 115
4.9 Input Data: Fuzzy-rough safety in CSTSP (Model 4.1D) . . . . 116
4.10 Results of different models by IGA . . . . . . . . . . . . . . . . 116
4.11 Statistical Test for IGA . . . . . . . . . . . . . . . . . . . . . . 116
4.12 Test TSPLIB Problems by AGA . . . . . . . . . . . . . . . . . 124
4.13 Input Data: Crisp CSTSP (Model 4.2A) . . . . . . . . . . . . . 125
4.14 Results of CSTSP in Crisp (Model 4.2A) . . . . . . . . . . . . . 125
4.15 Input Data: FCSTSP (Model 4.2B) . . . . . . . . . . . . . . . . 125
4.16 Optimum Results of FCSTSP (Model 4.2B) . . . . . . . . . . . 126
4.17 Input Data: RCSTSP (Model 4.2C) . . . . . . . . . . . . . . . . 127
4.18 Results of RCSTSP (Model 4.2C) . . . . . . . . . . . . . . . . 129
4.19 Statistical Test for AGA . . . . . . . . . . . . . . . . . . . . . . 129
4.20 Test TSPLIB Problems by MGA . . . . . . . . . . . . . . . . . 145
4.21 Comparison of MGA and SGA with different parameter . . . . . 146

xv



LIST OF TABLES

4.22 Input Data: Crisp CTSP (Model 4.3A) . . . . . . . . . . . . . . 147
4.23 Results of Crisp CTSP (Model 4.3A) . . . . . . . . . . . . . . . 147
4.24 Input Data: Crisp CSTSP(Model 4.3A) . . . . . . . . . . . . . . 148
4.25 Results for Crisp CSTSP (Model 4.3A ) . . . . . . . . . . . . . 148
4.26 Input Data for FCSTSP (Model 4.3A1) . . . . . . . . . . . . . . 148
4.27 Optimum Results of FCSTSP (Model 4.3A1) . . . . . . . . . . 149
4.28 Input Data for RaCSTSP (Model 4.3A2) . . . . . . . . . . . . . 151
4.29 Results of RaCSTSP (Model 4.3A2) . . . . . . . . . . . . . . . 152
4.30 Input Data for RFCSTSP (Model 4.3A3) . . . . . . . . . . . . . 152
4.31 Results of RFCSTSP (Model 4.3A3) . . . . . . . . . . . . . . . 154
4.32 Input Data: FRCSTSP (Model 4.3A4) . . . . . . . . . . . . . . 154
4.33 Results of FRCSTSP (Model 4.3A4) . . . . . . . . . . . . . . . 157
4.34 Input Data: BRCSTSP (Model 4.3A5) . . . . . . . . . . . . . . 158
4.35 Results of BRCSTSP (Model 4.3A5) . . . . . . . . . . . . . . . 159
4.36 Rough trust based linguistics . . . . . . . . . . . . . . . . . . . 164
4.37 Rough extended trust based linguistic . . . . . . . . . . . . . . 165
4.38 Test TSPLIB Problems by RSGA . . . . . . . . . . . . . . . . . 176
4.39 Comparison of RSGAs, SGAs with different parameters . . . . 176
4.40 Comparison of RSGAs w. r. to different Mutations . . . . . . . 177
4.41 Input Data: Interval CTSP (Model 4.4A1) . . . . . . . . . . . . 178
4.42 Optimum Results of CTSP in Crisp (Model 4.4A) . . . . . . . . 178
4.43 Input Data: CSTSPwR (Model 4.4A1) . . . . . . . . . . . . . . 180
4.44 Results of CSTSPwR(Model 4.4A1) . . . . . . . . . . . . . . . 181
4.45 For Virtual Data (Model 4.4A1) . . . . . . . . . . . . . . . . . 182
4.46 Dispersion Results of RSGA-II . . . . . . . . . . . . . . . . . . 183
4.47 Results of RSGA and Other Methods . . . . . . . . . . . . . . . 184
4.48 Ranking of the Friedman Test . . . . . . . . . . . . . . . . . . . 185
4.49 Paired Comparison of the Friedman Test . . . . . . . . . . . . . 186
4.50 Rough extended trust based linguistic . . . . . . . . . . . . . . 188
4.51 Test TSPLIB Problems by ReGA . . . . . . . . . . . . . . . . . 193
4.52 Input Data: Crisp CSTSP (Model 4.5A) . . . . . . . . . . . . . 194
4.53 Results of crisp CSTSP (Model 4.5A) . . . . . . . . . . . . . . 194
4.54 Input Data: (BFCSTSP) (Model 4.5A1) . . . . . . . . . . . . . 195
4.55 Optimum Results of BFCSTSP (Model 4.5A1) . . . . . . . . . 195
4.56 Results for virtual data (Model 4.5A1) . . . . . . . . . . . . . . 196

xvi



LIST OF TABLES

4.57 Number of win for different algorithms . . . . . . . . . . . . . 196
4.58 ANOVA :Subtracted table from Table 4.57 . . . . . . . . . . . . 197
4.59 ANOVA summary table . . . . . . . . . . . . . . . . . . . . . . 197

5.1 Rough Extended Trust Based Linguistic . . . . . . . . . . . . . 203
5.2 Test TSPLIB Problems by rACO-GA . . . . . . . . . . . . . . . 208
5.3 Parameters for HA, ACO and SGA . . . . . . . . . . . . . . . . 208
5.4 Input Data: Crisp 4DTSP (Model 5.1B) . . . . . . . . . . . . . 209
5.5 Results of 2DTSP in Crisp (Model 5.1A) . . . . . . . . . . . . . 210
5.6 Results of 3DTSP in Crisp (Model 5.1A) . . . . . . . . . . . . . 211
5.7 Results of 4DTSP in Crisp (Model 5.1B) . . . . . . . . . . . . . 211
5.8 Input Data: BF-4DTSP (Model 5.1C) . . . . . . . . . . . . . . 211
5.9 Optimum Results of BF-4DTSP (Model 5.1C) . . . . . . . . . . 212
5.10 Dispersion Results of rACO-GA . . . . . . . . . . . . . . . . . 213
5.11 Test TSPLIB Problems by ACO-PSO-GA . . . . . . . . . . . . 223
5.12 Parameters for Hybrid Algorithm . . . . . . . . . . . . . . . . . 223
5.13 Input Data: Crisp r-4DTSP (Model 5.2A) . . . . . . . . . . . . 224
5.14 Results of 2DTSP in Crisp (Model 5.2A) . . . . . . . . . . . . . 225
5.15 Results of 3DTSP in Crisp (Model 5.2A) . . . . . . . . . . . . 225
5.16 Results of 4DTSP in Crisp (Model 5.2A) . . . . . . . . . . . . . 226
5.17 Results of r-4DTSP in Crisp (Model 5.2A) . . . . . . . . . . . . 226
5.18 Input Data: r-4DTSP(rough) (Model 5.2B) . . . . . . . . . . . . 227
5.19 Optimum Results of BR-r-4DTSP (Model 5.2B) . . . . . . . . . 227
5.20 Results with virtual data (Model 5.2B) . . . . . . . . . . . . . . 228
5.21 Dispersion Tests of ACO-PSO-GA . . . . . . . . . . . . . . . . 229

6.1 Fuzzy Based Linguistics . . . . . . . . . . . . . . . . . . . . . 236
6.2 Fuzzy Extended Based Linguistic . . . . . . . . . . . . . . . . 237
6.3 Test combining Standard TSPLIB Problems by iMOGA . . . . . 255
6.4 Results (Mean, SD) of iMOGA(A), MOEA/D-ACO(D), MOGA(S)256
6.5 Comparison with state-of-art-algorithms . . . . . . . . . . . . . 257
6.6 Comparison of iMOGA and MOGA . . . . . . . . . . . . . . . 258
6.7 Comparison of iMOGA for bayg29 and bays29 . . . . . . . . . 258
6.8 Input Data: Crisp CMOSTSP (Model 6.1A) . . . . . . . . . . . 258
6.9 Results of CMOTSP in Crisp (Model 6.1A) . . . . . . . . . . . 259
6.10 Results of CMOSTSP in Crisp (Model 6.1B) . . . . . . . . . . 260

xvii



LIST OF TABLES

6.11 Input Data: RaCMOSTSP (Model 6.1C) . . . . . . . . . . . . . 261
6.12 Results of RaCMOSTSP (Model 6.1C) . . . . . . . . . . . . . . 262
6.13 Input Data: RFCMOSTSP (Model 6.1E) . . . . . . . . . . . . . 263
6.14 Results of RFCMOSTSP (Model 6.1E) . . . . . . . . . . . . . . 266
6.15 Input Data: FRCMOSTSP (Model 6.1D) . . . . . . . . . . . . . 268
6.16 Results of FRCSTSP (Model 6.1D) . . . . . . . . . . . . . . . . 271
6.17 Input data: BRCMOSTSP (Model 6.1F) . . . . . . . . . . . . . 271
6.18 Results of BRCMOSTSP (Model 6.1F) . . . . . . . . . . . . . 273
6.19 CPU time for BRCMOSTSP (Model 6.1F) . . . . . . . . . . . 273
6.20 Mean and Variance of the diversity metric . . . . . . . . . . . . 274
6.21 Mean and Variance of the convergence metric . . . . . . . . . . 274
6.22 ANOVA: Number of win for different algorithms . . . . . . . . 275
6.23 ANOVA: Subtracted table from Table 6.22 . . . . . . . . . . . . 276
6.24 ANOVA summary table . . . . . . . . . . . . . . . . . . . . . 276
6.25 Test TSPLIB Problems by R-MOGA . . . . . . . . . . . . . . . 290
6.26 Comparison of R-MOGAs and MOGA . . . . . . . . . . . . . . 290
6.27 Comparison of Different operators of R-MOGAs . . . . . . . . 290
6.28 Input Data: Crisp CMOSTSP (Model 6.2B) . . . . . . . . . . . 292
6.29 Results of CMOTSP in Crisp (Model 6.2B) . . . . . . . . . . . 292
6.30 Results of CMOSTSP in Crisp (Model 6.2B) . . . . . . . . . . 293
6.31 Input Data: RCMOSTSP (Model 6.2C) . . . . . . . . . . . . . 293
6.32 Results of RCMOSTSP (Model 6.2C) . . . . . . . . . . . . . . 294
6.33 Input Data: FRCMOSTSP (Model 6.2D) . . . . . . . . . . . . . 294
6.34 Results of FRCMOSTSP (Model 6.2D) . . . . . . . . . . . . . 296
6.35 Input Data: RRCMOSTSP (Model 6.2E) . . . . . . . . . . . . . 297
6.36 Results of RRCSTSP(Model 6.2E) . . . . . . . . . . . . . . . . 298
6.37 Mean and Variance of the diversity metric . . . . . . . . . . . . 299
6.38 Mean and Variance of the convergence metric . . . . . . . . . . 299
6.39 ANOVA: Number of win for different algorithms . . . . . . . . 300
6.40 ANOVA: Subtracted table from Table 6.39 . . . . . . . . . . . . 301
6.41 ANOVA: Summary table (data taken from Table 6.40 . . . . . . 301

xviii



List of Figures

1.1 Componants of Soft Computing . . . . . . . . . . . . . . . . . 4
1.2 Graphical Representation of TSP . . . . . . . . . . . . . . . . . 13

3.1 Graphical representation of Convex Function . . . . . . . . . . 60
3.2 Graphical representation Normal Distrubition . . . . . . . . . . 64
3.3 α-cut of a general fuzzy number . . . . . . . . . . . . . . . . . 65
3.4 Membership function of a General Fuzzy number . . . . . . . . 66
3.5 Membership function of a LFN . . . . . . . . . . . . . . . . . . 67
3.6 Triangular Fuzzy Number (TFN) . . . . . . . . . . . . . . . . . 67
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Chapter 1

Introduction
Soft Computing (SC) is the fusion of methodologies that were designed

to model and enable solutions to real world problems, which are otherwise too
difficult to formulate, mathematically. SC is a consortium of methodologies that
works synergistically and provides, in one form or another, flexible informa-
tion processing capability for handling real-life ambiguous situations. Travelling
salesman problem (TSP) is central to operations research and management sci-
ence. It is now widely recognized that some of the most successful applications
of operations research are encountered in TSP, most significantly in the airline
industry where they underlay almost every aspect of strategic, tactical and oper-
ational planning. Still there have no state of art algorithm that exactly solve TSP
in polynomial time. So in the present research, we develop different types of soft
computing methods and present some real world TSP problem as solid travelling
salesman problem, 4DTSP, etc., under stochastic as well as non stochastic uncer-
tainties. The efficiency of the proposed algorithms are tested also by solving the
standard problems taking statistical tests. These algorithms can be used to solve
the problems in other areas such as network optimization, VLSI design, etc.

1.1 Soft Computing and Uncertainties
SC is a branch, in which, it is tried to build intelligent and wiser machines.

Purity of thinking, machine intelligence, freedom to work, dimensions, complex-
ity and fuzziness handling capability increase, as we go higher and higher in the
hierarchy as shown in Fig.1.1. The final aim is to develop a computer or a ma-
chine which will work in a similar way as human beings can do, i.e. the wisdom
of human beings can be replicated in computers in some artificial manner. If a
tendency towards imprecision could be tolerated, then it should be possible to
extend the scope of the applications even to those problems where the analyti-
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cal and mathematical representations are readily available. The motivation for
such an extension is the expected decrease in computational load and consequent
increase of computation speeds that permit more robust system [73]. SC has
three main branches: fuzzy systems, evolutionary computation, artificial neural
computing, with the latter subsuming machine learning (ML) and probabilistic
reasoning (PR), belief networks, chaos theory, parts of learning theory and wis-
dom based expert system (WES), etc.

Optimization is a subject that attempts to find best possible solution for a

Figure 1.1: Componants of Soft Computing

problem. Optimization problems are quite common in computer science, when-
ever real-world applications are considered [150]. These problems are often im-
possible to resolve through an exact mathematical approach: this could be due
to the applicability of an exact optimization method, or to a time consuming
approach that do not satisfy application constraints. In such cases it could be

4



1.2. SOME COMPONENTS OF SOFT COMPUTING

necessary to perform a complete exploration of all the possible solutions in order
to find the optimal one, unacceptable in terms of time and computational costs.

Uncertainty is universal dilemma. Uncertainty intrudes into plans for the fu-
ture, interpretations of the past, and decision in the present. There are many kinds
of uncertainty. The real world values are vague, fuzzy, confidence, ambiguity, in-
consistent, incomplete, imprecise, general, anomalous, incongruent, ignorant and
irrelevant. In the present study we use interval valued, fuzzy and rough data with
their different combinations as various parameters in the optimization problem.

1.2 Some Components of Soft Computing

Fuzzy System
Fuzzy systems are a generalization of stiff Boolean logic. It uses fuzzy sets

which are a generalization of crisp sets in classical set theory. In classical set
theory, an object could just be either a member of set or not at all, in fuzzy set
theory, a given object is said to be of a certain degree of membership to the set.
Hence, in fuzzy sets, membership value of an object could be in the range 0 to 1,
but in crisp set the membership value is always 0 or 1.
Artificial Neural Networks

Artificial neural networks (ANN), or simply neural networks, can be loosely
defined as large sets of interconnected simple units which execute in parallel
to perform a common global task. These units usually undergo a learning pro-
cess which automatically updates network parameters in response to a possibly
evolving input environment. The units are often highly simplified models of the
biological neurons found in the animal brain.
Fuzzy Logic

The human beings deal with imprecise and uncertain information as we go
about our day to day routines. This can be gleaned from the language we use
which contains many qualitative and subjective words and phrases such as quite
expensive, very young, or a little far, expensive, etc. In human information pro-
cessing, approximate reasoning is used and tried to accommodate varying de-
grees of imprecision and uncertainty in the concepts and tokens of information
that we deal with in fuzzy logic.

Many applications of fuzzy systems have been flourished. These applications
include areas in industrial systems, intelligent control, decision support systems,

5



CHAPTER 1. INTRODUCTION

Table 1.1: Search Category Examples
Deterministic Stochastic
Hill-Climbing Random Mutation Hill- Climbing

Branch & Bound Tabu Search
Depth First Search Simulated Annealing

Breadth First Search Genetic Algorithms
Best First Search Monte Carlo Method

Greedy Algorithm ACO

and consumer products. Fuzzy logic-based products now account for billions of
US dollar business every year.

1.3 Biologically Inspired Methods

Biologically inspired methods is a general term pertaining to computing
which is inspired by nature. Over the last thirty years many differing strate-
gies have been developed, ranging from Artificial Neural Networks, Evolution-
ary Computation, Fuzzy Sets to Ant Colony Optimization, Genetic Algorithm
and Swarm Optimization, etc. These differing algorithms have been applied to a
number of complex problems, such as: signal and image processing, data visual-
ization, data mining, and combinatorial optimization. Some of the deterministic
examples listed in Table 1.1 attempt to limit the size of the search space by in-
corporating some domain specific information.

1.3.1 Evolutionary Computation
Evolutionary computation (EC) is a biologically inspired method of compu-

tation and has been applied to a wide variety of problems. The paradigm is in-
spired by the evolution exhibited by living organisms. It consists of a population
of individuals (solutions for a problem) on which reproduction, recombination,
mutation and selection are iteratively performed resulting in the survival of the
fittest solution occurring in the population of solutions. The EC techniques were
proposed in the late 1950s by a number of different researchers [57, 58, 38].
However the research area did not begin to gather much interest until the works
by [54] proposing evolutionary programming, Holland [68] proposing genetic al-
gorithms and Fogel [38] proposing evolutionary strategies were published. Each
of these strategies developed independently and it was not until the early 1990s
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that a generic term would itself evolve: evolutionary computation. The field of
evolutionary computation was proposed so as to unify efforts from each of the
evolutionary based search techniques.

1.3.2 Genetic Algorithm
The genetic algorithm is another machine learning technique which derives

its behaviour from an evolutionary biology metaphor. Genetic algorithms were
formalised by Holland [68] in 1975 as a model of adaptation. In simple genetic
algorithms, by Goldberg [61] randomly generated solution strings are formed
into a population. The strings are decoded and then evaluated according to a
fitness/objective function. Following this, individuals are selected to undergo
reproduction to produce offspring (individuals for the next generation). The pro-
cess of producing offspring consists of two operations. Firstly selected solution
strings are recombined using a recombination operator i.e. crossover, where two
or more parent solution strings provide elements of their string to generate a new
solution. Secondly mutation is applied to the offspring. Following the generation
of a complete population of offspring solution strings, the offspring population
replaces the parent population. Each iteration of the process is called a genera-
tion. The genetic algorithm is usually run for a fixed number of generations, or
until some criteria is met e.g.: no improvement in solutions fitness for a number
of generations.

1.3.3 Ant Colony Optimization
One of the first behaviors studied by entomologists was the ability of ants to

find the shortest path between their nest and a food source. From these studies
and observations followed the first algorithmic models of the foraging behavior
of ants developed by Marco Dorigo [41]. Collectively, algorithms that were de-
veloped as a result of studies of ant foraging behavior are referred to as instances
of the ant colony optimization heuristic (ACO) [42, 43]. Section 2.1.7 illustrates
brief discussion of ACO.

1.3.4 Particle Swarm Optimization
The particle swarm optimization (PSO) algorithm is a population-based search

algorithm based on the simulation of the social behavior of birds within a flock.
The initial intent of the particle swarm concept was to graphically simulate the
graceful and unpredictable choreography of a bird flock [81], with the aim of
discovering patterns that govern the ability of birds to fly synchronously. Here
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individuals referred to as particles, are flown through hyper-dimensional search
space. Changes to the position of particles within the search space are based on
the social-psychological tendency of individuals to emulate the success of other
individuals. The changes to particle within the swarm are therefore influenced
by the experience, or knowledge, of its neighbors.

1.4 Hybrid Intelligent Systems
In many cases, hybrid applications methods have proven to be effective

in designing intelligent systems. As it was shown in recent years, fuzzy logic,
neural networks and evolutionary computations are complementary methodolo-
gies in the design and implementation of intelligent systems. Each approach has
its merits and drawbacks. To take advantage of the merits and eliminate their
drawbacks, many ways of integrating these methodologies have been proposed
by researchers during the past few years. These techniques include the integra-
tion of neural network and fuzzy logic techniques as well as the combination of
these two technologies with evolutionary methods. The merging of ACO, GA
and PSO can be realized in different directions, resulting in systems with differ-
ent characteristics given in this thesis.

1.5 Combinatorial Optimization
The area of Combinatorial Optimization deals with algorithmic problems

of the following flavour: Find a best object in a possibly large, but finite, space.
As a subfield of mathematics, this area is relatively new, having been studied
only in the last 100 years or so. Some of the problems that we will study, along
with several problems arising in practice, are NP-hard, and so it is unlikely that
we can design exact efficient algorithms for them. For such problems, we will
study algorithms that are worst-case efficient, but that output solutions that can
be sub-optimal. We will be able, however, to prove worst-case bounds to the
ratio between the cost of optimal solutions and the cost of the solutions provided
by our algorithms. Sub-optimal algorithms with provable guarantees about the
quality of their output solutions are called approximation algorithms.

It turns out that the general TSP cannot have an efficient α-approximation
algorithm for any α that is polynomial-time computable unless P = NP. This fol-
lows from a simple reduction from the well-known NP-complete problem called
the Hamiltonian Cycle problem: the input here is a directed graph and we need
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to check if the graph contains a Hamiltonian cycle, a cycle in which each vertex
of the graph appears exactly once.

1.6 Travelling Salesman Problems
The travelling salesman problem is stated as follows: given a number of

cities with associated city to city distances, what is the shortest round trip tour
that visits each city exactly once and returns to the start city [32]. The problem
sounds quite simple, however as the number of cities in the problem increases so
too does the number of permutations of valid tours e.g. for 5 cities 12, 7 cities 360
and for 9 cities 20160 possible permutations (for a 60 city problem it is possible
that the number of permutations is of the same order of magnitude as the total
number of atoms in the universe). Thus attempting to find the minimal distance
tour in anything but very small problems is computationally expensive.

1.6.1 Historical Review of TSPs

The TSP has a long history, and this history can help in the understand-
ing of the problem and in understanding why it remains a significant problem.
The TSP on examination is firmly placed in the field of mathematics, specifically
graph theory. It has influenced many differing problems in a wide range of areas:
engineering, geography, transportation and computer science.

In graph theory, a Hamiltonian cycle is a path in an undirected graph which
visits each node exactly once and also returns to the starting node. The Hamilto-
nian cycle problem can easily be extended to form an optimization problem. If
the graph were to have weights on its edges, and suppose that the problem is to
find a Hamiltonian cycle with the minimum weight, where the weight of a cycle
is defined to be the sum of the weights on its edges, then this would be the trav-
elling salesman problem. A complete history of the TSP is difficult to compile.
The problem was originally known by a number of different names. The most
important of these was the messenger problem (Karl Menger) [19, 67, 114].

George Dantzig, Ray Fulkerson and Selmer Johnson in their paper solution
of a large-scale travelling salesman problem [31, 91] proposed a novel method
for solving instances of the TSP using linear programming. Dantzig et al. [32],
while working at the Rand Corporation, developed a technique to optimize so-
lutions for combinatorial problems called the Simplex Algorithm. The cutting-
plane method has been successfully applied to a wide range of problems in the
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combinatorial field [89]. The branch and bound technique was applied to the
TSP by Little et al. [91] in 1963. Heuristic methods and further experiments
with the cutting plane techniques made it possible to find optimal solutions for
problems up to 100 cities in size [127]. The technique that was implemented was
the cutting-plane method, as described in [91, 3, 4, 5]. This method found an
optimal solution for a 15112 city TSP problem.

1.6.2 Real world examples of TSP

Practical examples of the TSP can be observed in transport, network rout-
ing and logistical problems. There are many reasons why people wish to solve
the TSP. One reason is the abundance of day to day problems. Real life that
was motivated to work on the TSP problem so as to reduce the costs for school
bus routes in his district. One of the oldest reported of these was the attempt to
solve problems in the agriculture and the construction industries by Mahalanobis
[112] in the 1940s. In the electronics manufacturing field, component place-
ment problems, robotic arm tour problems and similar manufacturing logistical
problems are being addressed with techniques first developed for the TSP. One
industrial example is the Printed Circuit Board problem which has been exam-
ined by Queyranne et al. [140, 141]. Lawler and others [89, 3, 4] have compiled
a list of related real world problem instances, including call scheduling, delivery
of meals on wheels, container movements in a port and warehouse automated
fork-lift truck movements.

The Vehicle Routing Problem (VRP) [110] is typically bundled with the TSP.
However it differs from the TSP in a number of different ways. The VRP is a
combinatorial optimization problem that can be viewed as a combination of two
well known NP- Hard problems - the TSP and the Bin Packing Problem. The
Bin packing problem is stated as: objects of different sizes must be packed into
a finite number of bins of specified capacity V, to minimize the number of bins
used to pack all the objects [49]. The VRP is based on the problems associated
with a fleet of vehicles supplying customers in different cities across a country.
These vehicles each have a certain capacity and each customer has a certain set
of requirements. The vehicles all operate from a depot(s). For each delivery to
the customer there is a depot(s) and a distance (length, cost, time). The VRP sets
a task to find the optimal vehicle routes (minimum distance or number of vehi-
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cles). All of the itineraries for the vehicles start and end at a depot, and each must
be constructed so that each customer is visited once and by only one vehicle.

The Quadratic Assignment Problem (QAP) can also be considered a form of
TSP problem [129]. The QAP consists of a set of n facilities and a set of n loca-
tions. For each pair of locations a distance is specified. For each pair of facilities
a weight is specified (this might represent the amount of goods to be transported
between the facilities). QAP is an optimization problem where weights and the
distance for all the locations and facilities are minimize to find an optimal solu-
tion.

1.6.3 Complexity of TSP

The TSP is possible to think as a complete graph with n nodes where each
edge of the graph is assigned a weight. These weights represent the distance or
cost of moving from one node to another. The objective is to find a minimum
distance Hamiltonian Cycle of the graph. From a combinatorial view point one
might ask how many Hamiltonian Cycles must be examined in order to find a
minimum cost circuit. Computing a possible tour of the graph, it is required to
start at a particular node, from this node it is possible to visit any one of n-1 other
nodes, and following the next move, any of n-2 other nodes, etc., the total num-
ber of circuits is therefore (n-1)!. It is this factorial growth that makes the task
of solving the TSP immense even for modest n sized problems. An example of
this immense size is that for a 20 city TSP problem the total number of possible
routes is over 6x1016. This factorial growth makes using exhaustive search tech-
niques impracticable for anything but the smallest of TSP problems. For example
should it be possible always to compute a valid TSP tour in a millisecond, then
with an 8 city TSP all possible tours could be computed in 2.52 seconds, a 16
city tour in just over 20 years and a 20 city tour in just less than 2 million years.
This explosion in the number of potential tours has been one of the motivating
factors that has driven the search for fast near optimal search algorithms.

Combinatorial optimizations problems including the TSP are generally clas-
sified in accordance with their relationship with the two complexity classes P
and NP (Polynomial and Non Polynomial). The TSP is believed to be so called
NPcomplete. Researchers in the 1960s accepted that there existed a difference
between easy problems (see for example the Maxflow problem [154]) and hard
problems like the TSP. This difference was the growth of the algorithms time
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consumption as the size of the problem increased. It is convention in the litera-
ture of complexity theory [75] to consider problems as yes/no questions.

Such problems are described as decision problems and the time estimate in
determining an answer to the question is the deciding factor as to the problem
being classed as easy or hard . The group of decision problems where the answer
will be computed in polynomial time P (i.e. O(nk) where k is a constant) are
termed easy and those that can not be answered in polynomial time NP (Non-
deterministic Polynomial time) are classed as hard (e.g. O(2n)). This then raises
the question is P = NP? This is a question that has persisted for some time. It is
widely believed that P 6= NP, however this is not proven. It has been shown that
a number of problems are in NP and equally it has been shown that a number of
problems lie in P. However it is possible that a problem is in NP and in P but it
has not been proven. With regard to the TSP, the question arises whether the TSP
lies in P or in NP?

Lawler et al [89] state that a decision problem can be classed as NP should
there exist a non-deterministic algorithm that solves the problem. Cormen et al
[30] later stated that it is possible to verify that an algorithm belongs to the NP
class if there exists a polynomial time algorithm that verifies that a solution is
feasible. P class problems are therefore those that can be solved quickly and the
NP class problems are those that can be verified quickly.
Benchmark problems

The TSP can be viewed as a generalised problem; there are a number of spe-
cialised TSP problems (see Figure 1.2 for Lawlers [89] illustration). The sym-
metric TSP is highlighted because it is this type of TSP that is experimented with
in this thesis principally. A library of TSP data sets is maintained at the Uni-
versity of Heidelberg by Professor Gerhard Reinelt [143]. This library TSPLIB
[162] of problems contains both problem data and also the best known solutions
along with the tour and algorithm which generated the solution.

1.7 Some Different types of TSPs

Several types of TSP that are studied in the literature have been originated
from various real life or potential applications. Let us first consider some of these
variations that can be reformulated as a TSP using relatively simple transforma-
tions. These are TSPs with time windows [53], stochastic TSP [22], double TSP
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Figure 1.2: Graphical Representation of TSP

[137], asymmetric TSP [111, 116], TSP with precedence constraints [142, 120],
etc.

1.7.1 Multi-dimensional TSPs

(a) Classical TSP(2DTSP)
In a classical two-dimensional TSP, a salesman has to travel N cities at min-

imum cost. In this tour, salesman starts from a city, visit all the cities exactly
once and comes to the starting city using minimum cost. Let c(i, j) be the cost
for travelling from i-th city to j-th city. Then the problem can be mathematically
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formulated as:

Minimize Z =
∑
i6=j
c(i, j)xij

subject to
N∑
i=1

xij = 1 for j = 1, 2, ..., N

N∑
j=1

xij = 1 for i = 1, 2, ..., N

N∑
i∈S

N∑
j∈S

xij ≤ |S| − 1,∀S ⊂ Q

N∑
i=1

N∑
j=1

t(i, j)xij ≤ tmax

where xij ∈ {0, 1}, i, j = 1, 2.., N..



(1.1)

where xij is the decision variable and xij = 1 if the salesman travels from city-i
to city-j, otherwise xij = 0. Then the above 2DTSP reduces to

determine a complete tour (x1, x2, ..., xN , x1)

to minimize Z =
N−1∑
i=1

c(xi, xi+1) + c(xN , x1)

where xi 6= xj, i, j = 1, 2..., N.

 (1.2)

along with sub tour elimination criteria

N∑
i∈S

N∑
j∈S

xij ≤ |S| − 1,∀S ⊂ Q

where xij ∈ {0, 1}, i, j = 1, 2.., N..

 (1.3)

Later on, this constraint Equ. 1.3 is not mentioned explicitly in the formulation
different TSP models, assuming that it is automatically satisfied for a feasible
solution.

1.7.2 Proposed Solid TSP(3DTSP)

(a) Proposed Solid TSP(3DTSP)
In a Solid TSP, a salesman has to travel N cities by choosing any one of the

P types of conveyances available using minimum cost. risk/discomfort factors
in travelling from one city to another using different vehicles are different. The
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salesman should choice such a path and conveyances. Let c(i, j, k) be the cost
for travelling from i-th city to j-th city using k-th type conveyance. Then the
salesman has to determine a complete tour (x1, x2, ...,xN , x1) and corresponding
conveyance types (v1, v2, ..., vP ) to be used for the tour, where xi ∈ {1, 2, ..N}
for i = 1, 2, ..., N , vi ∈ {1, 2, ..P} for i = 1, 2, ..., N and all xi are distinct. Then
the problem can be mathematically formulated as:

Determine a complete tour (x1, x2, ..., xN , x1) using any one available cor-
responding conveyance in each step from the vehicle types (v1, v2, ..., vP ) so as

to minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (1.4)

(b) Solid TSP with restricted conveyances (3DTSPwR)
In real life, it is seen that in all stations, all types of conveyances may not

available due to the geographical position of the station,weather conditions, etc.
So it is more realistic, that restricted conveyances are available in different sta-
tions. Considering the availability of the conveyances, we design the STSP with
restricted condition as below:
Let c(i, j, k) be the cost for travelling from i-th city to j-th city using k-th type
conveyance. Then the salesman has to determine a complete tour (x1, x2, ...,xN ,
x1) and corresponding conveyance types (v1, v2, ..., vS) to be used for the tour,
where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , vi ∈ {1, 2, ..S} for i = 1, 2, ..., N and
all xis are distinct. Also vi ∈ {1, 2, ..S} provides maximum available S(≤ P)
types of conveyances. Then the problem can be mathematically formulated as:

Determine a complete tour (x1, x2, ..., xN , x1) using any one available cor-
responding conveyance in each step from the vehicle types (v1, v2, ..., vS) so as

to minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {v1, v2.., vS}

 (1.5)

(c) STSP with risk/discomfort Constraints (CSTSP)
Let c(i, j, k) be the cost for travelling from i-th city to j-th city using k-th type

conveyance and r(i, j, k) be the risk/discomfort factor in travelling from i-th city
to j-th using k-th type conveyances. Then the salesman has to determine a com-
plete tour (x1, x2, ...,xN , x1) and corresponding conveyance types (v1, v2, ..., vP )
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to be used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , vi ∈ {1, 2, ..P}
for i = 1, 2, ..., N and all xi are distinct. Then the problem can be mathemati-
cally formulated as:

Determine a complete tour (x1, x2, ..., xN , x1) using any one available cor-
responding conveyance in each step from the vehicle types (v1, v2, ..., vP ) so as

to minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

subject to
N−1∑
i=1

r(xi, xi+1, vi) + r(xN , x1, vl) ≤ rmax,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (1.6)

Where rmax is the maximum risk/discomfort factor that should be maintained by
the salesman in the entire tour to avoid unwanted situation.

1.7.3 Proposed 4 Dimensional TSP(4DTSP)

(a) Four Dimensional TSP(4DTSP)
Let c(i, j, r, k) and t(i, j, r, k) be the cost and time respectively for travelling

from i-th city to j-th city by the r-th route using k-th type conveyance. Then the
salesman has to determine a complete tour (x1, x2, ...,xN , x1) and corresponding
available route types (r1, r2, ..., rs) with conveyance types (v1, v2, ..., vp) to be
used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , ri ∈ {1, 2, ..s} and
vi ∈ {1, 2, ..p} for i = 1, 2, ..., N and all xi’s are distinct. Then the problem can
be mathematically formulated as:

minimize Z =
N−1∑
i=1

c(xi, xi+1, ri, vi) + c(xN , x1, rl, vl),

subject to
N−1∑
i=1

t(xi, xi+1, ri, vi) + t(xN , x1, rl, vl) ≤ tmax,

where xi 6= xj, i, j = 1, 2...N, ri, rl ∈ {1, 2.., or s},
vi, vl ∈ {1, 2.., or p}


(1.7)

(b) 4DTSP with Restricted Path and Time constraint
In real life, it is seen that in all stations, all types routes may not be available

due to the geographical position of the station,weather conditions, etc. So it is
more realistic, that restricted routes be considered to travel different stations. Let
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c(i, j, r, k) and t(i, j, r, k) be the cost and time respectively for travelling from i-
th city to j-th city by the r-th route using k-th type conveyance. Then the salesman
has to determine a complete tour (x1, x2, ...,xN , x1) and corresponding available
route types (rm1, rm2, ..., rms) with conveyance types (vq1, vq2, ..., vqp) providing
maximum available s1(≤ s) and p1(≤ p ) types of routes and conveyances to be
used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , rmi ∈ {1, 2, ..s1} and
vqi ∈ {1, 2, ..p1} for i = 1, 2, ..., N and all xi’s are distinct. Then the problem
can be mathematically formulated as:

minimize Z =
N−1∑
i=1

c(xi, xi+1, rmi, vqi) + c(xN , x1, rml, vql),

subject to
N−1∑
i=1

t(xi, xi+1, rmi, vqi) + t(xN , x1, rml, vql) ≤ tmax,

where xi 6= xj, i, j = 1, 2...N,m = 1, 2, ...s1 , q = 1, 2, .., p1,
rmi, rml ∈ {1, 2.., or s1}, vqi, vql ∈ {1, 2.., or p1},


(1.8)

1.7.4 Multi-TSPs

The Multiple Traveling Salesman Problem (mTSP) is a generalization of
the Traveling Salesman Problem (TSP) in which more than one salesman is al-
lowed. Given a set of cities, one depot (where m salesmen are located), and a cost
metric, the objective of the mTSP is to determine a set of routes for m salesmen
so as to minimize the total cost of the m routes. The cost metric can represent
cost, distance, or time. The requirements on the set of routes are:

-All of the routes must start and end at the (same) depot.
- Each city must be visited exactly once by only one salesman.

The mTSP is a relaxation of the vehicle routing problem (VRP), if the vehicle
capacity in the VRP is a sufficiently large value so as not to restrict the vehicle
capacity, then the problem is the same as the mTSP. Therefore, all of the formu-
lations and solution approaches for the VRP are valid for the mTSP. The mTSP
is a generalization of the TSP, if the value of m is 1, then the mTSP problem is
the same as the TSP. Therefore, all of the formulations and solution approaches
for the mTSP are valid. Bektas [10] lists a number of variations on the mTSP.
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1.7.5 Bottleneck TSPs

The Bottleneck traveling salesman problem (bottleneck TSP) is a problem in
discrete or combinatorial optimization. It is stated as follows: Find the Hamilto-
nian cycle in a weighted graph which minimizes the weight of the most weighty
edge of the cycle. The problem is known to be NP-hard. The decision problem
version of this, ”for a given length x, is there a Hamiltonian cycle in a graph g
with no edge longer than x?”, is NP-complete. In an asymmetric bottleneck TSP,
there are cases where the weight from node A to B is different from the weight
from B to A (e. g. travel time between two cities with a traffic jam in one di-
rection). Euclidean bottleneck TSP, or planar bottleneck TSP, is the bottleneck
TSP with the distance being the ordinary Euclidean distance. The problem still
remains NP-hard, however many heuristics work better. If the graph is a metric
space then there is an efficient approximation algorithm that finds a Hamiltonian
cycle with maximum edge weight being no more than twice the optimum [130].

1.8 Historical Review of Uncertain TSPs

Traveling salesman problem is a fundamental combinatorial optimization
model studied in the operations research community for nearly sixty years, yet
there is surprisingly little literature that addresses uncertainty and multiple ob-
jectives in it. The traditional TSP studies mentioned above are all assumed in
deterministic environment. However, in the real world, TSP situations are often
in deterministic, some or all of the TSPs parameters are not known with cer-
tainty at the moment we have to make decision. With the great improvement of
probability theory, the stochastic model has been widely used in many relevant
TSPs to represent the indeterminacy, including the consideration of probability
in the presence of customers Jaillet et al. [74], the demand level Bertsimas et
al. [11], the travel time Kao et al. [77], and the service time at customers site
Chang et al. [22], usually assuming a known distribution governs some of the
problems parameters. Sepideh Fereidouni [152] used a fuzzy multi-objective lin-
ear programming. Chaudhuri et al. [26], used a Fuzzy multi-objective linear
programming for TSP.
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1.9 Review of Different Heuristic Methods for TSPs

D.B. Fogel implemented one of the first successful evolutionary optimisa-
tion approaches to the TSP which he described in an evolutionary approach to the
travelling salesman problem [55] in 1988. In this paper he outlined an alternative
to the genetic operators which Holland [126] proposed in 1987. Evolution pres-
sure was provided by a single operator - mutation. This mutation operation was
loosely modelled on L. J. Fogels Evolutionary Programming restricted to single
state machines [55, 56].

The results reported by Fogel were that for 30, 50 and 75 city tours, his genetic
algorithm found solutions which were better or at worst matched the previous
best known tour lengths generated by Whitley et. al [169].

In last decades Majumder and Bhunia [111] formulated a TSP with asymmet-
ric costs and imprecise travel times and solved using GA. Moon et al. [120] ap-
plied precedence constraints before visiting the nodes/cities in a TSP and solved
using an improved GA. Xing et al. [170] presented a hybrid approach which
combines an improved GA and optimization strategies for solving the asymmet-
ric TSP (ATSP). Bai et al. [6] proposed a max-min ant colony optimization
method for the solution of ATSPs bridging the gap between hybridization and
theoretical analysis. Jula et al. [76] considered a routing problem with stochastic
travel times and time windows estimating means and variances of arrival times
at nodes and removing routes that are dominated by others. Chang et al. [59]
solved a stochastic dynamic TSP with hard time windows following more or less
same procedures of Jula et al. [76]. Chang and Mao [21] developed a modi-
fied ant algorithm to solve TSPTWs for minimum cost tour. Dong et al. [40]
proposed a new hybrid algorithm, cooperative genetic ant system to solve TSP.
Yuan et al. [176] proposed a new crossover operator called two-part chromo-
some crossover for solving the multiple travelling salesman problem (MTSP).
Recently, Miranda- Bront [118] formulated and solved a time-dependent travel-
ling salesman problem (TTSP).

Wang et al. [168] proposed an approximate method on sparse graph for TSP,
Nagata et al. [123] developed a new GA for asymmetric TSP, Che et al. [27] con-
sidered genetic simulated annealing ant colony systems with PSO to solve TSP,
Albanyrak et al. [2] developed a new mutation operator to solve TSP by GA,
Xu et al. [175] solved multi-objective problem with power station operation,
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Elaoud et al. [47] proposed multiple crossover and mutation operators with dy-
namic selection scheme in MOGA for multi- objective TSP (MOTSP), Lust et al.
[107, 108] presented two-phase Pareto local search (2PPLS) for bi objective TSP,
Filippi et al. [52] considered a Pareto ε approximation named as ABE algorithm
for MOTSP, Samanlioglu et al. [148] proposed weakly Pareto optimal solutions
for symmetric MOTSP with memetic random-key GA, Zhou et al. [187] consid-
ered multi-objective estimation of distribution algorithm based on decomposition
(MEDA/D) for some particular MOTSPs. Paquete et al. [128] analyze algo-
rithmic components of stochastic local search algorithms for the multiobjective
travelling salesman problem. A spanning tree concepy for For generation based
evolutionary algorithms, normally most of the solutions of the parent population
are replaced by children in each generation.

1.10 Motivation and Objectives of the Thesis

Motivation:
Soft Computing (SC) is a widely used technique in present research of the

optimization. Now a days SC is used to design the complex real world problems.
Again it is a part of artificial intelligence. Evolutionary computing techniques are
a part of SC. GA, ACO and PSO are the most popular evolutionary approaches
for designing and solving the complex optimization problems in present phenom-
ena. Genetic algorithms are robust adaptive optimization techniques based on a
biological paradigm. They perform efficient search on poorly-defined spaces by
maintaining an ordered pool of strings that represent regions in the search space.
Again it attempts to increase the effectiveness of the search techniques. GAs
have already been applied to several difficult search problems. Similarly, ACO
and PSO are the biologically inspired SC techniques used to solve the complex
decision making problems. The hybridization of these methods is much effective
for solving the problems. All these SC techniques elaborately are used mainly
on continuous optimization but few methods are applied in discrete optimization
problems also. So there are limited research works in discrete cases. Particularly
for GA, a lot of well known operators are available to solve both continuous and
discrete optimization problems. There is lot of scope of developing the different
GA operators and also the hybridization of GA, ACO and PSO for the optimum
solutions of NP-hard problems. This prompted us to take up research works
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to bring the different variations in the GA, ACO and PSO operators and to
make different combinations of GA, ACO and PSO to derive the near opti-
mum solution of discrete NP-hard problems.

Normally two-dimensional TSPs are available in the literature. But, in real-
life, three and four-dimensional (-3D and -4D) TSPs are in vogue. In 3DTSP,
different conveyance available at different nodes are used by the salesman for
minimum cost. In 4DTSP, in addition to availability of conveyances of the nodes,
there are different paths for travel between the nodes. Though few researchers
have considered 3DTSPs (Changder et al.,[23]) but till now, none formulated
4DTSPs. These TSPs have the wide application for medical representative, net-
work routing, transport, logistical problems and electronic manufacturing field,
etc. Again, these NP-hard problems can be formulated and solved in different
imprecise (fuzzy, rough, etc.) environments. In these cases, the costs, distances,
time, etc. of the system may be fuzzy, rough,, fuzzy-rough, etc.

So the above mentioned gaps and considerations motivated us to design differ-
ent types of GA operators and to develop different hybridization of GA, ACo and
PSO for the solution of the above mentioned TSPs. During the research period,
it is observed that to solve the discrete optimization problems by SC techniques
particularly GA, ACO and PSO, there is a lot of scope to design new operators
with different uncertain parameters and new hybridization technique.

The available data of the travelling systems, such as costs, time, risk/discom-
fort and safety factors etc. are not always exact or precise but are uncertain or
imprecise due to uncertainty in judgment, insufficient information, conditions of
road, weather condition, etc. and uncertainty of availability of travelling vehi-
cles also. This motivated us to consider some innovative TSPs in uncertain
environments like fuzzy, random, interval valued, rough, bi-fuzzy, bi-rough,
bi-random, random-fuzzy, random-rough, fuzzy-random and fuzzy-rough
etc.

Objective of the Thesis:
The main objectives of the presented thesis are:

• To formulate different types of operators of GA:
Some innovative and useful selection operators of GA such as proba-

bilistic, fuzzy age based, extended fuzzy age based, rough age based, rough
extended age based and rough set based pheromone classification for ACO
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are developed. Again new crossover as Comparison crossover and adaptive
crossover are modeled for GA. Many virgin mutation operators such as node
oriented, pm (probability of mutation) dependent and generation dependent
mutations are developed to deal with solid TSPs.

• To formulate hybridization of ACO-GA and ACO-PSO-GA:
To day in several cases, hybrid methods are effective in designing intel-

ligent systems. In real world applications, such a fusion between different
evolutionary approaches have always a concrete response to improve perfor-
mance, to reduce computational burden, or to lower the total product/pro-
cess cost. Here some needful combinations of rough set based pheromone
updated ACO with GA and three well known evolutionary approaches ACO,
PSO and GA are merged with modified version.

• To formulate different types multi-objective GA:
Though several research works have been done about multi-objective

GA, however there are some scopes of research in this field in particular
to solve solid TSPs. As in every real world problem contains some uncer-
tainty, the present investigation includes new improved of impreciseness of
the multi-objective GA. Here we tried to introduce two different types of un-
certainty i.e. fuzzy and rough in multi-objective GA, i.e. imprecise MOGA
(iMOGA) and these are used to Rough MOGA (RMOGA) and solve solid
TSPs with cost and time as two objectives along with a constraint.

• To formulate different types of TSPs:
Here we have formulated some different types of TSPs models such as

solid TSPs i.e. three dimensional TSPs (3DTSPs) where a traveler can
choose a conveyance from different types of available vehicles to journey
from one city to another city. Also we considered some constraints as time,
cost, risk and safety, etc. in constraint solid TSP (CSTSP). Again a new
model is designed such as constrained solid TSP with restricted conveyance
(CSTSPwR). For the first time, four dimensional TSPs (4DTSPs) are mod-
eled considering different paths from one city to another city, here several
also vehicles are also available along each route.

• To consider different types of uncertainties in TSPs:
Decision making with uncertainty is an emerging area. Though few re-
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search works have been done on TSPs in fuzzy and random environments,
however there are lots of scopes to do research in this area. In the present
investigation, several uncertainties are considered for 3DTSPs and 4DTSPs
such as fuzzy with possibility, necessity, expected value method and cred-
ibility approach, rough with expectation and trust measure, random with
chance constraint programming approach, interval valued with different ob-
jective model, bi-fuzzy, bi-rough, bi-random, random-fuzzy, random-rough,
fuzzy-random, fuzzy-rough environments with their different approaches.
Again for the first time, trust measures are extended with five-point scale
and seven point scale.

1.11 Organization of the Thesis

The proposed thesis has been divided into following four parts and eight
Chapters.
Part-I: Introduction and Methods /Techniques

• Chapter-1: Introduction

• Chapter-2: Heuristic Computing Methods

• Chapter-3: Some Uncertainties Environment

Part-II: Single Objective Optimization by Single/Multi- Heuristic Methods

Chapter-4: Single Objective Optimization Using Single Heuristic Methods

• Model 4.1: An Improved Genetic Algorithm and Its Application in Con-
strained Solid TSP in Uncertain Environments

• Model 4.2: An Adaptive GA to Solve Constrained Solid Travelling Sales-
man Problem in Uncertain Environments

• Model 4.3: A Modified Genetic Algorithm for solving uncertain Constrained
Solid Travelling Salesman Problems

• Model 4.4: Rough Genetic Algorithm for Constrained Solid TSP with In-
terval Valued Costs and Times
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• Model 4.5: A Rough Extended GA for Solving Constrained Solid Travel-
ling Salesman Problem Under Bi-Fuzzy Coefficients

Chapter-5: Single Objective Optimization Using Hybrid Heuristic
Techniques

• Model 5.1: An Intelligent Hybrid Algorithm for four Dimensional TSP
(4DTSP)

• Model 5.2: A new Evolutionary Hybrid Algorithm for restricted 4- Dimen-
sional TSP (r-4DTSP) in Uncertain Environment

Part-III: Multi-Objective Optimization Using a Heuristic Method

Chapter-6: Multi-Objective Optimization Using a Heuristic Algorithm

• Model 6.1: An imprecise Multi-Objective Genetic Algorithm for uncertain
Constrained Multi-Objective Solid Travelling Salesman Problem

• Model 6.2: A Rough Multi-Objective Genetic Algorithm for uncertain Con-
strained Multi-Objective Solid Travelling Salesman Problem

Part-IV: Summery and Future Research Scope

Chapter-7: Summery and Future Research Scope

Part-V: Bibliography and Index

Part-I: Introduction and Methods/ Techniques
In the first chapter, contain a brief introduction of the thesis. The general

structure of the development of soft computing techniques, combinatorial opti-
mization, TSP as NP hard problem, different uncertain environments and history
of SC techniques to solve TSP in different hybrid uncertain environments have
been discussed. In the second chapter, a brief over view about the heuristic com-
puting are presented. In chapter-3, here some mathematical prerequisite of the
uncertainty is presented.
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Chapter-1
Introduction and Methods/Techniques

This chapter contains a brief introduction giving an overview of the devel-
opment on soft computing methods with combinatorial optimization in different
hybrid uncertain environments.

Chapter-2
Some Specific Heuristics

In this chapter, study the heuristics such as Genetic Algorithm (simple GA),
Fast and Elitist Multi-Objective Genetic Algorithm, Non-dominated Sorting Ge-
netic Algorithm, Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO) briefly with their merit and demerits. Here identified the lac of these algo-
rithms to solve for particular discrete optimization problems. Also hybridization
of two or more swarm heuristics with their literature review are given.

Chapter-3
Some Uncertain Environments

In this chapter, briefly discussed different uncertainty with their combinations
as interval valued, random, fuzzy, rough, Bi-random, Bi-rough, Bi-fuzzy, Fuzzy-
rough, rough-fuzzy, fuzzy-random, random-fuzzy, rough-random and random-
rough variables. Here few proposed mathematical extension of the uncertainty
variables are presented.

Part-II: Single Objective Optimization Using
Single/Multi Heuristic Methods

Chapter-4
Single Objective Optimization using Single Heuristic Methods

In this chapter, presents the five model about the proposed Genetic algorithm
different operators such as selection, crossover and mutation with introducing
solid TSPs under crisp, fuzzy, random, random-fuzzy, fuzzy-random, bi-random,
bi-rough environment are developed and solved by the proposed models.
Model-4.1: An Improved Genetic Algorithm and Its Application in Con-
strained Solid TSP in Uncertain Environments

In this investigation, a GA is to proposed to solved the solid TSPs under dif-
ferent uncertain environments. Here proposed an improved genetic algorithm
(IGA) to solve Constrained Solid Travelling Salesman Problems (CSTSPs) in
crisp, fuzzy, rough, and fuzzy-rough environments. The algorithm is model with
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a combination of probabilistic selection, cyclic crossover, and nodes-oriented
random mutation. Here, CSTSPs in different uncertain environments have been
designed and solved by the proposed algorithm. A CSTSP is usually a travelling
salesman problem (TSP) where the salesman visits all cities using any one of
the conveyances available at each city under a constraint say, safety constraint.
Here a number of conveyances are used for travel from one city to another. . The
salesman desires to maintain certain safety level always to travel from one city
to another and a total safety for his entire tour. Costs and safety level factors for
travelling between the cities are different. The requirement of minimum safety
level is expressed in the form of a constraint. The safety factors are expressed by
crisp, fuzzy, rough, and fuzzy-rough numbers. The problems are formulated as
minimization problems of total cost subject to crisp, fuzzy, rough, or fuzzy-rough
constraints. This problem is numerically illustrated with appropriate data values.
Optimum results for the different problems are presented via IGA. Moreover, the
problems from the TSPLIB (standard data set) are tested with the proposed algo-
rithm with some statistical test.
Model-4.2: Constrained Solid Travelling Salesman Problem Using Adaptive
Genetic Algorithm in Uncertain Environment

In this model, an Adaptive Genetic Algorithm (AGA) is developed to solve
constrained solid travelling salesman problems (CSTSPs) in crisp, fuzzy and
rough environments. In the proposed AGA, we model it with probabilistic se-
lection and proposed a virgin adaptive crossover with random mutation. Present
model, CSTSPs are illustrated numerically by some empirical data using this al-
gorithm. In each environment, some sensitivity studies due to different risk/dis-
comfort factors and other system parameters are presented.
Model-4.3: A Modified Genetic Algorithm for solving uncertain Constrained
Solid Travelling Salesman Problems

The present investigation, design a Modified Genetic Algorithm (MGA) is
developed to solve Constrained Solid Travelling Salesman Problems (CSTSPs)
in crisp, fuzzy, random, random-fuzzy, fuzzy-random and bi-random environ-
ments. In the developed MGA, a probabilistic selection technique and a com-
parison crossover are used along with conventional random mutation. In CSTSP,
along each route, there may be some risk/discomfort in reaching the destination
and the salesman desires to have the total risk/discomfort for the entire tour less
than a desired value. Here we model the CSTSP with traveling costs and route
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risk/discomfort factors as crisp, fuzzy, random, random-fuzzy, fuzzy-random and
bi-random in nature. A number of benchmark problems from standard data set,
TSPLIB are tested against the existing Genetic Algorithm (with Roulette Wheel
Selection (RWS), cyclic crossover and random mutation) and the proposed algo-
rithm and hence the efficiency of the new algorithm is established. In this model,
CSTSPs are illustrated numerically by some empirical data using this algorithm.
In each environment, some sensitivity studies due to different risk/discomfort
factors and other system parameters are presented.
Model-4.4: A Rough Genetic Algorithm for Constrained Solid TSP with In-
terval Valued Costs and Times

This model presents a Rough Set based Genetic Algorithms (RSGAs) to solve
constrained Solid Travelling Salesman Problems (CSTSPs) with restricted con-
veyances (CSTSPwR) having uncertain costs and times as interval values. In
the proposed RSGAs, a rough set based age dependent selection technique and
an age oriented min-point crossover are used along with three types of pm- de-
pendent random mutations. A number of benchmark problems from standard
data set, TSPLIB are tested against the proposed algorithms and existing stan-
dard GA (SGA) and hence the efficiency of the new algorithms are established.
Here CSTSP is a STSP with a constraint (say time constraint). We have mod-
elled CSTSPwRs where some conveyances are not allowed to run in some par-
ticular routes. CSTSPwRs are formulated as constrained linear programming
problems and solved by both proposed RSGAs and SGA. These are illustrated
numerically by some empirical data and the results from the above methods are
compared. Statistical significance of the proposed algorithms are demonstrated
through statistical analysis using standard deviation (SD). Moreover, the non-
parametric test, Friedman test is performed with the proposed algorithms. In
addition, a Post Hoc paired comparison is applied and the out performance of the
RSGAs are established.
Model-4.5: A Rough extended Genetic Algorithm for Solving Constrained
Solid Travelling Salesman Problem Under Bi-Fuzzy Coefficients

In this model, a Rough extended Genetic Algorithm (ReGA) is proposed to
solve constrained solid travelling salesman problems (CSTSPs) in crisp and bi-
fuzzy coefficients. In the proposed ReGA, developed a rough set based selection
(7-point scale) technique and comparison crossover with improved generation
dependent mutation. The costs and risk/discomforts factors are in the form of
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crisp, bi-fuzzy in nature. Here CSTSPs are illustrated numerically by some stan-
dard test data from TSPLIB using ReGA. In each environment, some statistical
significance studies due to different risk/discomfort factors and other system pa-
rameters are presented with some statistical test.

Chapter-5
Single objective Optimization Using hybrid heuristic Techniques

In this chapter two hybrid heuristics are developed solved proposed four di-
mensional TSPs under bi-fuzzy and bi-rough coefficients. The first model is the
combinations of proposed ACO and GA with rough set based pheromone clas-
sifier. For the second model hybridize with another swarm intelligent approach
PSO and formed a ACO-PSO-GA based model.
Model-5.1: An Intelligent Hybrid Algorithm for 4- Dimensional TSP

Present model described, a hybridized algorithmic approach to solve 4- di-
mensional Travelling Salesman Problem (4DTSP) where different paths with
various number of conveyances are available to travel between two cities. The
algorithm is a hybridization of rough set based ant colony optimization (rACO)
with proposed genetic algorithm (GA). The initial solutions are produced by
ACO which act as a selection operation of GA after it a GA is developed with a
virgin extended rough set based selection (7-point scale), comparison crossover
and generation dependent mutation. The said hybrid algorithm rough set based
Ant Colony Optimization (rACO) with Genetic Algorithm (rACO-GA) is tested
against some test functions and efficiency of the proposed algorithm is estab-
lished. The 4DTSPs are formulated with crisp and bi-fuzzy costs. In each en-
vironment, some statistical significant studies due to different time constraint
values and other system parameters are presented. The models are illustrated
with some numerical data.
Model-5.2: A new Evolutionary Hybrid Algorithm for restricted 4-Dimensional
TSP (r-4DTSP) in Uncertain Environment

In this model, we proposed an hybridized three known soft computing tech-
nique to solve a restricted 4- dimensional TSP (r-4DTSP). Here some restrictions
on paths and conveyances are imposed. The developed hybrid methods combines
the ant colony optimization (ACO) and swap operator based particle swarm op-
timization (PSO) with modified genetic algorithm (GA). The initial solutions are
produced by ACO which used as swarm in PSO then a modified GA with virgin
selection, comparison crossover and generation dependent mutation. The said
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hybrid algorithm (ACO-PSO- GA) is tested against some test functions and ef-
ficiency of the proposed algorithm is established. The r-4DTSPs are considered
with crisp and bi-rough costs. In each environment, some statistical significant
studies due to different time constraint values and other system parameters are
presented. The models are illustrated with some numerical data.

Part-III: Multi Objective Optimization Using a Heuristic Methods
Chapter-6

Multi- objective optimization using heuristic algorithm
In this chapter contain two multi-objective GA with rough and fuzzy selection

operators is developed and solve solid TSP with cost and time as objectives under
different hybrid uncertainty.

Model-6.1: An imprecise Multi-Objective Genetic Algorithm for uncertain
Constrained Multi-Objective Solid Travelling Salesman Problem

In this model, an imprecise Multi-Objective Genetic Algorithm (iMOGA) is
developed to solve Constrained Multi-Objective Solid Travelling Salesman Prob-
lems (CMOSTSPs) in crisp, random, random-fuzzy, fuzzy-random and bi-random
environments. In the proposed iMOGA, 3 - and 5 - level linguistic based fuzzy
age oriented selection, probabilistic selection and an adaptive crossover are used
along with a new generation dependent mutation. In each environment, some
sensitivity studies due to different risk/discomfort factors and other system pa-
rameters are presented. To test the efficiency, combining same size single objec-
tive problems from standard TSPLIB, the results of such multi-objective prob-
lems are obtained by the proposed algorithm, simple MOGA (Roulette wheel se-
lection, cyclic crossover and random mutation), NSGA-II, MOEA-D/ACO and
compared. Moreover, a statistical analysis (Analysis of Variance) is carried out
to show the supremacy of the proposed algorithm.
Model-6.2: A Rough Multi-Objective Genetic Algorithm for uncertain Con-
strained Multi-Objective Solid Travelling Salesman Problem

The present model proposed a Rough Multi-Objective Genetic Algorithm (R-
MOGA) to solve Constrained Multi-Objective Solid Travelling Salesman Prob-
lems (CMOSTSPs) in rough, fuzzy rough and random rough environments. In
the proposed R-MOGA, ‘3 - and 5 - level linguistic based rough age oriented
selection’, ‘adaptive crossover’ are used along with a improved generation de-
pendent mutation. In CMOSTSP, along each route, there may be some risk/dis-
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comfort in reaching the destination and the salesman desires to have a total
risk/discomfort for the entire tour less than a desired value. Here we model the
CMOSTSP with travelling costs and times as two objectives and a constraint
for route risk/discomfort factors. The costs, times and risk/discomfort are rough,
fuzzy rough and random rough in nature. CMOSTSPs are illustrated numerically
by some empirical data using this algorithm. To test the efficiency, combining
same size single objective problems from standard TSPLIB, the results of the
such multi-objective problems are obtained by the proposed algorithm, simple
MOGA and NSGA-II compared. A statistical analysis (Analysis of Variance) is
carried out to show the efficiency of the proposed algorithm.

Part-IV: Summary and Future Research Scope
Chapter-7

Summary and Future Research scope
In this chapter a short summary with a brief future research are discussed.

Part-V: Bibliography and Index
Chapter-8

Bibliography and Index
In this chapter Bibliography and Index are presented.
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Chapter 2

Heuristic Computing Methods

2.1 Some Specific Heuristics

2.1.1 Introduction

Charles Darwinian evolution in 1859 is intrinsically a so bust search and
optimization mechanism. Darwins principle Survival of the fittest captured the
popular imagination. This principle can be used as a starting point in introduc-
ing evolutionary computation. Evolved biota demonstrates optimized complex
behavior at each level: the cell, the organ, the individual and the population. Bio-
logical species have solved the problems of chaos, chance, nonlinear interactivi-
ties and temporality. These problems proved to be in equivalence with the classic
methods of optimization. The evolutionary concept can be applied to problems
where heuristic solutions are not present or which leads to unsatisfactory results.
As a result, evolutionary algorithms are of recent interest, particularly for practi-
cal problems solving.

In this chapter some specific heuristics such as Evalutionary computation,
Genetic Algorithm, Particle Swarm optimization and Ant Colony Optimization
are described. Here, GAs are described both continuous and discrete and other
two soft computing methods PSO and ACO only discrete optimization respec-
tively. Some literature review with their hybridization are study here. Also multi-
objective genetic algorithm and its reviews are present in this section.

2.1.2 Evolutionary Computation (EC)

Evolutionary computation (EC) techniques abstract these evolutionary prin-
ciples into algorithms that may be used to search for optimal solutions to a prob-
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lem. In a search algorithm, a number of possible solutions to a problem are
available and the task is to find the best solution possible in a fixed amount of
time. For a search space with only a small number of possible solutions, all
the solutions can be examined in a reasonable amount of time and the optimal
one found. This exhaustive search, however, quickly becomes impractical as the
search space grows in size. Traditional search algorithms randomly sample or
heuristically sample the search space one solution at a time in the hopes of find-
ing the optimal solution. The key aspect distinguishing an evolutionary search
algorithm from such traditional algorithms is that it is population-based. Through
the adaptation of successive generations of a large number of individuals, an evo-
lutionary algorithm performs an efficient directed search.

Evolutionary computing began by lifting ideas from biological evolutionary
theory into computer science, and continues to look toward new biological re-
search findings for inspiration. However, an over enthusiastic biology envy can
only be to the detriment of both disciplines by masking the broader potential
for two-way intellectual traffic of shared insights and analogizing from one an-
other. Three fundamental features of biological evolution illustrate the range of
potential intellectual flow between the two communities: particulate genes carry
some subtle consequences for biological evolution that have not yet translated
mainstream EC, the adaptive properties of the genetic code illustrate how both
communities can contribute to a common understanding of appropriate evolu-
tionary abstractions, finally, EC exploration of representational language seems
pre-adapted to help biologists understand why life evolved a dichotomy of geno-
type and phenotype.

2.1.3 The Historical Development of EC

In the case of evolutionary computation, there are four historical paradigms
that have served as the basis for much of the activity of the field: genetic algo-
rithms by Holland [68], genetic programming by Koza [85, 86], evolutionary
strategies [12], and evolutionary programming (Fogel et al. [54]). The basic dif-
ferences between the paradigms lie in the nature of the representation schemes,
the reproduction operators and selection methods.
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2.1.4 Genetic Algorithm (GA)

The most popular technique in evolutionary computation research has been
the genetic algorithm. In the traditional genetic algorithm, the representation
used is a fixed-length bit string. Each position in the string is assumed to rep-
resent a particular feature of an individual, and the value stored in that position
represents how that feature is expressed in the solution. There are many types of
GA developed by the researchers such as Localized GA (LGA)[164], Adaptive
GA (AGA) [124], Enhance GA [70], Efficient GA [48, 33], a novel GA [34], Eli-
tist GA [13] etc, which are used to get the optimal solutions in different research
areas. Usually, the string is evaluated as a collection of structural features of a
solution that have little or no interactions. The analogy may be drawn directly to
genes in biological organisms. Each gene represents an entity that is structurally
independent of other genes.

The main reproduction operator used is bit-string crossover, in which two
strings are used as parents and new individuals are formed by swapping a sub-
sequence between the two strings. Another popular operator is bit-flipping muta-
tion, in which a single bit in the string is flipped to form a new offspring string. A
variety of other operators have also been developed, but are used less frequently
(e.g., inversion, in which a sub sequence in the bit string is reversed). A primary
distinction that may be made between the various operators is whether or not
they introduce any new information into the population. Crossover, for example,
does not while mutation does. All operators are also constrained to manipulate
the string in a manner consistent with the structural interpretation of genes. For
example, two genes at the same location on two strings may be swapped be-
tween parents, but not combined based on their values. Traditionally, individuals
are selected to be parents probabilistically based upon their fitness values, and
the offspring that are created replace the parents. For example, if N parents are
selected, then N offspring are generated which replace the parents in the next
generation. A GA for a particular problem must have the following six compo-
nents.

(a) A genetic representation for potential solutions(chromosomes) to the prob-
lem

(b) A way to create an initial population of potential solutions (chromosomes).

(c) A way to evaluate fitness of each solution.
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(d) An evolution function that plays the role of environment, rating solutions in
term of their fitness, i.e., selection process for mating pool.

(e) Genetic operators- crossover, mutation that alter the composition of chil-
dren

(f) Values of different parameters that the genetic algorithm uses (Population
size, probabilities of applying genetic operators etc).

(i) GA for Continuous Optimization
(a) Chromosome representation: The concept of chromosome is normally used

in the GA to stand for a feasible solution to the problem. A chromosome has the
form of a string of genes that can take on some value from a specified search
space. The specific chromosome representation varies based on the particular
problem properties and requirements. Normally, there are two types of chromo-
some representation – (i) the binary vector representation based on bits and (ii)
the real number representation. Here real number representation scheme is used.
Here, a ’K dimensional real vector’ X=(x1, x2, .... xK) is used to represent a so-
lution, where x1, x2, .... xK represent different decision variables of the problem.
(b) Initialization: A set of solutions (chromosomes) is called a population. N
such solutions X1, X2, X3, ... XN are randomly generated from search space by
random number generator such that each Xi satisfies the constraints of the prob-
lem. This solution set is taken as initial population and is the starting point for a
GA to evolve to desired solutions. At this step, probability of crossover pc and
probability of mutation pm are also initialized. These two parameters are used
to select chromosomes from mating pool for genetic operations- crossover and
mutation respectively.
(c) Fitness value: All the chromosomes in the population are evaluated using
a fitness function. This fitness value is a measure of whether the chromosome
is suited for the environment under consideration. Chromosomes with higher
fitness will receive larger probabilities of inheritance in subsequent generations,
while chromosomes with low fitness will more likely be eliminated. The selec-
tion of a good and accurate fitness function is thus a key to the success of solving
any problem quickly. In this thesis, value of a objective function due to the solu-
tion X, is taken as fitness of X. Let it be f(X).
(d) Selection process to create mating pool: Selection in the GA is a scheme
used to select some solutions from the population for mating pool. From this

34



2.1. SOME SPECIFIC HEURISTICS

mating pool, pairs of individuals in the current generation are selected as par-
ents to reproduce offspring. There are several selection schemes, such as roulette
wheel selection, local selection, truncation selection, tournament selection, etc.
Here, roulette wheel selection process is used in different cases. This process
consist of following steps-

(i) Find total fitness of the population F=
N∑
i=1

f(Xi)

(ii) Calculate the probability of selection pri of each solution Xi by the formula
pri=f(Xi)/F .

(iii) Calculate the cumulative probability qri for each solution Xi by the formula

qri=
i∑

j=0

prj

(iv) Generate a random number ’r’ from the range [0..1].
(v) If r<qr1 then select X1 otherwise select Xi(2 ≤ i ≤ N) where qri−1 ≤r<qri.

(vi) Repeat step (iv) and (v) N times to select N solutions from current popula-
tion. Clearly one solution may be selected more than once.

(vii) Let us denote this selected solution set by P 1(T ).
(e) Crossover: Crossover is a key operator in the GA and is used to exchange
the main characteristics of parent individuals and pass them on the children. It
consist of two steps:

(i) Selection for crossover: For each solution of P 1(T ) generate a random num-
ber r from the range [0, 1]. If r<pc then the solution is taken for crossover,
where pc is the probability of crossover.

(ii) Crossover process: Crossover taken place on the selected solutions. For
each pair of coupled solutions Y1, Y2 a random number c is generated from
the range [0, 1] and Y1, Y2 are replaced by their offspring’s Y11 and Y21

respectively where Y11=cY1+(1-c)Y2 , Y21=cY2+(1-c)Y1, provided Y11, Y21

satisfied the constraints of the problem.

(f) Mutation: The mutation operation is needed after the crossover operation to
maintain population diversity and recover possible loss of some good character-
istics. It is also consist of two steps:

(i) Selection for mutation: For each solution of P 1(T ) generate a random num-
ber r from the range [0, 1]. If r< pm then the solution is taken for mutation,
where pm is the probability of mutation.
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(ii) Mutation process: To mutate a solution X=(x1, x2, ., xK) select a random
integer r in the range [1, K]. Then replace xr by randomly generated value
within the boundary of rth component of X.

Following selection, crossover and mutation, the new population is ready for it’s
next iteration, i.e., P 1(T ) is taken as population of new generation. With these
genetic operations a simple genetic algorithm takes the following form. In the
algorithm T is iteration counter, P(T) is the population of potential solutions for
iteration T, Evaluate(P(T)) evaluate fitness of each members of P(T).
Simple Genetic Algorithm (SGA)

1. Set iteration counter T=0.
2. Initialize probability of crossover pc and probability of mutation pm.
3. Initialize P(T).
4. Evaluate(P(T)).
5. Repeat

a. Select N solutions from P(T), for mating pool using Roulette-wheel
selection process. Let this set be P (T )1.

b. Select solutions from P (T )1, for crossover depending on pc .

c. Made crossover on selected solutions for crossover to get population
P (T )2.

d. Select solutions from P (T )2, for mutation depending on pm .

e. Made mutation on selected solutions for mutation to get population
P (T + 1).

f. T ← T + 1.

g. Evaluate P (T ).

6. Until(Termination condition does not hold).
7. Output: Fittest solution(chromosome) of P(T).

(ii) GA for Discrete Optimization
(a) Representation: Here a complete tour on N cities represents a solution.

So an N-dimensional integer vector Xi = (xi1, xi2, ..., xiN) is used to represent
a solution, where xi1, xi2, ..., xiN represent N consecutive cities in a tour. For
solid TSP another integer vector Vk = (vk1, vk2, ..., vkN) is used to represent the
conveyances types used travel between different cities. Here vkj represents the
conveyance (an integer) used to travel from city xij to xi(j+1) for j = 1, 2, . . .
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,N-1 and vkN represents the conveyance type used to travel from city xiN to xi1.
(b) Initialization: Population size number of such solutionsXi = (xi1, xi2, ..., xiN),

i = 1, 2, . . . , pop size, are randomly generated by random number generator,
such that each solution satisfies the constraints of the problem. A separate sub
function check constraint S(Xi) is used for this purpose. For STSP another in-
teger vector Vk = (vk1, vk2, ..., vkN) is randomly generated corresponding to the
solution Xi, to represent the conveyance types used to travel between different
cities. So in that case (Xi, Vk) represent a solution.

Evaluation Process:
To find fitness of a solution Xi(xi, Vk) for STSP, the following two steps are used

• Calculate objective function value OBJi for the solution Xi(xi, Vk) for
CSTSP.

• As the problems are minimization type take MVAL − OBJi as fitness,
FITi, of Xi, (Xi, Vk) for STSP, where MVAL is a sufficiently large value
to make the fitness positive.

(c) Cyclic Crossover:
(i) Selection for crossover: For each solution of p(n) generate a random num-

ber r from the range [0, 1]. If r < pc then the solution is taken for crossover.
(ii) Crossover process: For simple TSP cyclic crossover process is used. The

cyclic crossover focuses on subsets of cities that occupy the same subset of po-
sitions in both parents. Then these cities are copied from the first parent to the
offspring (at the same positions), and the remaining positions are filled with the
cities of the second parent. In this way, the position of each city is inherited from
one of the two parents. However, many edges can be broken in the process, be-
cause the initial subset of cities is not necessarily located at consecutive positions
in the parent tours. To illustrate the process let us consider a TSP consisting of
nine cities and consider two parents PR1, PR2 as below:

PR1:1 2 3 4 5 6 7 8 9
PR2:3 4 5 1 2 9 8 7 6

Let CH1, CH2 be two children born after crossover. The mechanism of birth
of CH1, CH2 using cycle crossover is explained with the help of the following
steps:
Randomly generate an integer in the range [1 . . . 9]. Let it be 3. As PR1[3] =
3, 3rd element of CH1 is 3, i.e., CH1[3] = 3. PR2, is then searched to check for
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the presence of element 3 and it has been found in the first position. Then first
element of CH1 is selected from the first element of PR1, i.e., CH1[1] = PR1[1]
= 1. PR2, is again searched for the presence of element 1 and it has occurred at
the fourth position. Thus fourth element of PR1 has been copied as the fourth
element of CH1, i.e., CH1[4] = PR1[4] = 4. Similarly, following are obtained
CH1[2] = PR1[2] = 2, CH1[5] = PR1[5] = 5.
This completes one cycle because element 5 is seen to be present at the third
position of PR2 and the corresponding third position element of PR1 is element
3, which has already been selected as the starting element of the cycle. The re-
maining elements of CH1 are selected directly from PR2 as follows:
CH1[6] = PR2[6] = 9,CH1[7] = PR1[7] = 8
CH1[8] = PR2[8] = 7, CH1[9] = PR1[9] = 6

(d) Random Mutation
(i) Selection for mutation: For each solution of p(n) generate a random num-

ber r from the range [0, 1]. If r< pm then the solution is taken for mutation.
(ii) Mutation Process: To mutate a solution X = (x1, x2, ..., xN) of TSP with

T number of nodes, select T number of nodes randomly from the solution and just
replace their places in the solution, i.e., if randomly two nodes xi, xj are selected
then interchange xi, xj to get a child solution. The new solution, if satisfies the
constraint of the problem, replaces the parent solution. For CSTSP to mutate a
solution (X,V), where X = (x1, x2, ..., xN), at first an integer is randomly selected
in the range [1, 2]. If 1 is selected then another two random integers i, j are se-
lected in the range [1, N]. Then interchange xi, xj to get child solution. If the
child solution satisfies the constraint of the problem then it replaces the parent
solution.

2.1.5 Multi-Objective Genetic Algorithm (MOGA)

Genetic algorithms are robust search algorithms that use the operations
of natural genetics to find the optimum through a search space. Recently, GAs
have been used to solve several single and multi-objective decision making prob-
lems. In multi- objective optimization techniques (MOOTs), a Pareto Front (PF)
is generated and an optimum solution set should be very close to the true PF.
But, the above two goals are conflicting for the fixed number of functions, eval-
uations as the first property requires intensive search over a particular region of
the search space and the second one for the uniform search of the whole region.
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Thus MOOTs make a trade-off between exploration and exploitation. The first
real implication of multi-objective evolutionary algorithm (vector evaluated GA
or VEGA) was suggested by David Schaffer in 1984. Then Goldberg suggested
to implement domination principle in evolutionary algorithm (EA). Realizing the
potential of a good multi-objective evolutionary algorithm (MOEA) Deb [35] and
Rubio et al. [146] which can be derived from Goldberg’s suggestions, researchers
developed different versions of MOEAs such as multi-objective GAs (MOGAs),
Niched Pareto GAs (NPGAs) by Horn et al. [69], non-dominated sorting GAs
(NSGAs) by Deb [36], hybrid scatter search like MOGA by Durillo et al. [46],
decomposition -based MOAs like MOiA/D-DE [90], archive-based micro GAs
like AMGA2 by Tiwari et al. [160], etc. In AMGA2, a modified definition of
crowding distance for the generation of mating pool has been presented. Re-
cently, an archived -based steady-state micro genetic algorithm (ASMiGA) has
been developed with new environmental selection and mating selection strate-
gies by Nag et al. [122]. These algorithms normally select solution from parent
population for cross-over and mutation randomly. After these operations parent
and child population are combined together and among them better solutions are
selected for next iteration. Among non-elitist MOGAs Srinivas and Deb’s NSGA
(1995) is discussed here and is used to solve STSP. A fast and elitist MOGA is de-
veloped following Deb [36] and is used to solve the models also. This algorithm
is named Fast and Elitist Multi-objective Genetic Algorithm (FEMOGA).

(i) Srinivas and Deb’s NSGA

Major steps of this algorithm are discussed below-

(a) Generate randomly a population P of feasible solutions of size N of the
optimization problem under consideration.

(b) Partition P into subsets P1, P2, .., Pk such that every subset contains non-
dominated solutions but every solution of Pi is not dominated by any solu-
tion of Pi+1 for i = 1, 2, k − 1. For this purpose following steps are used:

1. Set subset counter k = 1.

2. Set solution counter i = 1 and set Pk = Φ

3. For each solution j ∈ P but, j 6= i, check if solution j dominates
solution i. If yes go to step 5.
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4. If more solutions are left in P , increase j by 1 and go to step 3; other-
wise set Pk = PkU{i}, here U stands for union.

5. Increase i by one. If i ≤ O(P ); go to step 3, where O(P ) represents
number of solutions in P.

6. P = P − Pk.
7. if P 6= Φ increase k by 1 and go to step 2.

8. P1, P2, ... Pk are the required subsets.

(c) In this step fitness is assigned to every solution of P . The fitness assign-
ment procedure begins from the first non-dominated set and successively
proceeds to dominated sets. Any solution i of the first non-dominated set,
P1, is assigned a fitness, Fi, equal to N . To keep diversity among solutions,
sharing function method is used font-wise. For this purpose following steps
are used-

1. For each solution i in the font P1, the normalized euclidean distance dij
from another solution j in the same font is calculated by the formula

dij =

√√√√ n∑
k=1

(
xik − x

j
k

xmaxk − xmink

)2

, where n is the number of components

in a solution vector and xmink , xmaxk , are the maximum and minimum
values of the kth component of the decision vector.

2. Calculate value of the sharing function σshare by the formula σshare =
0.5/ n
√
q, where q is the number of optima and q � N .

3. Calculate niche count nci for ith solution by the formula nci =
|P1|∑
j=1

sh(dij)

where sh(dij) =

 1−
(

dij
σshare

)α
if dij < σshare

0 otherwise
|P1| represents number of solutions in P1 and α is a positive real num-
ber.

4. Reduce fitness of each solution by its niche count i.e., Set Fi = Fi
nci

.
This value is called shared fitness of ith solution.
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These four steps complete the share fitness assignment procedures of all
the solutions in the first front P1. In order to proceeds to the second font,
we note the minimum fitness in the first font, P1, and then assign fitness
slightly smaller than this minimum shared fitness to every solution of P2.
This makes sure that no solution in the first font has a shared fitness value
worse than the assigned fitness of any solution in the second font. Once
again the sharing function method is applied to all the solution in the second
font and the corresponding shared fitness values are computed. This proce-
dure is continued until all solutions in all the fonts are assigned a shared
fitness.

Using the above three major steps complete NSGA procedure takes the following
form:

1. Generate randomly a population of feasible solution P of size N of the
optimization problem under consideration.

2. Choose sharing parameter σshare and a small positive number ξ, probability
of crossover pc and probability of mutation pm and α.

3. Set Fmin = N + ξ and front counter k = 1.
4. Partition P into non-dominated disjoint subsets of solutions P1, P2, . .., Pm.
5. For each solution q ∈ Pk.

(i) Assign fitness of q, F (q) = Fmin − ξ
(ii) Calculate niche count ncq.

(iii) Calculate shared fitness F (q) = F (q)/ncq.

6. Set Fmin = min{F (q) : q ∈ Pk} and k = k + 1.
7. If k ≤ m go to step 5.
8. Taking shared fitness value as fitness of a solution, select solutions for mat-

ing pool from P using Roulette wheel selection process. Let this set be P 1.
9. Select solution for crossover and mutation depending on probability of crossover
pc and probability of mutation pm.

10. Made crossover and mutation on selected solutions and replace parent solu-
tions by child solutions and let resultant set be P 2.

11. Set P = P 2 and if termination condition does not hold go to step 3.
12. Output P .
13. End Algorithm.
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It can be easily proved that maximum time complexity at different steps of the
above algorithm occurs at step-4 which is O(MN 3), where M is the number
of objectives. So overall time complexity of the algorithm is O(MN 3). In the
following section FEMOGA and it’s procedures are described. Procedures of
NSGA are same as common procedures of FEMOGA.

(ii) Fast and Elitist Multi-Objective Genetic Algorithm

This multi-objective genetic algorithm has the following two important com-
ponents.

(a) Division of a population of solutions into subsets having non-dominated
solutions: Consider a problem having M objectives and take a population
P of feasible solutions of the problem of size N . We like to partition P
into subsets F1, F2, , Fk, such that every subset contains non-dominated so-
lutions, but every solution of Fi is not dominated by any solution of Fi+1,
for i = 1, 2, ..k − 1. To do this for each solution, x, of P , calculate the
following two entities.

(i) Number of solutions of P which dominate x, let it be nx.

(ii) Set of solutions of P that are dominated by x. Let it be Sx.

The above two steps require O(MN 2) computations. Clearly F1 contains
every solution x having nx = 0. Now for each solution x ∈ F1, visit every
member y of Sx and decrease ny by 1. In doing so if for any member y,
ny = 0, then y ∈ F2. In this way F2 is constructed. The above process is
continued to every member of F2 and thus F3 is obtained. This process is
continued until all subsets are identified. For each solution x in the second
or higher level of non-dominated subsets, nx can be at most N − 1. So each
solution x will be visited at most N − 1 times before nx becomes zero. At
this point, the solution is assigned a subset and will never be visited again.
Since there is at most N − 1 such solutions, the total complexity is O(N 2).
So overall complexity of this component is O(MN 2).

(b) Determine distance of a solution from other solutions of a subset: To
determine distance of a solution from other solutions of a subset following
steps are followed:
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(i) First sort the subset according to each objective function values in as-
cending order of magnitude.

(ii) For each objective function, the boundary solutions are assigned an in-
finite distance value (a large value).

(iii) All other intermediate solutions are assigned a distance value for the
objective, equal to the absolute normalized difference in the objective
values of two adjacent solutions.

(iv) This calculation is continued with other objective functions.

(v) The overall distance of a solution from others is calculated as the sum
of individual distance values corresponding to each objective.

SinceM independent sorting of at mostN solutions (In case the subset con-
tains all the solutions of the population) are involved, the above algorithm
has O(MNlogN) computational complexity.

Using the above two operations proposed multi-objective genetic algorithm takes
the following form:

1. Set probability of crossover pc and probability of mutation pm.
2. Set iteration counter T = 1.
3. Generate initial population set of solution P (T ) of size N .
4. Select solution from P (T ) for crossover and mutation.
5. Made crossover and mutation on selected solution and get the child set
C(T ).

6. Set P1 = P (T )UC(T ) // Here U stands for union operation.
7. Divide P1 into disjoint subsets having non-dominated solutions. Let these

sets be F1, F2, ..Fk.
8. Select maximum integer n such that order of P2(= F1UF2U ... UFn) ≤ N.
9. if O(P2) < N sort solutions of Fn+1 in descending order of their distance

from other solutions of the subset. Then select first N − O(P2) solutions
from Fn+1 and add with P2, where O(P2) represents order of P2.

10. Set T = T + 1 and P (T ) = P2.
11. If termination condition does not hold go to step-4.
12. Output: P(T)
13. End algorithm.

MOGAs that use non-dominated sorting and sharing are mainly criticized for
their
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• O(MN 3) computational complexity
• non-elitism approach
• the need for specifying a sharing parameter to maintain diversity of solu-

tions in the population.
In the above algorithm, these drawbacks are overcame. Since in the above algo-
rithm computational complexity of step-7 is O(MN 2), step-9 is O(MNlogN)
and other steps are ≤ O(N), so overall time complexity of the algorithm is
O(MN 2). Here selection of new population after crossover and mutation on
old population, is done by creating a mating pool by combining the parent and
offspring population and among them, best N solutions are taken as solutions
of new population. By this way, elitism is introduced in the algorithm. When
some solutions from a non-dominated set Fj (i.e., a subset of Fj) are selected for
new population, those are accepted whose distance compared to others (which
are not selected) are much i.e., isolated solutions are accepted. In this way taking
some isolated solutions in the new population, diversity among the solutions is
introduced in the algorithm, without using any sharing function. Since compu-
tational complexity of this algorithm < O(MN 3) and elitism is introduced, this
algorithm is named as FEMOGA. Time complexity of NSGA can be reduced to
O(MN 2) if step-4 of NSGA is done following step-7 of above FEMOGA, but
need of sharing function in NSGA can not be removed. Different procedures
of the above FEMOGA are discussed in the following section. Procedures for
NSGA can easily be developed similarly.

(iii) Procedures of the proposed FEMOGA
(a) Representation: A ’K dimensional real vector’ X=(x1, x2, .... xK) is used to
represent a solution, where x1, x2, .... xK represent different decision variables of
the problem such that constraints of the problem are satisfied.

(b) Initialization: N such solutions X1, X2, X3, ...XN are randomly generated
by random number generator from the search space such that each Xi satisfies
the constraints of the problem. This solution set is taken as initial population
P(1).
(c) Crossover:

(i) Selection for crossover: For each solution of P (T ) generate a random
number r from the range [0,1]. If r < pc then the solution is taken for
crossover.

(ii) Crossover process: Crossover taken place on the selected solutions. For
each pair of coupled solutions Y1, Y2 a random number c is generated from
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the range [0,1] and offsprings Y11 and Y21 are calculated by Y11 = cY1 +
(1− c)Y2, Y21 = cY2 + (1− c)Y1.

.(d) Mutation:
(i) Selection for mutation: For each solution of P(T) generate a random num-

ber r from the range [0..1]. If r < pm then the solution is taken for mutation.
(ii) Mutation process: To mutate a solution X = (x1, x2, x3, ... xK) select a

random integer r in the range [1, K]. Then replace xr by randomly generated
value within the boundary of rth component of X.

(e) Division of P (T ) into disjoint subsets having non-dominated solutions:
Following the discussions of the previous section the following algorithm is de-
veloped for this purpose-
For every x ∈ P (T ) do

Set Sx = Φ ,where Φ represents null set
nx = 0
For every y ∈ P (T ) do

If x dominates y then
Sx = SxU{y}

Else if y dominates x then
nx = nx + 1

End if
End For
If nx = 0 then
F1 = F1U{x}

End If
End For
Set i=1
While Fi 6= Φ do

Fi+1 = Φ
For every x ∈ Fi do

For every y ∈ Sx do
ny = ny − 1
If ny = 0 then
Fi+1 = Fi+1U{y}

End If
End For
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End For
i=i+1

End While
Output:F1, F2, ...Fi−1.

(f) Determine distance of a solution of subset F from other solutions:
Following algorithm is used for this purpose-
Set n=number of solutions in F
For every x ∈ F do

xdistance = 0
End For
For every objective m do

Sort F , in ascending order of magnitude of mth objective.
F [1] = F [n] = M , where M is a big quantity.
For i=2 to n-1 do
F [i]distance = F [i]distance+(F [i+1].objm−F [i−1].objm)/(fmaxm −fminm )

End For
End For
In the algorithm F [i] represents ith solution of F , F [i].objm representmth objec-
tive value of F [i]. fmaxm and fminm represent the maximum and minimum values
of mth objective function.

2.1.6 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a population based stochastic opti-
mization technique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired
by social behavior of bird flocking or fish schooling. PSO shares many similari-
ties with evolutionary computation techniques such as Genetic Algorithms (GA).
The system is initialized with a population of random solutions and searches for
optima by updating generations. However, unlike GA, PSO has no evolution op-
erators such as crossover and mutation. In PSO, the potential solutions, called
particles, fly through the problem space by following the current optimum parti-
cles.

In past several years, PSO has been successfully applied in many research
and application areas. It is demonstrated that PSO gets better results in a faster,
cheaper way compared with other methods. Another reason that PSO is attrac-
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tive is that there are few parameters to adjust. One version, with slight variations,
works well in a wide variety of applications. Particle swarm optimization has
been used for approaches that can be used across a wide range of applications, as
well as for specific applications focused on a specific requirement.

This is performed by particles in multidimensional space that have a position
and a velocity. These particles are flying through hyperspace (i.e., n) and have
two essential reasoning capabilities: their memory of their own best position and
knowledge of the swarms best, best simply meaning the position with the small-
est objective value. Members of a swarm communicate good positions to each
other and adjust their own position and velocity based on these good positions.

Each particle keeps track of its coordinates in the problem space which are as-
sociated with the best solution (fitness) it has achieved so far. (The fitness value
is also stored.) This value is called pbest. Another best value that is tracked by
the particle swarm optimizer is the best value, obtained so far by any particle in
the neighbours of the particle. This location is called lbest. when a particle takes
all the population as its topological neighbors, the best value is a global best and
is called gbest.

Consider swarm of particles is flying through the parameter space and search-
ing for optimum. Each particle is characterized by,

Position vector . . . .. xi (t)
Velocity vector . . . . . . vi (t)

During the process, each particle will have its individual knowledge pbest,
i.e., its own best-so-far in the position and social knowledge gbest i.e., pbest of
its best neighbor as
Performing the velocity and position update, using the formula given below,

{
Vi(t+ 1) = wVi(t) + c1r1(Xpbest(t)−Xi(t)) + c2r2(Xgbest(t)−Xi(t)),
Xi(t+ 1) = Xi(t) + Vi(t+ 1)

}
(2.1)

where α is the inertia weight that controls the exploration and exploitation of the
search space. c1 and c2, the cognition and social components respectively are the
acceleration constants which changes the velocity of a particle towards the pbest
and gbest, rand is a random number between 0 and 1.

PSO utilizes several searching points like genetic algorithm (GA) and the
searching points gradually get close to the optimal point using their pbests and
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the gbest. The first term of first equation RHS of Equ. 2.1 is corresponding to
diversification in the search procedure. The second and third terms of that are
corresponding to intensification in the search procedure. Namely, the method
has a well balanced mechanism to utilize diversification and intensification in the
search procedure efficiently. The original PSO can be applied to the only con-
tinuous problem. However, the method can be expanded to the discrete problem
using discrete number position and its velocity easily.
Basic Flow of Particle Swarm Optimization:

The basic operation of PSO is given by,

• Step 1. Initialize the swarm from the solution space

• Step 2. Evaluate fitness of individual particles

• Step 3. Modify gbest, pbest and velocity

• Step 4. Move each particle to a new position

• Step 5. Goto step 2, and repeat until convergence or stopping condition is
satisfied

The pseudo code of the procedure is as follows
For each particle

Initialize particle
END
Do

For each particle
Calculate fitness value
If the fitness value is better than the best fitness value
(pbest) in history set current value as the new pbest

End
Choose the particle with the best fitness value of all the
particles as the gbest
For each particle
Calculate particle velocity according equation 2.1
Update particle position according equation 2.1
End
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While maximum iterations or minimum error is not attained

Particles velocities on each dimension are clamped to a maximum velocity
Vmax. If the sum of accelerations would cause the velocity on that dimension to
exceed Vmax, which is a parameter specified by the user. Then the velocity on
that dimension is limited to Vmax.

Applications of PSO

PSO has been successfully applied in many areas: function optimization,
artificial neural network training, fuzzy system control, and other areas where GA
can be applied. The various application areas of Particle Swarm Optimization
include are Power Systems operations and control, NP-Hard combinatorial prob-
lems, Job Scheduling problems, Vehicle Routing Problems, Mobile Networking,
Modelling optimized parameters, Batch process scheduling, Multi-objective op-
timization problems and Image processing, Pattern recognition problems and so
on. Currently, several researchers are being carried out in the area of particle
swarm optimization and hence the application area also increases tremendously.

2.1.7 Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is a population-based, general search
technique for the solution of difficult combinatorial problems, which is inspired
by the pheromone trail laying behavior of real ant colonies. In ACO, a set of soft-
ware agents called artificial ants search for good solutions to a given optimization
problem. To apply ACO, the optimization problem is transformed into the prob-
lem of finding the best path on a weighted graph. The artificial ants (hereafter
ants) incrementally build solutions by moving on the graph. The solution con-
struction process is stochastic and is biased by a pheromone model, that is, a set
of parameters associated with graph components (either nodes or edges) whose
values are modified at run time by the ants.

Historical study of ACO

In the 40s and 50s of the 20th century, the French entomologist Pierre-Paul
Grass observed that some species of termites react to what he called significant
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Table 2.1: Development of various ACO Algorithms
ACO Algorithm Authors Year

Ant System Dorigo, Maniezzo & Colomi 1991
Elitist AS Dorigo 1992

Ant-Q Gambardella & Dorigo 1995
Ant Colony System Dorigo & Gambardella 1996

MMAS Sttzle & Hoos 1996
Rank-based AS Bullnheimer, Hartl & Strauss 1997

ANTS Maniezzo 1998
Best-Worst AS Cordn, et al. 2000

Hyper-cube ACO Blum, Roli, Dorigo 2001

stimuli. He observed that the effects of these reactions can act as new significant
stimuli for both the insect that produced them and for the other insects in the
colony. Grass used the term stigmergy to describe this particular type of com-
munication in which the workers are stimulated by the performance they have
achieved.

ACO is a class of algorithms, whose first member, called Ant System, was
initially proposed by Colorni, Dorigo and Maniezzo. The main underlying idea,
loosely inspired by the behavior of real ants, is that of a parallel search over
several constructive computational threads based on local problem data and on a
dynamic memory structure containing information on the quality of previously
obtained result. The collective behavior emerging from the interaction of the dif-
ferent search threads has proved effective in solving combinatorial optimization
(CO) problems. Different ant colony optimization algorithms have been pro-
posed. The original ant colony optimization algorithm is known as Ant System
and was proposed in the early 90s. Since then, a number of other ACO algorithms
were introduced. Table 2.1 gives a list of successful variants of Ant Colony Op-
timization Algorithms. Also Table 2.2 gives several applications of ACO.
Characteristics of Ant Colony Optimization:

The characteristics of ant colony optimization are as follows:

• Natural algorithm since it is based on the behavior of real ants in estab-
lishing paths from their colony to source of food and back.

• Parallel and distributed since it concerns a population of agents moving
simultaneously, independently and without a supervisor

• Cooperative since each agent chooses a path on the basis of the informa-
tion, pheromone trails laid by the other agents, which have previously se-
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lected the same path. This cooperative behavior is also auto catalytic, i.e.,
it provides a positive feedback, since the probability of choosing a path in-
creases with the number of agents that previously chose that path.

• Versatile that it can be applied to similar versions of the same problem; for
example, there is a straightforward extension from the traveling salesman
problem (TSP) to the asymmetric traveling salesman problem (ATSP).

• Robust that it can be applied with minimal changes to other combinatorial
optimization problems such as quadratic assignment problem (QAP) and
the jobshop scheduling problem (JSP).

Ant System:

Ant System is the first ACO algorithm proposed in the literature.Ant Sys-
tem applied to traveling Salesman problem is discussed here. Its main character-
istic is that, at each iteration, the pheromone values are updated by all the m ants
that have built a solution in the iteration itself. The pheromone ij associated with
the edge joining cities i and j, is updated as follows:

τij = (1− ρ).τij +
∑

∆τ kij } (2.2)

where ρ is the evaporation rate, m is the number of ants, and ∆τ kij is the quantity
of pheromone laid on edge (i, j) by ant k:

∆τ kij =

{
Q/Lk if ant k used edge(i, j) in its tour,
0, otherwise

(2.3)

Where Q is a constant, and Lk is the length of the tour constructed by ant k.
In the construction of a solution, ants select the following city to be visited

through a stochastic mechanism. When ant k is in city i and has so far constructed
the partial solution sp probability of going to city j is given by:

pkij =

{
ταij .η

β
ij∑

ταij .η
β
ij

if cij ∈ N(sp),

0, otherwise
(2.4)

where N(sp) is the set of feasible components; that is, edges ( i, 1 ) where 1 is
the city not yet visited by the ant k. The parameters α and β control the relative
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importance of the pheromone versus the heuristic information ηij, which is given
by,

ηij =
{

1
dij

(2.5)

where dij is the distance between cities i and j.

Ant Colony System (ACS)

The most interesting contribution of ACS is the introduction of a local
pheromone update in addition to the pheromone update performed at the end of
the construction process (called offline pheromone update). The local pheromone
update is performed by all the ants after each construction step. Each ant applies
it only to the last edge traversed:

τij = (1− φ).τij + φτ0 (2.6)

where φ ∈ (0, 1)is the pheromone decay coefficient, and τ0 is the initial value of
the pheromone.

The main goal of the local update is to diversify the search performed by
subsequent ants during an iteration: by decreasing the pheromone concentration
on the traversed edges, ants encourage subsequent ants to choose other edges and,
hence, to produce different solutions. This makes it less likely that several ants
produce identical solutions during one iteration. The offline pheromone update
is applied at the end of each iteration by only one ant, which can be either the
iteration-best or the best-so-far. However, the update formula is:

τij =

{
(1− ρ).τij + ρ.∆τij if (i, j) belongs to best tour,
τij, otherwise

(2.7)

where ∆τij = 1
Lbest

, where Lbest can be either Lib or Lbs. Lbest is the length of
the tour of the best ant. This may be (subject to the algorithm designer decision)
either the best tour found in the current iteration-best, Lib -or the best solution
found since the start of the algorithm-so-far, Lbest or a combination of both.

Another important difference between ACS and AS is in the decision rule
used by the ants during the construction process. In ACS, the so-called pseudo
random proportional rule is used: the probability for an ant to move from city i
to city j depends on a random variable q uniformly distributed over [0, 1], and
a parameter q0; if q ≤q0, then j = argmaxcij∈N(sp){τilηβil} otherwise Equ. 2.3 is
used.
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Basic Flow of ACO

The basic operational flow in Ant Colony Optimization is as follows

• Step1. Represent the solution space by a construction graph

• Step 2. Initialize ACO parameters

• Step 3. Generate random solutions from each ants random walk

• Step 4. Update pheromone intensities

• Step 5. Goto Step 3, and repeat until convergence or a stopping condition is
satisfied

The step by step procedure to solve combinatorial optimization problems us-
ing ACO in a nutshell is:

• Represent the problem in the form of sets of components and transitions or
by means of a weighted graph that is travelled by the ants to build solutions.

• Appropriately define the meaning of the pheromone trails, i.e., the type of
decision they bias. This is a crucial step in the implementation of an ACO
algorithm. A good definition of the pheromone trails is not a trivial task and
it typically requires insight into the problem being solved.

• Appropriately define the heuristic preference to each decision that an ant
has to take while constructing a solution, i.e., define the heuristic infor-
mation associated to each component or transition. Notice that heuristic
information is crucial for good performance if local search algorithms are
not available or can not be applied.

• If possible, implement an efficient local search algorithm for the problem
under consideration, because the results of many ACO applications to NP-
hard combinatorial optimization problems show that the best performance
is achieved when coupling ACO with local optimizers.

• Choose a specific ACO algorithm and apply it to the problem being solved,
taking the previous aspects into consideration.
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Table 2.2: Applications of ACO algorithms
Problem Type Problem name Authors Year

Routing TSP Dorigo et al. 1991, 1996
Multi-objective TSP Ariyasingha et al. 2015

Evacuation path optimization Liu & Zhang 2016
Dynamic location routing Gao et al. 2016

Dorigo & Gambardella 1997
Stotzile& Hods 1997,2000

Vehicle routing Gambardella et al. 1999
Reimann et al. 2004

Sequential Ordering Gambardella & Dorigo 2000
Order batching Cheng et al. 2015

Assignment Quadratic Assignment Stutzle & Hobbs 2000
Maeinezzo 1999

Course Timetabling Socha et al 2002,2003
Graph Coloring Costa & Hertz 1997

Scheduling Project Scheduling Merkle et al 2002
Total Weighted Tardiness Den Bestern et al 2000
Total Weighted Tardiness Merkle & Midderdonf 2000

Open Shop Blum 2005
Grid scheduling Tiwari & Vidyarthi 2016

Set Covering Lessing et al 2004
Subset j-Cardinality Tree Blum & Blesa 2005

Multiple Knapsack Leguizamon & Michlewicz 1999
Maximum Clique Fenet & Solnon 2003

Constraint Stratification Solnon 2000,2002
Other Classification Rules Parpenlie et al 2002

Bayesian Network & Campos et al 2002
Protein Folding Shymgelska 2005

Protein-Ligand Docking Korb et al 2006
High Dimensional Design Borrotti et al. 2016

Software Design Tawosi et al. 2015
Graph Clustering Moradi et al. 2015
Traffic Control Dias & Machado et al. 2014

Inventory Control Nia & Far et al. 2014
Pattern Recognition Liu et al. 2015
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2.2 Some Hybrid Heuristics

2.2.1 Introduction

Traditional methods of optimization are not robust to dynamic changes in
the environment and they require a complete restart for providing a solution. In
contrary, evolutionary computation can be used to adapt solutions to changing
circumstances. Hybridization of evolutionary algorithms is getting popular due
to their capabilities in handling several real world problems involving complex-
ity, noisy environment, imprecision, uncertainty and vagueness. Usually grouped
under the term evolutionary computation or evolutionary algorithms, we find the
domains of genetic algorithms [68], evolution strategies [144, 151], evolutionary
programming [54], and genetic programming [85, 86]. They all share a common
conceptual base of simulating the evolution of individual structures via processes
of selection, mutation, and reproduction.

For several problems, a simple Evolutionary algorithm might not be good
enough to find the desired solution. As reported in the literature, there are sev-
eral types of problems where a direct evolutionary algorithm could fail to obtain
a convenient (optimal) solution [95, 106, 157, 161]. This clearly paves way to the
need for hybridization of evolutionary algorithms with other optimization algo-
rithms, machine learning techniques, heuristics etc. Some of the possible reasons
for hybridization are as follows [155]:

• To improve the performance of the evolutionary algorithm (example: speed
of convergence)

• To improve the quality of the solutions obtained by the evolutionary algo-
rithm

• To incorporate the evolutionary algorithm as part of a larger system

From a problem solving perspective, it is difficult to formulate a universal op-
timization algorithm that could solve all the problems. Hybridization may be the
key to solve practical problems. Evolutionary algorithms may be hybridized by
using operators from other algorithms (or algorithms themselves) or by incorpo-
rating domain-specific knowledge. Adaptive evolutionary algorithms have been
built for inducing exploitation/exploration relationships that avoid the premature
convergence problem and optimize the final results.
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As reported in the literature, several techniques and heuristics/meta heuristics
have been used to improve the general efficiency of the evolutionary algorithm.
Some of most used hybrid architectures are summarized as follows:

• Hybridization between an evolutionary algorithm and another evolutionary
algorithm (example: a genetic programming technique is used to improve
the performance of a genetic algorithm)

• Neural network assisted evolutionary algorithms

• Fuzzy logic assisted evolutionary algorithm

• Particle swarm optimization (PSO) assisted evolutionary algorithm

• Ant colony optimization (ACO) assisted evolutionary algorithm

• Bacterial foraging optimization assisted evolutionary algorithm

• Hybridization between evolutionary algorithm and conventional optimiza-
tion techniques

• Hybridization between evolutionary algorithm and other heuristics (such
as local search, tabu search, simulated annealing, hill climbing, dynamic
programming, greedy random adaptive search procedure, etc).

The integration of different learning and adaptation techniques, to overcome
individual limitations and achieve synergetic effects through hybridization or fu-
sion of these techniques, has in recent years contributed to a large number of
new hybrid evolutionary systems. Most of these approaches, however, follow
an ad hoc design methodology, further justified by success in certain application
domains. Due to the lack of a common framework, it remains often difficult to
compare the various hybrid systems conceptually and evaluate their performance
comparatively. There are several ways to hybridize a conventional evolutionary
algorithm for solving optimization problems.

Tan et al. [158] proposed a two-phase hybrid evolutionary classification tech-
nique to extract classification rules that can be used in clinical practice for better
understanding and prevention of unwanted medical events. In the first phase, a
hybrid evolutionary algorithm is used to confine the search space by evolving a
pool of good candidate rules. Zmuda et al.[190] proposed an hybrid evolution-
ary learning scheme for synthesizing multiclass pattern recognition systems. A
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considerable effort is spent for developing complex features that serve as inputs
to a simple classifier back end. The nonlinear features are created using a com-
bination of genetic programming [85, 86] to synthesize arithmetic expressions,
genetic algorithms [68] to select a viable set of expressions, and evolutionary
programming [55, 56] to optimize parameters within the expressions. PSO in-
corporates swarming behaviors observed in flocks of birds, schools of fish, or
swarms of bees, and even human social behavior, from which the idea is emerged
[29, 81, 82]. The main steps of the hybrid approach are depicted below [153]:

• Initialize EA and PSO subsystems.

• Execute EA and PSO simultaneously.

• Memorize the best solution as the final solution and stop if the best individ-
ual in one of the two subsystems satisfies the termination criterion.

• Perform the hybrid process if generations could be divided exactly by the
designated number of iterations N. Select P individuals from both sub sys-
tems randomly according to their fitness and exchange.

A hybrid technique combining GA and PSO called genetic swarm optimization
(GSO) was proposed by Grimaldi et al. [63] for solving an electromagnetic opti-
mization problem. The method consists of a strong co-operation of GA and PSO,
since it maintains the integration of the two techniques for the entire run. In each
iteration, the population is divided into two parts and they are evolved with the
two techniques, respectively.

Tseng and Liang [161] proposed a hybrid approach that combines (ACO),
the genetic algorithm (GA) and a Local Search (LS) method. The algorithm is
applied for solving the Quadratic Assignment Problem (QAP). Instead of start-
ing from a population that consists of randomly generated chromosomes, GA
has an initial population constructed by ACO in order to provide a good start.
Pheromone acts as a feedback mechanism from GA phase to ACO phase. When
GA phase reaches the termination criterion, control is transferred back to ACO
phase. Then ACO utilizes pheromone updated by GA phase to explore solution
space and produces a promising population for the next run of GA phase. The
local search method is applied to improve the solutions obtained by ACO and
GA. Another hybrid approach for the same problem were proposed by Vasquez
and Whitley [165] where GA is combined with Tabu Search. Ahuja et al. [1]
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used a greedy genetic algorithm. Recently Renato et al. [145] prosed an hybrid
evolutionary approach for Traveling Car Renter Problem. Prodhon et al. [138]
proposed an hybrid approaches for periodic location-routing problem. Ma et al.
[109] described a Hybrid biogeography-based evolutionary algorithms. Koc et
al. [83] approached a hybrid evolutionary algorithm for heterogeneous fleet ve-
hicle routing problems with time windows. A Hybrid evolutionary fuzzy learning
scheme in the applications of TSPs is proposed by Feng et al [51]. Psychas et al.
[131] proposed a hybrid technique for multi-objective TSP.

2.2.2 ACO-GA

This part is presented in Chapter 5 for Model 5.1.

2.2.3 ACO-PSO-GA

This part is presented in Chapter 5 in for Model 5.2.
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Chapter 3

Some Uncertain Environments

3.1 Crisp Set Theory

Crisp Set: By crisp one mean dichotomous, that is, yes or no type rather than
more-or-less type. In conventional dual logic, for instance, a statement can be
true or false and nothing in between. In set theory, an element can either belongs
to a set or not; and in optimization, a solution is either feasible or not. A classical
set, X , is defined by crisp boundaries, i.e., there is no uncertainty in the prescrip-
tion of the elements of the set. Normally it is defined as a well defined collection
of elements or objects, x ∈ X , where X may be countable or uncountable.

Convex Set: A subset S ⊂ <n is said to be convex, if for any two points x1, x2

in S, the line segment joining the points x1 and x2 is also contained in S. In other
words, a subset S ⊂ <n is convex, if and only if

x1, x2 ∈ S ⇒ λx1 + (1− λ)x2 ∈ S; 0 ≤ λ ≤ 1.

Convex Combination: Given a set of vectors {x1, x2, · · · , xn}, a linear combi-
nation x = λ1x1 +λ2x2 + · · ·+λnxn is called a convex combination of the given

vectors, if λ1, λ2, · · · , λn ≥ 0 and
n∑
i=1

λi = 1.

Convex function: The function f : S → < is said to be convex if for any
x1, x2 ∈ S and 0 ≤ λ ≤ 1, implies that

f{(1− λ)x1 + λx2} ≤ (1− λ)f(x1) + λf(x2).

The Graphical representation of Convex Function is depicted in Figure 3.1.
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Figure 3.1: Graphical representation of Convex Function

Quasi-convex function: The function f(x) is said to be quasi-convex if for any
x1, x2 ∈ S and 0 ≤ λ ≤ 1,

f((1− λ)x1 + λx2) ≤ max (f(x1), f(x2)).

It is noted that a convex function is also quasi-convex since

f((1− λ)x1 + λx2) < (1− λ)f(x1) + λf(x2) < max (f(x1), f(x2)).

Pseudo-convex function: The function f(x) is said to be pseudo-convex func-
tion if for any x1, x2 ∈ S, f(x2) ≥ f(x1) implies that (x2 − x1)

T∇f(x1) ≥ 0.

The definition of convex functions can be modified for concave functions by
replacing ′ ≤′ by ′ ≥′. Correspondingly, the definition of quasi-convex functions
becomes appropriate for quasi-concave functions by the exchange of ′ ≤′ to ′ ≥′
and ‘max’to ‘min’. In the definition of pseudo-convex functions, ′ ≥′ is replaced
by ′ ≤′ to get the definition for pseudo-concave functions.

3.2 Interval Arithmetic

An order pair of brackets defines an interval A = [aL, aR] = {a : aL ≤ a ≤
aR} where aL and aR are respectively left and right limits of A. Throughout this
section lower case letters denote real numbers and upper case letter denote closed
intervals.
To represent an unknown number as an approximation plus/minus an error bound,
the midpoint Ǎ and with of an interval A are respectively introduced as
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Ǎ ≡ mid(x) = aL+aR
2 , and wid(A)=aR − aL.

Hence A can be represented as
Á=[Ǎ, wid(A)]=〈 ac, aw〉.

Definition 3.1 Let ∗ ∈ {+,−, ., /} be a binary operation on the set of positive
real numbers. IfA andB are closed intervals thenA∗B = {a∗b : a ∈ A, b ∈ B}
defines a binary operation on the set of closed intervals [119]. In the case of
division, it is assumed that 0 /∈ B. The operations on intervals used here may be
explicitly calculated from the above definition as

A+B = [aL, aR] + [bL, bR] = [aL + bL, aR + bR]

A−B = [aL, aR]− [bL, bR] = [aL − bR, aR − bL]

A.B = [aL, aR].[bL, bR] = [min{aLbL, aLbR, aRbL, (3.1)
aRbR},max{aLbL, aLbR, aRbL, aRbR}]

A

B
=

[aL, aR]

[bL, bR]
= [aL, aR].[

1

bR
,

1

aR
], (3.2)

where 0 /∈ B

kA =

 [kaL, kaR], for k ≥ 0
(kaR, kaL), for k < 0
where k is a real number.

Order relations between intervals:
Here, the order relations which represent the decision-maker’s preference be-

tween interval costs are defined for minimization problems. Let the uncertain
costs for two alternatives be represented by intervals A and B respectively. It is
assumed that the cost of each alternative is known only to lie to the correspond-
ing interval. The order relation by the left and right limits of interval is defined
in Definition 3.2.

Definition 3.2 The order relation ≤LR between A = [aL, aR] and B = [bL, bR] is
defined as

A ≤LR B iff aL ≤ bL and aR ≤ bR

A <LR B iff A ≤LR B and aR 6= bR

The order relation ≤LR represents the DM’s performance for the alternative with
the lower minimum cost, that is, if A ≤LR B, then A is preferred to B.
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The operations on intervals used in this thesis may be explicitly calculated for
two interval numbers, A=[aL,aR], B=[bL,bR] and Á=〈 ac,aw〉, B́=〈 bc,bw〉 from
above definition as:

Á+B́=〈 ac, aw〉+〈 bc, bw〉=〈 ac+bc, aw+bw〉,
=[kaR, kaL], for k < 0,

kÁ=k〈 ac,aw〉 =〈 kac,|k|aw〉, where k is a real number

 (3.3)

Let the uncertain costs from two alternatives be represented by two closed
intervals Á=〈 ac,aw〉, B́=〈 bc,bw〉 respectively. It also assumed that the cost of
each alternative lies in the corresponding interval. These two intervals Á and B́
any be of the following three types:

Type I: Both the intervals are disjoint.
Type II: Intervals are partially overlapping.
Type III: One interval is contained in the other.

In optimistic decision making, the decision maker (DM) expects the lowest
cost ignoring the uncertainty. According to Majumder et al. [111] the order
relations of the interval numbers for minimization problems in case of optimistic
decision making are as follows:

Definition 3.3 (Majumder et al. [111]) Let us define the order relation ≤ omin

between A=[aL, aR] and B=[bL, bR] as

A ≤ ominB ↔ aL ≤ bL
A ≤omin B ↔ A ≤omin B ∧ A 6= B.

}
(3.4)

Pessimistic decision making
For pessimistic decision making, the DM expects the minimum cost for min-

imization problems according to the principle ”Less uncertainty is better than
more uncertainty”. According to Karmakar et al. [78] and Majumder et al. [111],
the order relations of interval numbers for minimization problems in case of pes-
simistic decision making are as follows:

Definition 3.4 (Majumder et al. [111]) Let us define the order relation ≤pmin
between Á=〈 ac,aw〉 and B́=〈 bc,bw〉 as

Á ≤pmin B́ ↔ ac ≤ bc for Type I and Type II intervals
Á ≤pmin B́ ↔ (ac ≤ bc)∧(aw < bw) for Type III intervals.

}
(3.5)
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Table 3.1: Probability Distribution
Discrete distribution Continuous distribution
Discrete uniform distribution Uniform (or rectangular) distribution
Binomial distribution Normal (or Gaussian) distribution
Geometric distribution Gamma distribution
Multimodular distribution Exponential distribution
Poisson distribution Laplace distribution
Hypergeometric distribution Weibull distribution
Negative binomial Rayleigh distribution
or Pascal’s distribution Beta distribution

However, for Type III intervals with (ac ≤ b c)∧(aw < bw), the pessimistic deci-
sion cannot be taken. Here, the optimistic decision is to be considered.
Remark 3.2.1: Now as the interval valued objectives are not well defined, so
we use common features of arithmetic mean(AM) and geometric mean(GM) as
follows:
Let A = [aL, aR] be a common interval for a particular objective function. Since
we know that for a minimization problem,

AM ≥ GM ⇒ m1∗aL+m2∗aR
m1+m2

≥ (am1

L ∗ a
m2

R )
1

m1+m2

}
(3.6)

determine the minimum of the objective function (am1

L ∗ a
m2

R )
1

m1+m2 , here m1 and
m2 are the given weights.

3.3 Probability Distribution

There are several types of probability distributions for describing various
types of discrete and continuous random variables. Some of common distribu-
tions are shown in Table-3.1. In any physical problem, one chooses a particular
type of probability distribution depending on (i) the nature of the problem, (ii)
the underlying assumptions associated with the distribution of the parameters,
(iii) the shape of the graph between the probability density function f(x) (or
distribution function F (x)) and x obtained after plotting the available data and
(iv) the convenience and simplicity afforded by the distribution. In this thesis,
only Normal distributions have been used.
Normal Distribution

The best known and most widely used probability distribution is the Normal
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distribution. The density function of the normal distribution is a bell-shaped sym-
metrical curve about mean and its probability density function with parameters
m and σ(> 0) is defined as:

f(x) =
1

σ
√

2π
exp

{
−(x−m)2

2σ2

}
where −∞ < x <∞, mean = m and variance = σ2.

Figure 3.2: Graphical representation Normal Distrubition

The notation N(m,σ) is usually used to represent a normal distribution with mean
m and standard deviation σ and its density function is a bell-shaped symmetrical
curve about m (cf., Fig 3.2).

3.4 Fuzzy Set Theory

The notion of fuzzy set has been introduced by Lotfi Zadeh [178] in order
to formalize the concept of gradedness in class membership, in connection with
the representation of human knowledge. It was developed to define and solve
the complex system with sources of uncertainty or imprecision which are non-
statistical in nature. The term FUZZY was proposed by Prof. L, A. Zadeh in
1962 (Zadeh [177]). A short delineation of the fuzzy set theory is given below.

Definition 3.5 α - Cut of a fuzzy number
A α- cut of a fuzzy number Ã in X is denoted by Aα and is defined as the
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3.4. FUZZY SET THEORY

following crisp set (cf. Fig 3.5):

Aα = {x : µÃ(x) ≥ α, x ∈ X} where α ∈ [0, 1]

Aα is a non-empty bounded closed interval contained in X and it can be denoted
by Aα = [AL(α), AR(α)]. AL(α) and AR(α) are the lower and upper bounds
of the closed interval respectively. Fig 3.5 shows a fuzzy number Ã with α-cuts
Aα1

= [AL(α1), AR(α1)], Aα2
= [AL(α2), AR(α2)]. It is seen that if α2 ≥ α1

then AL(α2) ≥ AL(α1) and AR(α1) ≥ AR(α2).

Figure 3.3: α-cut of a general fuzzy number

Definition 3.6 Fuzzy number (FN)
A fuzzy number is a special class of a fuzzy sets. Different definitions and

properties of fuzzy numbers are encountered in the literature but they all agree
on that a fuzzy number represents the conception of “a set of real numbers close
to a ”, where ‘a’ is the number being fuzzyfied.
A fuzzy number is a fuzzy set in the universe of discourse X that is both convex
and normal. Figure 3.5 shows a fuzzy number Ã of the universe of discourse
X that is both convex and normal. The term “fuzzy number” is used to handle
imprecise numerical quantities. For example, shortage cost of a commodity is
about 5 $. A general definition of a fuzzy number according to Dubois and Prade
[44] is a real fuzzy number Ã described as a fuzzy subset on the real line<whose
membership function µÃ(x) is

(i) a continuous mapping from < to the closed interval [0,1],

(ii) constant on (−∞, a1] : µÃ(x) = 0,∀x ∈ (−∞, a1],

(iii) strictly increasing on [a1, a2]: e.g., µÃ(x) = f(x),∀x ∈ [a1, a2] where f(x)
is a strictly increasing function of x,
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(iv) constant on [a2, a3]: e.g., µÃ(x) = 1,∀x ∈ [a2, a3],
(v) strictly decreasing on [a3, a4], e.g., µÃ(x) = g(x),∀x ∈ [a3, a4] where g(x)

is a strictly decreasing function of x,

(vi) constant on [a4,∞): e.g., µÃ(x) = 0,∀x ∈ [a4,∞).

Figure 3.4: Membership function of a General Fuzzy number

A general shape of a fuzzy number following the above definition may be shown
pictorially as in Figure 3.6. Here, a1, a2, a3 and a4 are real numbers. A fuzzy
number Ã in X is said to be discrete or continuous according as its membership
function µÃ(x) is discrete or continuous. Triangular Fuzzy Number, Trapezoidal
Fuzzy Number, Parabolic Fuzzy Number and Parabolic Flat Fuzzy Number are a
special class of continuous fuzzy numbers.

Definition 3.7 Linear Fuzzy Number (LFN)
A LFN Ã is specified by two parameters (a1, a2) and is defined by its continuous
membership function µÃ(x) : X → [0, 1] as follows (cf. Figure 3.5):

µÃ(x) =


1 if x ≤ a1
a2 − x
a2 − a1

if a1 ≤ x ≤ a2

0 if x ≥ a2

Definition 3.8 Triangular Fuzzy Number (TFN)
A TFN Ã is specified by the triplet (a1, a2, a3) and is defined by its continuous

membership function µÃ(x) : X → [0, 1] as follows (cf. Fig 3.6):

µÃ(x) =


x− a1

a2 − a1
if a1 ≤ x ≤ a2

a3 − x
a3 − a2

if a2 ≤ x ≤ a3

0 otherwise
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3.4. FUZZY SET THEORY

Figure 3.5: Membership function of a LFN Figure 3.6: Triangular Fuzzy Number (TFN)

Fuzzy Possibility and Necessity Approach:
Let ã and b̃ be two fuzzy numbers with membership functions µã(x) and

µb̃(x) respectively. Then according to Zadeh [183],

pos(ã∗ b̃) = sup{min(µã(x), µb̃(y)), x, y ∈ <, x∗y}, nes(ã∗ b̃) = 1−pos(ã ∗ b̃)
(3.7)

where the abbreviation pos represents possibility, nes represents necessity ∗ is
any one of the relations >,<,=,≤,≥ and < represents set of real numbers.

A TFN ã = (a1, a2, a3) (cf. Fig. A1) has seven parameters a1, a11, a12,
a2, a21, a22, a3 where a1 < a11 < a12 < a2 < a21 < a22 < a3 and is charac-
terized by the membership function µã, given by

µã(x) =



x−a1
a11−a1 for a1 ≤ x ≤ a11
x−a11
a12−a11 for a11 < x ≤ a12
x−a12
a2−a12 for a12 < x ≤ a21
x−a21
a22−a21 for a21 < x ≤ a22
x−a22
a3−a22 for a22 < x ≤ a3

0 otherwise.

(3.8)
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3.4.1 Expected Value of a Fuzzy Variable:

Based on the credibility measure, Liu [105] have been presented the expected
value operator of a fuzzy variable as follows.

Definition 3.9 Let X̃ be a normalized fuzzy variable the expected value of the
fuzzy variable X̃ is defined by

E[X̃] =

∞∫
0

Cr(X̃ ≥ r)dr −
0∫

−∞

Cr(X̃ ≤ r)dr (3.9)

When the right hand side of (3.9) is of form∞−∞, the expected value is not
defined. Also, the expected value operation has been proved to be linear for
bounded fuzzy variables, i.e., for any two bounded fuzzy variables X̃ and Ỹ , we
have E[ aX̃ + bỸ ] = aE[X̃] + bE[Ỹ ] for any real numbers a and b.

Lemma 3.1 ( Liu [105])The expected value of triangular fuzzy variable Ã =
(a1, a2, a3) is defined as

E[Ã] =
1

2
[(1− ρ)a1 + a2 + ρa3] (3.10)

=
1

4
[a1 + 2a2 + a3], taking ρ = 0.5 (3.11)

3.4.2 Graded Mean and Modified Graded Mean:

Graded Mean (Chen and Hasieh [28]) Integration Representation method is
based on the integral value of graded mean α-level(cut) of generalized fuzzy
number. For a fuzzy number Ã the graded mean integration representation of A
is denoted and defined as

P (A) =

∫ 1

0

α

[
AL
α + AR

α

2

]
dα/

∫ 1

0

αdα (3.12)

where AL
α, A

R
α is the α-cut of Ã. For example graded mean of a TrFN Ã =

(a1, a2, a3, a4) is 1
6 [a1 + a2 + a3 + a4]. Here, equal weightage has been given to

the lower and upper bounds of the α-level of the fuzzy number. But the weigh-
tage may depends on the decision maker’s preference or attitude. So, the mod-
ified graded mean α-level value of the fuzzy number Ã is [kαL + (1 − k)AR

α ] ,
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where k ∈ [0; 1] is called the decision makers attitude or optimism parameter.
The value of k closer to 0 implies that the decision maker is more pessimistic
while the value of k closer to 1 means that the decision maker is more optimistic.
Therefore, the modified form of the above graded mean integration representa-
tion is

P (A) =

∫ 1

0

α

[
kAL

α + (1− k)AR
α

2

]
dα/

∫ 1

0

αdα (3.13)

where AL
α, A

R
α is the α-cut of Ã. For example modified graded mean of a TrFN

Ã = (a1, a2, a3, a4) is 1
3 [k(a1 + 2a2) + (1− k)(2a3 + a4)].

3.4.3 Possibility/Necessity/ Credibility in Fuzzy Environments

Considering the degree of membership µF (u) of an element u in a fuzzy set
F, defined on a referential U , one can find in the literature, three interpretations
of this degree (Dubois and Prade [45]).

Degree of similarity: According to degree of similarity, µF (u) is the degree of
proximity of u to prototype elements of F. Historically, this is the oldest semantics
of membership grades since Bellman et al.[8].

Degree of preference: According to degree of preference, F represents a set
of more or less preferred objects (or values of a decision variable x) and µF (u)
represents an intensity of preference in favor of object u, or the feasibility of se-
lecting u as a value of x. Fuzzy sets then represent criteria or flexible constraints.
This view is the one later put forward by Bellman and Zadeh [9]; it has given
birth to an abundant literature on fuzzy optimization, especially fuzzy linear pro-
gramming and decision analysis.

Degree of uncertainty: This interpretation was proposed by Zadeh [182] when
he introduced the possibility theory and developed his theory of approximate rea-
soning (Zadeh [182]). µF (u) is then the degree of possibility that a parameter x
has value u, given that all that is known about it is that ”x is F”. Then the values
encompasses by the support of the membership functions are mutually exclusive,
and the membership degrees rank these values in terms of their respective plau-
sibility. Set functions called possibility and necessity measures can be derived so
as to rank-order events in terms of unsurprising-ness and acceptance respectively.
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Let < represents the set of real numbers and Ã and B̃ be two fuzzy numbers with
membership functions µÃ and µB̃ respectively. Then taking degree of uncertainty
as the semantics of fuzzy number, according to Zadeh [182], Dubois and Prade
[44], Liu and Iwamura [92, 97]:

Pos (Ã ? B̃) = sup{min(µÃ(x), µB̃(y)), x, y ∈ <, x ? y} (3.14)

where the abbreviation Pos represent possibility and ? is any one of the relations
>,<,=,≤,≥. Analogously if B̃ is a crisp number, say b, then

Pos (Ã ? b) = sup{µÃ(x), x ∈ R, x ? b} (3.15)

On the other hand necessity measure of an event Ã ? B̃ is a dual of possibility
measure. The grade of necessity of an event is the grade of impossibility of the
opposite event and is defined as:

Nes(Ã ? B̃) = 1− Pos (Ã ? B̃) (3.16)

where the abbreviation Nes represents necessity measure and Ã ? B̃ represents
complement of the event Ã ? B̃.
If Ã, B̃ ∈ < and C̃ = f(Ã, B̃) where f : <×< → < be a binary operation then
according to Fuzzy Extension Principle (Zadeh [180], Dubois and Prade [44],
membership function µC̃ of C̃ is given by

µC̃(z) = sup {min (µÃ(x), µB̃(y)), x, y ∈ <, and z = f(x, y),∀z ∈ <}(3.17)

Credibility measure is defined as

Cr (Ã ? B̃) =
1

2

(
Pos (Ã ? B̃) + Nec (Ã ? B̃)

)
(3.18)

3.4.4 Different Approaches of TFN

Let Ã = (a1, a2, a3) and B̃ = (b1, b2, b3) are two TFNs. From the definition
(3.14) and the possibility measure of (Ã ≤ B̃) for membership function is as
follows

Posµ(Ã ≤ B̃) =


1, a2 ≤ b2;

b3−a1
b3−b2+a2−a1 , a2 > b2, a1 < b3;
0, a1 ≥ b3.
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Figure 3.7: Membership of TFN Posµ(Ã ≤ x) Figure 3.8: Membership of TrFN Posµ(Ã ≤ x)
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Figure 3.9: Membership of TFN Necµ(Ã ≤ x) Figure 3.10: Membership of TFN Necµ(Ã ≤ x)

In particular

Posµ(Ã ≤ x) =


1, x ≥ a2;
x−a1
a2−a1 , a1 ≤ x ≤ a2;
0, x ≤ a1.

Now by definition, the necessity and measure of (Ã ≤ x) are as follows (depicted
in Figure3.9)

Necµ(Ã ≤ x) =


0, x ≤ a2;
x−a2
a3−a2 , a2 ≤ x ≤ a3;
1, x ≥ a3.

By definition, the credibility measure of (Ã ≤ x) are as follows (depicted in
Figure 3.11)

Crµ(ÃI ≤ x) =


0, x ≤ a1;
x−a1

2(a2−a1) , a1 ≤ x ≤ a2;
x−2a2+a3
2(a3−a2) , a2 ≤ x ≤ a3;

1, x ≥ a3.
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Figure 3.11: Membership of TFN Crµ(Ã ≤ x)

3.5 Rough Set Theory

Let U be a universe. Slowinski and Vanderpooten [156] extended the equiva-
lence relation to more general case and proposed a binary similarity relation that
has not symmetry and transitivity but reflexivity.

The similarity class of x, denoted by R(x) and R−1(x), are the set of objects
which are similar to x,

R(x) = {y ∈ U |y ' x}, R−1(x) = {y ∈ U |x ' y}
Then the lower and the upper approximations of a set are given by the following
definition. Let U be a universe, and X a set representing a concept. Then its
lower and upper approximation are defined by

X = {x ∈ U |R−1(x) ⊂ X,X =
⋃
x∈X

R(x)

The collection of all sets having the same lower and upper approximations is
called a rough set, denoted by (X,X). Let Λ be a non empty set, A a σ algebra
of subsets of Λ,∆ an element in A, and Π a set function satisfying the four
axioms. Then (Λ,∆, κ,Π) is called a rough space. Let a rough variable ξ is a
measurable function from the rough space (Λ,∆, κ,Π) to the set of real numbers.
i.e. for every Borel set B of <, {λ ∈ Λ|ξ(λ) ∈ B} ∈ κ. Let (Λ,∆, κ,Π) be a
rough space. Then the upper and lower trust of an event A is defined by

Tr =
Π{A}
Π{δ}

, T r =
Π{A ∩∆}

Π{∆}
and the trust of the event A is defined by

Tr{A} =
1

2
(Tr{A}+ Tr{A}) (3.19)
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When enough information about the measure Π is not available, it may be treated
as the Lebesgue measure. Then we can get the trust measure of the rough event
ξ̂ ≥ r as Tr{ξ̂ ≥ r} and its function curves Figures 3.5.1 and 3.5.2 are presented
below where r is a crisp number, ξ̂ is a rough variable given by ξ̂=([a,b],[c,d]),
0 ≤ c ≤ a ≤ b ≤ d.

Tr{ξ̂ ≥ r} =



0 for d ≤ r
(d−r)
2(d−c) for b ≤ r ≤ d
1
2( (d−r)

(d−c) + (b−r)
(b−a)) for a ≤ r ≤ b

1
2( (d−r)

(d−c) + 1) for c ≤ r ≤ a

1 for r ≤ c.

(3.20)

Tr{ξ̂ ≤ r} =



0 for r ≤ c
(r−c)
2(d−c) for c ≤ r ≤ a
1
2( (r−c)

(d−c) + (r−a)
(b−a)) for a ≤ r ≤ b

1
2( (r−c)

(d−c) + 1) for b ≤ r ≤ d

1 for d ≤ r.

(3.21)
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Fig.3.5.1 : Tr{ξ̂ ≥ r} function curve.
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Fig.3.5.2 : Tr{ξ̂ ≤ r} function curve.
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3.5.1 Extension of Trust Measure

Here introduce a new mathematical extension on the rough intervals. We
consider a modification/ refinement of the rough intervals. Here we consider in
Eqs. 3.22 -3.23 five sub-intervals on the rough intervals (Fig. 3.5.3).

If the interval is divided in more regions, then the trust values of ξ̂ is a rough
variable given by ξ̂=([a,b],[c,d]), 0 ≤ c ≤ c1 ≤ a ≤ b ≤ c2 ≤ d are given as:

Tr{ξ̂ ≥ r} =



0 for d ≤ r
(d−r)
3(d−c) for c2 ≤ r ≤ d
(d−r)
3(d−c) + (c2−r)

3(c2−c1) for b ≤ r ≤ c2

1
3( (d−r)

(d−c) + (c2−r)
(c2−c1) + (b−r)

(b−a)) for a ≤ r ≤ b
1
3( (d−r)

(d−c) + (c2−r)
(c2−c1) + 1) for c1 ≤ r ≤ a

1
3( (d−r)

(d−c) + 2) for c ≤ r ≤ c1

1 for r ≤ c.

(3.22)

Tr{ξ̂ ≤ r} =



0 for r ≤ c
(r−c)
3(d−c) for c ≤ r ≤ c1

1
3( (r−c)

(d−c) + (r−c1)
(c2−c1)) for c1 ≤ r ≤ a

1
3( (r−c)

(d−c) + (r−c1)
(c2−c1) + (r−a)

(b−a)) for a ≤ r ≤ b
1
3( (r−c)

(d−c) + (r−c1)
(c2−c1) + 1) for b ≤ r ≤ c2

1
3( (r−c)

(d−c) + 2) for c2 ≤ r ≤ d

1 for d ≤ r.

(3.23)
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Fig.3.5.3 : Tr{ξ̂ ≥ r} function curve.

Here the trust measure for 7-point scale of the rough event ξ̂ ≥ r, Tr{ξ̂ ≥ r}
and its function curve (Fig 3.5.4) is presented, where r is a crisp number, ξ̂ is a
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rough variable given by ξ̂=([a,b],[c,d]), 0 ≤ c ≤ e ≤ f ≤ a ≤ b ≤ g ≤ h ≤ d.

Tr{ξ̂ ≥ r} =



0 for d ≤ r
(d−r)
4(d−c) for h ≤ r ≤ d
(d−r)
4(d−c) + (h−r)

4(h−e) for g ≤ r ≤ h
1
4( (d−r)

(d−c) + (h−r)
(h−e) + (g−r)

(g−f)) for b ≤ r ≤ g
1
4( (d−r)

(d−c) + (h−r)
(h−e) + (g−r)

(g−e) + (b−r)
(b−e)) for a ≤ r ≤ b

1
4( (d−r)

(d−c) + (h−r)
(h−e) + (g−r)

(g−e) + 1) for f ≤ r ≤ a
1
4( (d−r)

(d−c) + (h−r)
(h−e) + 2) for e ≤ r ≤ f

1
4( (d−r)

(d−c) + 3) for c ≤ r ≤ e

1 for r ≤ c.

(3.24)
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Fig.3.5.4 : Tr{ξ̂ ≥ r} function curve.

3.6 Bi-Fuzzy Set Theory

Generally speaking, a level-2 fuzzy set is a fuzzy set in which the elements
are also fuzzy sets, and the bi-fuzzy variable is a fuzzy variable with fuzzy pa-
rameters. Level-2 fuzzy sets were originally presented by Zadeh [179]. Such
sets are fuzzy sets whose elements themselves are ordinary fuzzy sets. They are
very useful in circumstances where it is difficult to determine some elements for
a fuzzy set.

Definition 3.10 In Mendel [115], a type-2 fuzzy set, denoted Ã, is characterized
by a type-2 membership function µÃ(x, u), where x ∈ X and u ∈ J), x ⊆ [0, 1],
i.e.,

Ṽ = {Ṽ , µṼ (Ṽ )) | ∀x ∈ Γ̃(U) : µṼ > 0} (3.25)
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where each ordinary fuzzy set Ṽ is defined by

Ṽ = {(x, µṼ (x)) | ∀x ∈ U : µṼ > 0} (3.26)

For convenience, the membership grades µṼ (Ṽ ) of the fuzzy sets .Ṽ ∈ Γ̃(U) are
called ’outer-layer’ membership grades, whereas the membership grades µṼ (x̃)
of the elements x ∈ U are called inner-layermembership grades. Since level-2
fuzzy sets are still fuzzy sets, their mathematical behavior is defined by the fuzzy
set operators. Normally speaking, a Fu-Fu variable ξ is a fuzzy variable under
fuzzy environment.

Figure 3.12: Triangular Bi-fuzzy variable

Example 3.1 ˜̃ξ = (sL, ξ̃, sR) with ρ = (ρL, ρM , ρR) is called Fu-Fu variable,( cf.
Fig. 3.12), if the outer-layer and inner-layer membership functions are as follows

µ ˜̃
ξ
(x) =



(
x− sL
ρ̃− sL

)
if sL ≤ x ≤ ρ̃

0 otherwise(
sR − x
sR − ρ̃

)
if ρ̃ ≤ x ≤ sR

and µρ̃(x) =



(
x
′ − ρL

ρM − ρL

)
if ρL ≤ x

′ ≤ ρM

0 otherwise(
ρR − x

′

ρR − ρM

)
if ρM ≤ x

′ ≤ ρR

where ρ̃ is the center of ξ̃, which is a triangular fuzzy variable, sL ∈ R and
sR ∈ R are the smallest possible value and the largest possible value of ˜̃ξ, sL ∈ R,
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3.6. BI-FUZZY SET THEORY

sM ∈ R and sR ∈ R are the the smallest possible value, the most promising value
and the largest possible value of ρ̃, respectively.

Lemma 3.2 The expected value for the bi-fuzzy variable ˜̃c = (c̃ − l1, c̃, c̃ + r1)
with c̃ = (c− l2, c, c+ r2) we obtain that

E[˜̃c] = c+
(r1 + r2)− (l1 + l2)

4
(3.27)

Proof: Let ˜̃c = (c̃− l1, c̃, c̃+ r1), where c̃ = (c− l2, c, c+ r2). Therefore

E(˜̃c) =
E(c̃− l1) + 2E(c̃) + E(c̃+ r1)

4
(UsingLemma− 3.2)

=
E(c̃)− l1 + 2E(c̃) + E(c̃) + r1

4

=
4E(c̃)− l1 + r1

4

= E(c̃) +
r1 − l1

4

= c+
r2 − l2

4
+
r1 − l1

4

= c+
(r1 + r2)− (l1 + l2)

4

Particular case: When l2 = 0 = r2 ⇒ ˜̃c = c̃⇒ E(˜̃c) = c+ r1−l1
4

Theorem 3.1 (Zhou [171]) If αerj1, α
e
rj2, βerj1, β

e
rj2 are left and right spreads of

˜̃erj(θ) and ẽrj(θ), αbr1, α
b
r2, βbr1, β

b
r2 are left and right spreads of ˜̃br(θ) and b̃r(θ),

r = 1, 2, · · · , p, j = 1, 2, · · · , n, the basis function L,R : [0, 1] → [0, 1]
are monotone decreasing continuous function, and it satisfies L(1) = R(1) =
0, L(0) = R(0) = 1 and the LR fuzzy variable is specified as the triangular
fuzzy variable and R−1(θi) = 1− θi, R−1(ηi) = 1− ηi. For any j = 1, 2, · · · , n,
and if ˜̃erj(θ) and ˜̃br(θ) are independent fuzzy variables. Then

Pos{θ|Pos{˜̃eTrj(θ)x ≤
˜̃br(θ)} ≥ θr} ≥ ηr

is equivalent to

R−1(θr)β
b
r1 + L−1(θr)α

eT
r1 x− eTr x+ br + L−1(ηr)(α

eT
r2 x+ βbr2) ≥ 0

.
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Theorem 3.2 (Zhou [171]) Assume that the Fu-Fu variable ẽij and b̃r is as same
as the assumption in Theorem -3.1, i = 1, 2, · · · ,m, j = 1, 2, · · · , n. For confi-
dence level δi, γi ∈ [0, 1], i = 1, 2, · · · ,m. Then

Nes{δ|Nes{˜̃erj(δ)Tx ≤ ˜̃br(δ)} ≥ δr ≥}γr

is equivalent to

br − eTr x− L−1(1− γr)(αbr2 + βeTr2 x)− L−1(1− δr)αbr1 −R−1(δr)β
eT
r2 x ≥ 0

3.7 Bi-Random Variables

Bi-random variable, which is proposed by Peng and Liu [136], is a mathemat-
ical tool to describe two-fold random phenomena. An n-dimensional bi-random
vector ξ is a map from the probability space (Ω, A, Pr) to a collection of n-
dimensional random vectors such that Pr{ξ(ω) ∈ B} is a measurable function
with respect to ω for any Borel set B of the real space Rn.

Definition 3.11 (Peng and Liu [136]): Let ξ = ( ξ1, ξ2, ...ξn) be a bi-random vec-
tor defined on Ω and g:Rn → R is Borel measurable function. Then the primitive
chance of a bi-random event characterized by g(ξ) ≤ 0 is a function from [0,1]
to [0,1], defined as
Ch{g(ξ) ≤ 0}(α) = supβ∈[0,1]{β|Pr{ω ∈ Ω|Pr{g(ξ) ≤ 0} ≥ β} ≥ α},

where α is a prescribed probability level. The value of primitive chance at α is
called α-chance.

Definition 3.12 Let ξ = ( ξ1, ξ2, ...ξn) be a bi-random vector, and g:Rn → R be
Borel measurable function. Then the equilibrium chance of bi-random event
g(ξ) ≤ 0 is defined as

Che{g(ξ) ≤ 0} = supα∈[0,1]{α ∧ Pr{ω ∈ Ω|Pr{g(ω)) ≤ 0} ≥ α}}.

Definition 3.13 (Bi-random efficient solution at αi levels): Suppose a feasible
solution x∗ of a LPP satisfies

Che{fi(x∗, ξ) ≤ f̄i(x
∗)} ≥ αi, i=1, 2...., m

where confidence levels αi ∈ [0, 1]. Also x∗ is said to be a bi-random efficient
solution at αi -levels to the problem iff there exists no other feasible solution x
such that
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Che{fi(x, ξ) ≤ f̄i(x)} ≥ αi, i=1, 2...., m
and f̄i(x) ≤ f̄i(x

∗) for all i and f̄j(x) ≤ f̄j(x
∗) for at least one j∈ {1, 2, ....,m}.

Theorem 3.3 Let ξ = ( ξ1, ξ2, ...ξn) be a bi-random vector, and g:Rn → R be
Borel measurable function, and α ∈ [0, 1] such as given below
Che{g(ξ) ≤ 0} ≥ α⇔ Pr{ω ∈ Ω|Pr{g(ξ(ω)) ≤ 0} ≥ α} ≥ α}.

Remark 3.3.1: If ξ degenerates to a random vector,
Pr{ω ∈ Ω|Pr{g(ξ(ω)) ≤ 0} ≥ α} implies Pr{g(ξ(ω)) ≤ 0} ≥ α,

then above equation is equivalent to Pr{g(ξ(ω)) ≤ 0}, which is a probability
measure.

Remark 3.3.2: Bi-random variables ξ1, ξ2, ..., ξn, which are defined on the
probability space (Ω,A, Pr ) are said to be independent if ξ1(ω), ξ2(ω), ..., ξn(ω)
are independent random variables for all ω ∈ Ω.

Lemma 3.3 Assume that bi-random vector ˜̃ci(ω)=(˜̃ci1(ω), ˜̃ci2(ω),..., ˜̃cin(ω))T

follows normal distribution with mean vector c̃i(ω) and positive definite covari-
ance matrix Vc

i , denoted by ˜̃ci(ω) ∼ N(c̃i(ω), V c
i), c̃i(ω) is a normal random

vector with mean vector µci and positive definite covariance matrix V nc
i , written

as c̃i(ω) ∼ N(µci , V
nc
i ). If ˜̃ci1(ω), ˜̃ci2(ω),..., ˜̃cin(ω) are independent bi-random

variables, then Pr{ω|Pr(˜̃ci(ω)Tx ≤ f̄i) ≥ αi} ≥ αi holds iff
µcTi x+ Φ−1(αi)

√
(xTV c

i x) + Φ−1(αi)
√

(xTV nc
i x) ≤ f̄i,

where Φ is the standardized normal distribution.

Lemma 3.4 (Xu and Tao[175]): Assume that bi-random vector ˜̃ar(ω) = (˜̃ar1(ω),
˜̃ar2(ω),..., ˜̃arn(ω))T follows normal distribution with mean vector ãr(ω) and pos-
itive definite covariance matrix Va

r , denoted by ˜̃ar(ω) ∼ N(ãr(ω), V a
r), ãr(ω) is

a normal random variable, written as ãr(ω) ∼ N(µar , V
na
r ). Bi-random variable

˜̃br(ω) follows normal distribution with mean value b̃r(ω) and variance (σbr)
2, de-

noted by ˜̃br(ω) ∼ N(b̃r(ω), (σbr)
2), where b̃r(ω) is normally distributed random

variable, written as b̃r(ω) ∼ N(µbr, (σ
nb
r )2). If ˜̃ar1(ω), ˜̃ar2(ω),..., ˜̃arn(ω), ˜̃br(ω)

are independent bi-random variables, then
Che{˜̃aTr x ≤

˜̃br} ≥ βr holds iff,
µaTr x+ Φ−1(βr)

√
(xTV a

i x+ (σbr)
2)) + Φ−1(βr)

√
(xTV na

r x+ (σnbr )2)) ≤ µbr
where Φ is the standardized normal distribution and βr are predetermined confi-
dence levels.
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3.8 Bi-Rough Set Theory

A bi-rough variable is a function ξ from a rough space (Λ,∆, κ,Π) to the set
of rough variables such that Tr{ξ(λ) ∈ B} is a measurable function of λ for any
Borel set B of <.

Theorem 3.4 Liu [103] Assume that ξ is a bi-rough variable, and B is a Borel
set of <. Then the trust Tr{ξ(λ) ∈ B} is a rough variable.

Theorem 3.5 Liu [103] Assume that ξ is a bi-rough variable, and B is a Borel set
of <.if the expected value E[ξ(λ)] is a finite for each λ, then E[ξ(λ)] is a rough
variable.

Theorem 3.6 Liu [103] Let ξ be a bi-rough variable. Then its expected value is
defined by

E[ξ]=
∫ +α

0 Tr{λ ∈ Λ|E[ξ(λ)] ≥ r}dr -
∫ 0

−α Tr{λ ∈ Λ|E[ξ(λ)] ≤ r}dr
provided that at least one of the two integrals is finite.

3.9 Fuzzy-Random (Fu-Ra) Set Theory

In this section, we give basic concepts of fuzzy random theory. According to
Liu[103]. Let ξ be a fuzzy random variable with membership function µ. then
the possibility, necessity, and credibility of a fuzzy event {ξ ≥ r} can be defined
by

Pos{ξ ≥ r} = supµµ≥r(µ),
Nes{ξ ≥ r} = 1− supµµ<r(µ),
Cr{ξ ≥ r} = 1

2(Pos{ξ ≥ r} + Nes{ξ ≥ r}). A fuzzy random
variable ξ is functions from the probability space (Ω, A, Pr) to the set of fuzzy
variable such that Pos{ξ(ω) ∈ B} is measurable function of ω for any Borel set
B of R.

Theorem 3.7 Peng and Liu [135] Assume that ˜̂cij is LR fuzzy random variable,
for any ω ∈ Ω. Then the membership function of ˜̂cij(ω) is

µ˜̂cij(ω)(t) =

{
L(

cij(ω)−t
αcij

) if cij(ω) ≥ t, αcij ≥ 0,

R(
t−cij(ω)
βcij

) if cij(ω) ≤ t, βclj ≥ 0
(3.28)
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where the random vector (cij(ω))n×1=(ci1(ω), ci2(ω), ci3(ω), ...cin(ω))T is nor-
mally distributed, the mean vector is dic, the covariance matrix is Vic, denoted
by (cij(ω))n∗1 ∼ N(di

c, Vi
c), αcij, and αcij are the left and right spread of ˜̂cij(ω),

i=1,2...,m, j=1,2..,n, the reference function L,R:[0,1]→ [0,1] satisfies that L(1)=
R(1)=0, L(0)=R(0)=1, and it is monotone function. Also for two LR-type fuzzy
numbers M̃ , Ñ such as M̃=(m, α, β)LR, Ñ=(n, γ, δ)LR then

(m, α, β)LR+ (n,γ, δ)LR =(m+n, α + γ, β + δ)LR.
Thus Pr{ω|Pos{{˜̂cij(ω)T ≤ fi} ≥ δi} ≥ γi is equivalent to

R−1(δi)β
cT
i x+ dcTi x+ φ−1(1− γi)

√
(xTV c

i x) ≤ fi, i = 1, 2, ...,m
where φ are standard normally distributed, δi, γi ∈ [0, 1] are predetermined con-
fidence levels.

Theorem 3.8 Assume that ˜̂erj and ˜̂
br are LR fuzzy random variable, for any

ω ∈ Ω. Then the membership function of ˜̂erj(ω) and ˜̂
br(ω) are

µ˜̂erj(ω)(t) =

{
L(

erj(ω)−t
αerj

) if erj(ω) ≥ t, αerj ≥ 0,

R(
t−erj(ω)
βerj

) if erj(ω) ≤ t, βerj ≥ 0
(3.29)

µ˜̂erj(ω)(t) =

{
L(br(ω)−t

αbr
) if br(ω) ≥ t, αbr ≥ 0,

R( t−br(ω)
βbr

) if br(ω) ≤ t, βbr ≥ 0
(3.30)

where the random vector (erj(ω))n×1=(er1(ω), er2(ω), er3(ω), ...ern(ω))T ∼ N(der, V
e
r ),

br(ω) ∼ N(dbr, (σ
b
r)

2), αerj, β
e
rj are left and right spread of ˜̂e rj(ω), αbr, β

b
r are left

and right spread of ˜̂
br(ω), r=1,2,..p, j=1,2,...,n, the reference function L,R:[0,1]→

[0,1] satisfies that L(1)=R(1)=0, L(0)=R(0)=1, and it is monotone function.
Then Pr{ω|Pos{{˜̂er(ω)T ≤ ˜̂

br(ω)T} ≥ θr} ≥ ηr is equivalent to
R−1(θr)β

b
r + L−1(θr)α

cT
r x− (deTr x− dbr)− φ−1(ηr)

√
(xTV e

r x+ (σbr)
2) ≥ 0.

Theorem 3.9 Assume that the fuzzy random variable ˜̂cij is as same as the as-
sumption in Theorem 3.7, i=1,2..m, j=1,2..,n. For the confidence level δi, γi ∈
[0,1], i=1,2,...,m, we have
Pr{ω|Nes{˜̂ci(ω)Tx ≤ fi} ≥ δi} ≥ γi ⇔ dcTi x − L−1(1 − δi)αcTi x + φ−1(1 −
γi)
√

(xTV c
i x) ≤ fi

81



CHAPTER 3. SOME UNCERTAIN ENVIRONMENTS

Theorem 3.10 Assume that the fuzzy random variable ˜̂erj and ˜̂
br are as same as

the assumption in Theorem 3.8, j=1,2..n, r=1,2..,p. Then for the certain confi-
dence level θr, ηr ∈ [0,1], r=1,2,...,p, we have
Pr{ω|Nes{˜̂er(ω)Tx ≤ ˜̂

br(ω)} ≥ θr} ≥ ηr
⇔ φ−1(1− ηr)

√
(xTV e

r x+ (σbr)
2)−L−1(1− θr)αbrx−R−1(θr)β

eT
r x+ (dbr−

deTr x)+ ≥ 0.

3.10 Fuzzy-Rough (Fu-Ro) Set Theory

In this section, we will state some basic concepts, theorems and lemmas on
fuzzy rough theory by Xu and Zhou [173]. These results are crucial for the
remainder of this investigation.

Definition 3.14 Xu and Zhou [173] proposed some definitions and discussed
some important properties of fuzzy rough variables. Let U be a universe, and
X a set representing a concept. Then its lower approximation is defined by

X = {x ∈ U |R−1(x) ⊂ X} (3.31)

and the upper approximation is defined by

Figure 3.13: A Rough Set

X =
⋃
x∈X

R(x) (3.32)

where R is the similarity relationship on U .

Definition 3.15 The collection of all sets having the same lower and upper ap-
proximations is called a rough set, denoted by (X,X). The figure of a rough set
is depicted in Figure 3.13.
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Example 3.2 Let us consider on the continuous set in the one dimension real
space R. There are still some vague sets which cannot be directly fixed and need
to be described by the rough approximation. For example, set R be the universe,
a similarity relation is defined as a ' b if and only if |a − b| ≤ 10. We have
that for the set [20, 50], its lower approximation [20, 50] = [30, 40] and its upper
approximation [20, 50] = [10, 60]. Then the upper and lower approximation of
the set [20, 50] make up a rough set ([30, 40], [10, 60]) which is the collection of
all sets having the same lower approximation [30, 40] and upper approximation
[10,60].

Definition 3.16 A fuzzy rough variable ξ is a fuzzy variable with uncertain pa-
rameter ρ ∈ X , where X is approximated by (X,X) according to the similarity
relation R, namely, X ⊆ X ⊆ X .
For convenience, we usually denote ρ ` (X,X)R expressing that ρ is in some
set A which is approximated by (X,X) according to the similarity relation R,
namely, X ⊆ A ⊆ X .

Example 3.3 Let’s consider the LR fuzzy variable ξ with the following member-

ship function, µξ(x) =


L

(
ρ− x
α

)
if ρ− α < x < ρ

1 if x = ρ

L

(
x− ρ
β

)
if ρ < x < ρ+ β

If ρ ` ([1, 2], [0, 3])R, then ξ is called a fuzzy rough variable.

Lemma 3.5 (Xu and Zhou [173]) Assume that ξ and η are the introduction of
variables with finite expected values. Then for any real numbers a and b, we
have

E[aξ + bη] = aE[ξ] + bE[η] (3.33)

Theorem 3.11 (Xu and Zhou [174]) Let ξ be a LR Fu-Ro variable with the mem-
bership function of fuzzy variable ξ has the following form

µξ(x) =

 L(x−z̄)α ), z̄ − α < x ≤ z̄
1, x = z̄
R(x−zβ ), z̄ < x ≤ z̄ + β

(3.34)
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where z̄ is a rough variable and z̄ = ([z2, z3], [z1, z4]), a < z1 < z2 < z3 < z4.
And here we just consider the situation when the reference function L(x) =
R(x) = 1 − x, then this LR fuzzy rough variable is triangular type, and the left
and right spread α, β > 0. Then the expected value of ξ is

E[ξ] =
1

4
(z1 + z2 + z3 + z4 + α + β) (3.35)

Lemma 3.6 Let ¯̃ξ be a LR fuzzy rough variable with the membership function
of fuzzy variable, ¯̃ξ has the following form

µ ¯̃
ξ
(x) =


L

(
m̃1−x
α

)
, if m̃1 − α ≤ x ≤ m̃1

1, if m̃1 ≤ x ≤ m̃2

R

(
x−m̃2

β

)
, if m̃2 ≤ x ≤ m̃2 + β

(3.36)

where m̃1 and m̃2 are rough variables, as follows: m̃1 = ([q2, q3], [q1, q4]), 0 <
q1 ≤ q2 < q3 ≤ q4 and m̃2 = ([p2, p3], [p1, p4]), 0 < p1 ≤ p2 < p3 ≤ p4. Then,
the expected value of ¯̃ξ is:

E[ ¯̃ξ] =
q1 + q2 + q3 + q4 + p1 + p2 + p3 + p4

8
+
β

2

∫ 1

0

R(t)dt− α

2

∫ 1

0

L(t)dt

Lemma 3.7 Let ã = (α1,m1, m̄1, β1)LR and b̃ = (α2,m
′
2, m̄

′
2, β2)LR be two L-R

type fuzzy numbers with continuous membership function. For a given confi-
dence level α ∈ [0, 1], if

Pos

{
ãi ≥ b̃

}
≥ η

then we have:

m1 + βR−1

(
η

)
≥ m2 − α2R

−1

(
η

)
(3.37)

Proof: Let ã = (α1,m1, m̄1, β1) and b̃ = (α2,m2, m̄2, β2) be two LR-type fuzzy
numbers. Then λ̃ = ã− b̃ = (α1 +b1,m1−m̄2, m̄1−m2, α2 +β1)LR is a LR type
fuzzy number, the possibility of the fuzzy event, Pos(λ̃ ≥ 0) can be expressed
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as

Pos(λ̃ ≥ 0) =


1, r < n1 < n1 − α
R(r−n2β ), n2 < r < n2 + β

1, r > n2 + β
(3.38)

where α = α1 +β1, n1 = m1− m̄2, n2 = m̄1−m2, β = α2 +β1. Let us consider
Pos(λ̃ ≥ 0) ≥ η. Then

R(
−n2

β
) ≥ η ⇒ −n2

β
≥ R−1(η)

⇒ (α2 + β1)R
−1

(
η

)
≥ −(m̄1 −m2)

⇒ m1 + β1R
−1

(
η

)
≥ m2 − α2R

−1

(
η

)
Thus, with the above Lemma-3.7, a fuzzy linear constraint can be written in its
deterministic form.

Theorem 3.12 (Xu et al. [173]) Assume that ˆ̃cij is a fuzzy rough variable, for any
λ ∈ Λ, the fuzzy variable c̃ij(λ) is characterized by the following membership
function

µĉij(λ)(t) =

{
L(

cij(λ)x−t
γcij

) if cij(λ)x ≥ t, γcij ≥ 0,

R(
t−cij(λ)x

δcij
) if cij(λ)x ≤ t, δclj ≥ 0

(3.39)

where γcij, δ
c
ij are positive numbers expressing the left and right spread of c̃ij(λ),

reference function L, R :[0, 1]→ [0, 1] with L(1)=R(1)=0, and L(0)=R(0)=1 are
non-increasing, continuous functions.
(cij(λ))n×1=(ci1(λ), ci2(λ), ..., cin(λ))T is a rough vector.

It follows that ci(λ)Tx=([a,b] [c,d]) where c≤ a,b≤ b is a rough variable and
characterized by the trust measure in Equ. 3.24. Then we have

Tr{λ|Pos{ˆ̃cij(λ)T ≥ fi} ≥ βi} ≥ αi if and only if

⇔


fi ≤ d− 2αi(d− c) +R−1(βi)γ

cT
i x, if b ≤ w ≤ d

fi ≤ d(b−a)+b(d−c)−2αi(d−c)(b−c)
d−c+b−c +R−1(βi)γ

cT
i x if a ≤< b

fi ≤ d− (d− c)(2αi − 1) +R−1(βi)γ
cT
i x if c ≤ w ≤ a

fi ≤ c+R−1(βi)γ
cT
i x if w ≤ c

(3.40)
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where βi, αi, w = fi −R−1(βi)δ
cT
i x are predetermined confidence levels.

Lemma 3.8 (Xu et al. [173]) Let m̃ and ñ between independent fuzzy numbers
with continuous membership functions. For a given confidence level α ∈ [0, 1]
then Pos {m̃ ≥ ñ} ≥ α⇐⇒ mR

α ≥ nLα, where mL
α, mR

α and nLα, nRα are left and
right side extreme points of the α−level sets [ mL

α, mR
α ] and [ nLα, nRα ] of m̃ and ñ,

respectively, and Pos{m̃ ≥ ñ} means the degree of possibility that m̃ is greater
than or equal to ñ.

3.11 Random-Fuzzy (Ra-Fu) Variables

Definition 3.17 (Possibility space (Liu, [103]) Let Θ be a nonempty set, and
P (Θ) be the power set of Θ. For each A ∈ P (Θ), there is a nonnegative number
Pos{A}, called its possibility, such that
1. Pos{φ} = 0, Pos{Θ} = 1; and
2. Pos{

⋃
k Ak} = supkPos{Ak} for any arbitrary collection Ak in P (Θ).

The triplet (Θ, P (Θ), Pos) is called a possibility space, and the function Pos
is referred to as a possibility measure. Then, a random fuzzy variable is firstly
defined by Liu [103] as a function from a possibility space to a collection of
random variables.

Definition 3.18 (Random fuzzy variable (Liu [103]) A random fuzzy variable
is defined as a function from the possibility space (Θ, P (Θ), Pos) to the set of
random variables. An example of random fuzzy variables are given by Liu [103]
as follows:

Definition 3.19 (Membership function of a random fuzzy variable (Liu, [103])
Let ˜̄ξ be a random fuzzy variable on the possibility space (Θ, P (Θ), Pos). Then
its membership function is derived from the possibility measure Pos by

µ(η̄) = Pos{θ ∈ Θ| ˜̄ξ(θ) = η̄}, η̄ ∈ Γ (3.41)

Definition 3.20 (Random fuzzy variable (Katagiri et al., [80]) Let Γ be a col-
lection of random variables. Then, a random fuzzy variable ˜̄C is defined by its
membership function

µ ˜̄C
: Γ→ [0, 1] (3.42)
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Example 3.4 Assume that η̄1, η̄2, · · · , η̄m are random variables and u1, u2, · · · , um
are real numbers in [0, 1] such that max{u1, u2, · · · , um} = 1. Then ˜̄η is a ran-
dom fuzzy variable and its membership function is expressed as

˜̄ξ(γ̄) =


u1, ifγ̄ = η̄1,
u2, ifγ̄ = η̄2

· · ·
um, ifγ̄ = η̄m

(3.43)

Theorem 3.13 Katagiri et al.[80]

Pos{Prob{ ˜̄Clx ≤ fl} ≥ θ̂objl } ≥ ĥobjl , l = 1, 2, · · · , k and

Nec{Prob{ ˜̄Clx ≤ fl} ≥ θ̂obji } ≥ ĥobji , l = 1, 2, · · · , k

is equivalently transformed into the condition
n∑
j=1

{mc
lj − L∗(ĥl

obj
)αclj}xj + Φ−1(θ̂l

obj
)
√
xtV c

l x ≤ fl

n∑
j=1

{mc
lj + L∗(1− ĥobjl )βclj}xj + Φ−1(θ̂objl )

√
xtV c

l x ≤ fl

where α, β’s are spreads, θ and h′s are desired amount of satisfaction of proba-
bility constraints and possibility/ necessity constraints chosen by DM.

Figure 3.14: Degree of possibility Pos{Prob{ ˜̄Clx ≤ fl} ≥ θ̂obji } ≥ ĥobji

Theorem 3.14 Katagiri et al.[80]

Pos{Prob{ ˜̄Ax ≤ ˜̄B} ≥ θ̂csti } ≥ ĥcsti , i = 1, 2, · · · , r and

Nec{Prob{ ˜̄Ax ≤ ˜̄B} ≥ θ̂csti } ≥ ĥcsti , i = 1, 2, · · · , r
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are equivalently transformed into the conditions
n∑
j=1

{ma
ij − L∗(ĥcsti )αaij}xj + Φ−1(θ̂csti )

√
xtV a

i x+ (σbi )
2

≤ mb
i + L∗(ĥcsti )βbij and

n∑
j=1

{ma
ij + L∗(1− ĥcsti )βbij}xj + Φ−1(θ̂i

cst
)
√
xtV a

i x+ (σbi )
2

≤ mb
i − L∗(1− ĥcst)αbij

Theorem 3.15 (Xu, Zhou [174]) If ãr, b̃r is triangular LR fuzzy variables, then
the following expression are equivalent

Pos

{ n∑
j=1

ãTr x ≤ b̃r

}
≥ θr

⇔ br − θrαbr ≥ aTr x+ (1− θr)βaTr x, r = 1, 2, · · · p.

3.12 Random-Rough (Ra-Ro) Variables

A random rough variable was initialized by Liu [100] as a rough variable de-
fined on the universal set of random variables, or a rough variable taking random
variable values.

Definition 3.21 (Liu [100]) A random rough variable is a function ξ from a rough
space (Λ,∆, κ,Π) to the set of random variables such that Pr{ξ(λ) ∈ B} is a
measurable function of λ for any Borel set B of <.

Theorem 3.16 (Liu [100]) Assume that ξ is a random rough variable, and B is a
Borel set of <. Then the probability Pr{ξ(λ) ∈ B} is a rough variable.

Theorem 3.17 Let ξ be a random rough variable. If the expected value E[ξ(λ)]
is finite for each λ, then E[ξ(λ)] is a rough variable.

Definition 3.22 (Liu[100]) An n-dimensional random rough vector is a function
ξ from a rough space (Λ,∆, κ,Π) to the set of n-dimensional random vectors
such that Pr{ξ(λ) ∈ B} is a measurable function of λ for any Borel set B of <n.
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Theorem 3.18 (Liu[100]) If (xi1, xi2, , xin) is a random rough vector, then xi1, xi2,
, xin are random rough variables. Conversely, if xi1, xi2, , xin) are random rough
variables, and for each λ ∈ Λ, the random variables ξ1(λ), ξ2(λ), ...ξn(λ) are
independent, then xi1, xi2, , xin) is a random rough vector.

Theorem 3.19 Let ξ be an n-dimensional random rough vector, and f : < → <a
measurable function. Then f(ξ) is a random rough variable.

Definition 3.23 (Liu[100], Random Rough Arithmetic on Single Space) Let f :
< → < be a measurable function, and xi1, xi2, , xin) random rough variables
defined on the rough space (Λ,∆, κ,Π). Then xi = f(xi1, xi2, , xin) is a random
rough variable defined by ξ(λ) = fξ1(λ), ξ2(λ), ...ξn(λ),∀λ ∈ λ.

Definition 3.24 (Liu[100], Random Rough Arithmetic on Different Spaces) Let
f : < → < be a measurable function, and ξi random rough variables defined on
(Λi,∆i, κi,Πi), i = 1, 2, , n, respectively. Then ξ = f(xi1, xi2, , xin) is a random
rough variable defined on the product rough space (Λ,∆, κ,Π) as (λ1, λ2, ..λn) =
f(ξ1(λ1), ξ2(λ2), , ξn(λn)) for all (λ1, λ2, ...., λn) ∈ Λ.

Theorem 3.20 (Liu[100]) Let ξ be a random rough variable, and B a Borel set
of <. For any given α∗ ∈ (0, 1], write β∗ = Ch{ξ ∈ B}(α∗). Then we have
Tr{λ ∈ Λ|Pr{ξ(λ) ∈ B} ≥ β∗ ≥ α∗

Theorem 3.21 (Liu[100]) Assume that ξ and η are random rough variables with
finite expected values. Then for any real numbers a and b, we have E[aξ + bη] =
aE[ξ] + bE[η].

Theorem 3.22 (Liu[100]) If ξ is a random rough variable with finite expected
value, a and b are real numbers, then V[aξ + b] = a2V [ξ].
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3.13 Optimization Models in Different Environments

3.13.1 Single Objective Random Model

A stochastic linear programming can be stated as follows:

Minimize f(X) =
n∑
j=1

ĉjxj

subject to
n∑
j=1

âijxj ≤ b̂i for i = 1, 2, ...,m

xj ≥ 0, for j = 1, 2, ..., n

 (3.44)

where ĉj, âij, and b̂i are random variables with known probability distribution.

3.13.2 Equivalent Crisp Model by Chance Constraint

The chance - constrained programming technique [25] can be used to solve
the above problem. In this method, Equ. 3.44 is stated as follows:

Minimize f(X) =
n∑
j=1

ĉjxj

subject to P [
n∑
j=1

âijxj ≤ b̂i] ≥ pi for i = 1, 2, ...,m

xj ≥ 0, for j = 1, 2, ..., n

 (3.45)

where pi’s are specified probabilities. For simplicity, we assume that the de-
sign variables xj are deterministic variables. We shall further assume that all the
random variables are normally distributed with known mean and standard devia-
tions. So the objective function f(X) will also be a normally distributed random
variable. Then mean and variance of f(X) are given by

f(X) =
n∑
j=1

cjxj, cj = E(cj)

var(f) = XTV X

 (3.46)

where E(cj) is the mean value of cj and the matrix V is the covariance matrix of
cj.
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Thus the stochastic linear programming problem of Equ. 3.45 can be stated as an
equivalent deterministic nonlinear programming problem as given below

Minimize F (X) = k1 ∗
n∑
j=1

cjxj + k2 ∗
√
XTV X, k1, k2 ≥ 0

subject to hi + si ∗
√

(var(hi)) ≤ 0, i = 1, 2, ...,m
xj ≥ 0, j = 1, 2, ..., n

hi =
n∑
j=1

aijxj − bi,


(3.47)

where k1 and k2 are constants indicating the weights of mean and variance func-
tions. Here hi is a new random variable. The mean of hi is given by hi =
n∑
j=1

aijxj − bi.

3.13.3 Single Objective Bi-fuzzy Model

Let us consider the following single-objective decision making model with
Bi-fuzzy coefficients:

Max f(x, ξ)

s.t

{
gr(x, ξ) ≤ 0, r = 1, 2, · · · , p
x ∈ X

(3.48)

where x is a n-dimensional decision vector, ξ = (ξ1, ξ2, ξ3, · · · , ξn) is a Bi-fuzzy
vector, f(x, ξ) are objective functions, i = 1, 2, · · · ,m. Because of the existence
of Bi-fuzzy vector ξ, problem (3.48) is not well-defined. That is, the meaning of
maximizing f(x, ξ) is not clear and constraints gr(x, ξ) ≤ 0, r = 1, 2, · · · , p do
not define a deterministic feasible set.

3.13.4 Equivalent Crisp Model of Bi-fuzzy Model

For the single-objective model (3.48) with Bi-fuzzy parameters, we cannot
deal with it directly, we should use some tools to make it have mathematical
meaning, we then can solve it. In this subsection, we employ the expected value
operator to transform the fuzzy rough model into Bi-fuzzy EVM i.e. crisp model.
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Based on the definition of the expected value of Bi-fuzzy events f(x, ξ) and
gr(x, ξ), the general model for Fu-Ro EVM is proposed as follows,

Max E
[
f(x, ξ)

]
s.t

 E

[
gr(x, ξ)

]
≤ 0, r = 1, 2, · · · , p

x ∈ X

(3.49)

where x is n-dimensional decision vector and ξ is n-dimensional Bi-fuzzy vari-
able.

3.13.5 Multi-objective Bi-random Model

Now a general equilibrium chance-constrained multi objective programming
model with bi-random parameters can be formulated as

minimize{f̄1, f̄2, ....f̄m}
subject to Che{fi(x, ξ) ≤ f̄i} ≥ αi, i = 1, 2, ...m

Che{gr(x, ξ) ≤ 0} ≥ βr, r = 1, 2, ...p
x ∈ D

 (3.50)

where x is an n-dimensional decision vector, ξ is a m-dimensional bi-random
vector, D is a fixed set that is usually determined by a finite number of inequal-
ities involving functions of x, and fi and gr are (m + n)-dimensional real-valued
continuous functions, αi and βr are predetermined confidence levels, i = 1, 2,...,
m, r = 1, 2,..., p.

3.13.6 Equivalent Crisp of multi-objective Bi-random Model

It follows from the definition (3.11) that Equ.(3.50) formulated as given below

minimize{f̄1, f̄2, ....f̄m}
s.t Che{˜̃cTi x ≤ f̄i} ≥ αi, i = 1, 2, ...m

Che{˜̃aTr x ≤
˜̃br} ≥ βr, i = 1, 2, ...p
x ∈ D

 (3.51)
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where ˜̃ci(ω)=(˜̃ci1(ω), ˜̃ci2(ω),..., ˜̃cin(ω))T , ˜̃ar(ω)=(˜̃ar1(ω), ˜̃ar2(ω),..., ˜̃arn(ω))T are
bi-random vectors, ˜̃br are bi-random variables, i=1, 2,..., m, r=1, 2,..., p.

It follows from Theorem 3.3 that Equ.(3.51) can be rewritten as

minimize{f̄1, f̄2, ....f̄m}
s.t Pr{ω ∈ Ω|Pr{˜̃cTi (ω)x ≤ f̄i} ≥ αi, i = 1, 2, ...m

Pr{ω ∈ Ω|Pr{˜̃aTr (ω)x ≤ ˜̃br} ≥ βr, r = 1, 2, ...p
x ∈ D

 (3.52)

Now using Lemma 3.3 and 3.4, then Equ.(3.52) represents as

minimize{f̄1, f̄2, ....f̄m}
s.t µcTi x+ Φ−1(αi)

√
(xTV c

i x) + Φ−1(αi)
√

(xTV nc
i x) ≤ f̄i, i = 1, 2, ...m

µaTr x+ Φ−1(βr)
√

(xTV a
i x+ (σbr)

2) + Φ−1(βr)
√

(xTV na
r x+ (σnbr )2)) ≤ µbr,

r = 1, 2, ...p, x ∈ D.


(3.53)

where Φ is the standardized normal distribution and αi, βr are predetermined
confidence levels.

3.13.7 Multi-objective Bi-rough Model

Consider the following multi objective programming problem with Bi-
rough coefficients

min {f1(x, ξ), f2(x, ξ), ..., fm(x, ξ)}
s.t. gk(x, ξ) ≤ 0, k=1,2,.., p.

where x is a n-dimensional vector, ξ = (ξ1, ξ2, ..., ξn) is a Bi- rough vector,
fi(x, ξ) are objective functions, i=1,2.., m and gk(x, ξ) are constraint functions,
k=1,2,.., p. Now the above model not well defined as the existence of Bi- rough
vector ξ. The Bi- rough chance constrained multi objective programming (BiR-
CCMOP) [103] model was proposed as follows :

minimize{f̄1, f̄2, ....f̄m}
subject to Ch{fi(x, ξ) ≤ fi}(αi) ≥ βi, i = 1, 2, ...m

Ch{gk(x, ξ) ≤ 0}(ηk) ≥ σk, k = 1, 2, ...p
x ∈ D

 (3.54)

where Ch is the chance measure of the Bi- rough events and αi, βi, ηk and σk are
predetermined confidence levels, i=1,2,..m, k=1,2,...p.
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3.13.8 Equivalent Crisp of multi-objective Bi-rough Model

Also the chance written as given
Ch{fi(x, ξ) ≤ f̄i}(αi) ≥ βi ⇔ Ex{λ|Tr{{fi(x, ξ) ≤ f̄i} ≥ αi} ≥ βi
Ch{gr(x, ξ) ≤ 0}(ηk) ≥ σr ⇔ Ex{λ|Tr{{gr(x, ξ) ≤ 0} ≥ ηk} ≥ σk

Now the above equation of BiRCCMOP can written as
minimize{f1, f2, ...., fm}

subject to Ex{λ|Tr{ˆ̂ci(λ)Tx ≤ fi} ≥ βi} ≥ αi, i = 1, 2, ...m

Ex{λ|Tr{ˆ̂ei(λ)Tx ≤ ˆ̃bk} ≥ σk} ≥ ηk, k = 1, 2, ...p
x ≥ 0

(3.55)

where αi, βi, ηk, γk ∈ [0, 1] are the predetermined confidence levels, ci(λ) is a
rough variable as ([ξ − p, ξ + q],[ξ − r, ξ + s]) where p< q < r < s are any
real numbers and ξ is a rough variable ([a,b], [c,d]) and ei(λ) - bi(λ) also rough
variable as ([ξ1 − p1, ξ1 + q1],[ξ1 − r1, ξ1 + s1]) where p1 < q1 < r1 < s1

are any real numbers and ξ1 is a rough variable ([a1, b1], [c1, d]). Ex{.} denotes
expectation of the rough events in {.}, and Tr{.} denotes the trust measure of the
events in {.}. Here the above model known as Ex-Tr constrained multi objective
programming model.
Thus the above model transformed as minimized {f1, f2, ...., fm} for objective
functions

fi =


u− r + 2α(s+ r), if u− r ≤ fi ≤ u− p
u(p+q+r+s)−r(q+p)−p(s+r)+2α(s+r)(q+p)

p+q+r+s if u− p ≤ fi ≤ u+ q

u− r + (2α− 1)(s+ r) if u+ q ≤ fi ≤ u+ s

(3.56)

and for constraint as

w ≥


u1 − r1 + 2η(s1 + r1), if u1 − r1 ≤ w ≤ u1 − p1
u1(p1+q1+r1+s1)−r1(q1+p1)−p1(s1+r1)+2η(s1+r1)(q1+p1)

p1+q1+r1+s1
if u1 − p1 ≤ w ≤ u1 + q1

u1 − r1 + (2η − 1)(s1 + r1) if u1 + q1 ≤ w ≤ u1 + s1

(3.57)
where w be given crisp values, E[ξ] = u = a+b+c+d

4 , E[ξ1] = u1 = a1+b1+c1+d1
4 .

3.13.9 Multi-objective Fu-Ra Model

Here the general fuzzy random chance-constrained decision making model as
follows.

94



3.13. OPTIMIZATION MODELS IN DIFFERENT ENVIRONMENTS

minimize{f̄1, f̄2, ....f̄m}
s.t. Ch{fi(x, ξ) ≤ f̄i}(γi) ≥ δi, i = 1, 2, ...m

Ch{gr(x, ξ) ≤ 0}(ηr) ≥ θr, r = 1, 2, ...p
x ∈ X

 (3.58)

where Ch is the chance measure of the fuzzy random events, γi, δi, ηr, θr are the
predetermined confidence levels, fi and xi are the decision variables, i=1,2... m.
Also the chance written as given

Ch{fi(x, ξ) ≤ f̄i}(γi) ≥ δi ⇔ Pr{ω|Pos{{fi(x, ξ) ≤ f̄i} ≥ δi} ≥ γi
Ch{gr(x, ξ) ≤ 0}(ηr) ≥ θr ⇔ Pr{ω|Pos{{gr(x, ξ) ≤ 0} ≥ θr} ≥ ηr

3.13.10 Equivalent Crisp of multi-objective Fu-Ra Model

Now the above optimization model Equ.(3.58) converted as below in Proba-
bility Possibility form

minimize{f̄1, f̄2, ....f̄m}
s.t. Pr{ω|Pos{{fi(x, ξ) ≤ f̄i} ≥ δi} ≥ γi, i = 1, 2, ...m

Pr{ω|Pos{{gr(x, ξ) ≤ 0} ≥ θr} ≥ ηr, r = 1, 2, ...p
x ∈ X

 (3.59)

and in the Probability Necessity form

minimize{f̄1, f̄2, ....f̄m}
s.t. Pr{ω|Nes{{fi(x, ξ) ≤ f̄i} ≥ δi} ≥ γi, i = 1, 2, ...m

Pr{ω|Nes{{gr(x, ξ) ≤ 0} ≥ θr} ≥ ηr, r = 1, 2, ...p
x ∈ X

 (3.60)

where γi, δi, ηr, θr ∈ [0, 1] are the predetermined confidence levels.

3.13.11 Single Objective Fu-Ro Model

Let us consider the following single-objective decision making model with fuzzy
rough coefficients:

Max f(x, ξ)

s.t

{
gr(x, ξ) ≤ 0, r = 1, 2, · · · , p
x ∈ X

(3.61)
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where x is a n-dimensional decision vector, ξ = (ξ1, ξ2, ξ3, · · · , ξn) is a Fu-Ro
vector, f(x, ξ) are objective functions, i = 1, 2, ...,m. Because of the existence
of Fu-Ro vector ξ, problem (3.61) is not well-defined. That is, the meaning of
maximizing f(x, ξ) is not clear and constraints gr(x, ξ) ≤ 0, r = 1, 2, · · · , p do
not define a deterministic feasible set.

3.13.12 Equivalent Crisp Model of Fu-Ro Model

For the single-objective model (3.61) with Fu-Ro parameters, we cannot deal
with it directly, we should use some tools to make it have mathematical meaning,
we then can solve it. In this subsection, we employ the expected value operator
to transform the fuzzy rough model into Fu-Ro EVM i.e. crisp model.
Based on the definition of the expected value of fuzzy rough events f(x, ξ) and
gr(x, ξ), the general model for Fu-Ro EVM is proposed as follows,

Max E
[
f(x, ξ)

]
s.t

 E

[
gr(x, ξ)

]
≤ 0, r = 1, 2, · · · , p

x ∈ X

(3.62)

where x is n-dimensional decision vector and ξ is n-dimensional fuzzy rough
variable.

3.13.13 Multi-objective Fu-Ro Model

Consider the following multi objective programming problem with fuzzy
rough coefficients

min {f1(x, ξ), f2(x, ξ), ..., fm(x, ξ)}
s.t. gk(x, ξ) ≤ 0, k=1,2,.., p.

where x is a n-dimensional vector, ξ = (ξ1, ξ2, ..., ξn) is a fuzzy rough vector,
fi(x, ξ) are objective functions, i=1,2.., m and gk(x, ξ) are constraint functions,
k=1,2,.., p. Now the above model not well defined as the existence of fuzzy rough
vector ξ. The fuzzy rough chance constrained multi objective programming (FR-

96



3.13. OPTIMIZATION MODELS IN DIFFERENT ENVIRONMENTS

CCMOP) [32] model was proposed as follows :

minimize{f̄1, f̄2, ....f̄m}
subject to Ch{fi(x, ξ) ≤ fi}(αi) ≥ βi, i = 1, 2, ...m

Ch{gk(x, ξ) ≤ 0}(ηk) ≥ σk, k = 1, 2, ...p
x ∈ D

 (3.63)

where Ch is the chance measure of the fuzzy rough events and αi, βi, ηk and σk
are predetermined confidence levels, i=1,2,..m, k=1,2,...p. Also the chance writ-
ten as given

Ch{fi(x, ξ) ≤ f̄i}(αi) ≥ βi ⇔ Tr{λ|Pos{{fi(x, ξ) ≤ f̄i} ≥ αi} ≥ βi
Ch{gr(x, ξ) ≤ 0}(ηk) ≥ σr ⇔ Tr{λ|Pos{{gr(x, ξ) ≤ 0} ≥ ηk} ≥ σk

3.13.14 Equivalent Crisp of multi-objective Fu-Ro Model

Now the above equation of FRCCMOP can written as Xu et al. [173]

minimize{f1, f2, ...., fm}
subject to Tr{λ|Pos{ˆ̃ci(λ)Tx ≤ fi} ≥ βi} ≥ αi, i = 1, 2, ...m

Tr{λ|Pos{ˆ̃ei(λ)Tx ≤ ˆ̃bk} ≥ σk} ≥ ηk, k = 1, 2, ...p
x ≥ 0

(3.64)

where αi, βi, ηk, γk ∈ [0, 1] are the predetermined confidence levels, ci(λ) is a
rough variable as ([a, b],[c, d]) and ei(λ) - bi(λ) also rough variable as ([a1, b1],[c1, d1]).
Pos{.} denotes possibility of the fuzzy events in {.}, and Tr{.} denotes the trust
measure of the events in {.}. Here the above model known as Tr-Pos constrained
multi objective programming model Xu et al. [173].
Thus the above model transformed as minimized {f1, f2, ...., fm} for objective
functions

fi =


c+ 2αi(d− c)− L−1(βi)γ

cT
i x, if c ≤ S ≤ a

c(b−a)+a(d−c)+2αi(d−c)(b−a)
d−c+b−a − L−1(βi)γ

cT
i x if a ≤ S ≤ b

c+ (d− c)(2αi − 1)− L−1(βi)γ
cT
i x if b ≤ S ≤ d

d− L−1(βi)γ
cT
i x if S ≥ d

(3.65)

97



CHAPTER 3. SOME UNCERTAIN ENVIRONMENTS

and for constraint as

W ≥


c1 + 2(d1 − c1)ηk, if c1 ≤ W ≤ a1
c1(b1−a1)+a1(d1−c1)+2ηk(d1−c1)(b1−a1)

d1−c1+b1−a1 if a1 ≤ W ≤ b1

c1 + (d1 − c1)(2ηk − 1) if b1 ≤ W ≤ d1

d1 if d1 ≤ W

(3.66)

where W=R−1(σk)δ
b
k + L−1(σk)γ

eT
k x, S = fi + L−1(βi)δ

cT
i x.

3.13.15 Single Objective Ra-Fu Model

Consider the following random fuzzy multi-objective linear programming prob-
lems formulated as

min
x

˜̄Clx, l = 1, 2, · · · , k

s.t

{
˜̄Ai(x, ξ̂) ≤ ˜̄B, i = 1, 2, · · · , r

x ≥ 0

(3.67)

where x is an n dimensional decision variable column vector.
When we formulate multi objective programming problems as stochastic pro-
gramming (Birge and Louveaux [15] and Infanger, [72]), one of the most basic
approaches is to assume that ˜̄c = (˜̄c111, ˜̄c112, · · · , ˜̄c11n; · · · , ˜̄cn11, ˜̄cn12, · · · , ˜̄cnmk)
is a random variable vector which has multivariate Gaussian random distribution.

3.13.16 Equivalence Crisp of Ra-Fu Model

In this investigation, we assume that the mean of ˜̄cl is represented with an L-L
fuzzy number µ˜̄cl characterized by the membership function, is given by

µ ˜̃̄
M c
l

(τ) =


L

(
mc
lj−τ
αlj

)
for mc

lj ≥ τ

L

(
τ−mc

lj

αlj

)
for mc

lj < τ

where the shape functions L is a nonnegative continuous function satisfying the
following conditions:
a. L(t) is non increasing for any t > 0.
b. L(0) = 1.
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c. L(t) = L(−t) for any t ∈ R.
d. There exists a tL0 such that L(t) = 0 for any t larger than tL0 .
The parameters mc

lj, α
c
lj and βclj are real constant values, and the values of αclj

and βclj represent left and right spreads of the fuzzy number ˜̄M c
lj. The Fig 3.17.

illustrates an example of the membership function µ ˜̃̄
M c
l

(τ).

Figure 3.15: An example of the membership function µ ˜̃̄
Mc

l

(τ)

Recently, Katagiri et al.[80] have developed random fuzzy multi-objective linear
programming: Optimization of possibilistic value at risk (pVaR). Using possibil-
ity and necessity approach the above problem (3.67) can be expressed as



min
x

fl, l = 1, 2, · · · , k

s.t



Pos{Prob{ ˜̄Clx ≤ fl} ≥ θ̂objl } ≥ ĥobjl
Nec{Prob{ ˜̄Clx ≤ fl} ≥ θ̂obji } ≥ ĥobji
Pos{Prob{ ˜̄Ax ≤ ˜̄B} ≥ θ̂csti } ≥ ĥcsti
Nec{Prob{ ˜̄Ax ≤ ˜̄B} ≥ θ̂csti } ≥ ĥcsti
x ≥ 0, l = 1, 2, · · · , k, i = 1, 2, · · · , r

(3.68)

Using Theorem-3.13 and Theorem-3.14, the above problem (3.68) can be written
as
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min
x

fl, l = 1, 2, · · · , k

s.t



n∑
j=1

{mc
lj − L∗(ĥl

obj
)αclj}xj + Φ−1(θ̂l

obj
)
√
xtV c

l x ≤ fl

n∑
j=1

{mc
lj − L∗(1− ĥ

obj
l )βclj}xj + Φ−1(θ̂objl )

√
xtV c

l x ≤ fl

n∑
j=1

{mc
ij − L∗(ĥ

obj
i )αaij}xj + Φ−1(θ̂csti )√

xtV c
l x+ (σai )

2 ≤ mb
i + L∗(ĥcsti )βbij

n∑
j=1

{mc
ij − L∗(1− ĥ

obj
i )αbij}xj + Φ−1(θ̂cst)√

xtV c
i x+ (σbi )

2 ≤ mb
i − L∗(1− ĥcst)αbij

x ≥ 0, i = 1, 2, · · · , r

(3.69)

3.13.17 Multi-objective Ra-Ro Model

Consider the following multi objective programming problem with random
rough coefficients

min {f1(x, ξ), f2(x, ξ), ..., fm(x, ξ)}
s.t. gk(x, ξ) ≤ 0, k=1,2,.., p.

where x is a n-dimensional decision vector, ξ = (ξ1, ξ2, ..., ξn) is a random rough
vector, fi(x, ξ) are objective functions, i=1,2.., m and gk(x, ξ) are constraint func-
tions, k=1,2,.., p.

Now the above model not well defined as the existence of random rough vector
ξ. The random rough chance constrained multi objective programming (RRCC-
MOP) (Liu, [100]) model was proposed as follows :

minimize{f̄1, f̄2, ....f̄m}
subject to Ch{fi(x, ξ) ≤ fi}(αi) ≥ βi, i = 1, 2, ...m

Ch{gk(x, ξ) ≤ 0}(ηk) ≥ γk, k = 1, 2, ...p
x ∈ D

 (3.70)

Where αi, βi, ηk and σk are predetermined confidence levels. i=1,2,..m, k=1,2,...p.
Also the chance written as given

Ch{fi(x, ξ) ≤ f̄i}(αi) ≥ βi ⇔ Tr{λ|Pr{{fi(x, ξ) ≤ f̄i} ≥ αi} ≥ βi
Ch{gk(x, ξ) ≤ 0}(ηk) ≥ γk ⇔ Tr{λ|Pr{{gk(x, ξ) ≤ 0} ≥ ηk} ≥ γk
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3.13.18 Equivalence Crisp of Multi-objective Ra-Ro Model

Now the above equation of RRCCMOP can written as Xu et al. ([172])

minimize{f1, f2, ...., fm}
subject to Tr{λ|Pr{ˆ̄ci(λ)Tx ≤ fi} ≥ βi} ≥ αi, i = 1, 2, ...m

Tr{λ|Pr{ˆ̄ek(λ)Tx ≤ ˆ̄bk} ≥ γk} ≥ ηk, k = 1, 2, ...p
x ≥ 0

(3.71)

where αi, βi, ηk, γk ∈ [0, 1] are the predetermined confidence levels, ˆ̄ci(λ) is as-
sume that ˆ̄ci(λ) ∼ N(ci(λ), V c

i ) variate where ci(λ) is rough variable as ([a,b],[c,d])
and ˆ̄ek(λ) ∼ N(ek(λ), V e

k ) variate, ˆ̄bk(λ) ∼ N(bk(λ), (σbk)
2) variate where ek(λ)

- bk(λ) is a rough variable ([a1, b1], [c1, d1]). Pr{.} denotes probability of the ran-
dom events in {.}, and Tr{.} denotes the trust measure of the rough events in {.}.
Here the above model known as Tr-Pr constrained multi objective programming
model.
Thus the above model transformed as minimize{f1, f2, ...., fm}

fi =


c+ 2αi(d− c) + φ−1(βi)

√
xTV c

i x, if c ≤ W ≤ a
c(b−a)+a(d−c)+2αi(d−c)(b−a)

d−c+b−a + φ−1(βi)
√
xTV c

i x if a ≤ W ≤ b

c+ (d− c)(2αi − 1) + φ−1(βi)
√
xTV c

i x if b ≤ W ≤ d

d+ φ−1(βi)
√
xTV c

i x if W ≥ d
(3.72)

s.t. M ≥


c1 + 2(d1 − c1)ηk, if c1 ≤M ≤ a1
c1(b1−a1)+a1(d1−c1)+2ηk(d1−c1)(b1−a1)

d1−c1+b1−a1 if a1 ≤M ≤ b1

c1 + (d1 − c1)(2ηk − 1) if b1 ≤M ≤ d1

d1 if d1 ≤M

(3.73)

where M= - φ−1(γk)
√
xTV e

k x+ (σbk)
2,W = fi − φ−1(βi)

√
xTV c

i x.
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Part II

Single Objective Optimization by
Single/Multi-Heuristic Methods
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Chapter 4

Single Objective Optimization Using Single
Heuristic Methods

4.1 Introduction

In this chapter, modifications and new operators that have been developed
for genetic algorithms are applied to TSP are presented. These modifications
are made for a number of reasons for example to improve the quality of end re-
sults or to reduce the computation time. Researchers have adopted a number of
different approaches to achieve the above goals. In this chapter, the presented
approaches, are: an improved GA (IGA), an adaptive GA (AGA), a modified
GA (MGA), a rough GA (RGA) and a rough extended GA (ReGA) developed
to solve solid TSP. Here modified probabilistic, rough age based, rough extended
age based selections, Comparison crossover and problem (generation ) dependent
mutations are developed. Also the solid TSP models with different constraints
as safety, risk/discomfort and time constraints etc. are formulated. Again solid
TSPs are studied in crisp, fuzzy, interval values, rough, bi-fuzzy, bi-rough, bi-
random, random, fuzzy-rough, fuzzy-random, random-fuzzy and random-rough
environments. This chapter concludes with an examination of how these modi-
fications of GAs are effective for proposed solid TSPs through some statistical
tests such as ANOVA, Friedman test and Post hoc comparison, etc. are presented.
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4.2 Model-4.1: An Improved Genetic Algorithm and Its Ap-
plication in Constrained Solid TSP in Uncertain Environ-
ments1

In this investigation, we propose an improved genetic algorithm (IGA) to
solve Constrained Solid Travelling Salesman Problems (CSTSPs) in crisp, fuzzy,
rough, and fuzzy-rough environments. IGA is a combination of proposed prob-
abilistic selection, cyclic crossover, and nodes-oriented random mutation. Here,
CSTSPs in different uncertain environments have been designed and solved by
the proposed algorithm. In the present problem, there are some risks of travel-
ling between the cities through different conveyances. The salesman desires to
maintain certain safety level always to travel from one city to another and a total
safety for his entire tour. Costs and safety level factors for travelling between the
cities are different. The requirement of minimum safety level is expressed in the
form of a constraint. The safety factors are expressed by crisp, fuzzy, rough, and
fuzzy-rough numbers. The models are formulated as minimization problems of
total cost subject to crisp, fuzzy, rough, or fuzzy-rough constraints. The model is
numerically illustrated with appropriate data values. Optimum results for the dif-
ferent models are presented via IGA. Moreover, the problems from the TSPLIB
(standard data set) are tested with the proposed algorithm. Some statistical tests
are performed to established the effectiveness of the proposed IGA.

4.2.1 Proposed IGA

(a) Representation:
Here a complete tour on N cities represents a solution. So an N-dimensional

integer vector Xi = (xi1, xi2, ..., xiN) is used to represent a solution, where
xi1, xi2, ..., xiN represent N consecutive cities in a tour. For solid TSP another
integer vector Vk = (vk1, vk2, ..., vkN) is used to represent the conveyance types
used for travel between different cities. Here vkj represents the conveyance (an
integer) used to travel from city xij to xi(j+1) for j = 1, 2, . . . ,N 1 and vkN
represents the conveyance type used to travel from city xiN to xi1.

1This portion is published in Facets of Uncertainties and Applications, Springer Proceedings in Mathematics
& Statistics 125, DOI 10.1007/978-81-322-2301-6 14, with title An Improved Genetic Algorithm and Its Application
in Constrained Solid TSP in Uncertain Environments.
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(b) Initialization:
Population size number of such solutions Xi = (xi1, xi2, ..., xiN), i = 1, 2, . . .

, pop size, are randomly generated by random number generator, such that each
solution satisfies the constraints of the problem. A separate sub function, s(Xi)
checks the constraint. For STSP, another integer vector Vk = (vk1, vk2, ..., vkN)
is randomly generated corresponding to the solution Xi, to represent the con-
veyance types used to travel between different cities. So in that case (Xi, Vk)
represents a solution.

(c) Probabilistic Selection:
For minimum cost objective, it is better to choose that population which is in

the neighborhood of the minimum solution of the entire solution space. So we
get the convergence rate much high. From the initial population, choose the best
fitted population for TSP. It is chosen as the most minimum fitness value (say
fmin). To form the matting pool, we use the Boltzmann-Probability of the each
chromosome from the initial population.

Let, pB=e((fmin−f(Xi))/T ),
where T=T0(1-a)k, k=(1+100*(g/G)), g=current generation number, G= maxi-
mum generation, T0= rand[5,100], a=rand[0,1], f(Xi) means the chromosome
corresponding to Xi, i=chromosome number.
(d) Procedure of Selection:
input : Max-gen (G), Probability of selection (ps), pop - size.
output : Matting pool.
begin
for (i=1 to G)

for (j=1 to pop - size)
r=rand[0,1];
T0= rand[5,100];
a=rand[0,1];
k=(1+100*(i/G));
T=T0(1-a)k;
pB=e((fmin−f(Xj))/T );

if (r < pB )
choose the current chromosome;
j++;

else
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Select the corresponding chromosome of fmin;
j++;

end for
end for
end

(e) Cyclic Crossover: which already discussed in section 2.1.4(ii)(c).
(f) Nodes Oriented Mutation:
(i) Selection for mutation: For each solution of p(n), generate a random num-

ber r from the range [0, 1]. If r < pm then the solution is taken for mutation.
(ii) Mutation Process: To mutate a solutionX = (x1, x2, ..., xN) of TSP with

T number of nodes, select T number of nodes randomly from the solution and re-
place their places in the solution, i.e., if randomly two nodes xi, xj are selected,
then interchange xi, xj to get a child solution. The new solution, if it satisfies the
constraint of the problem, replaces the parent solution. For CSTSP to mutate a
solution (X,V), where X = (x1, x2, ..., xN),V = (v1, v2, ..., vp), at first an integer
is randomly selected in the range [1, 2]. If 1 is selected, then another two random
integers i, j are selected in the range [1, N]. Then interchange xi, xj to get the
child solution. If 2 is selected, then another two random integers i and j are se-
lected in the range [1,N] and [1, P] respectively. The value of vp is replaced by j
to get a child solution. If the child solution satisfies the constraint of the problem,
then it replaces the parent solution.

Algorithm of IGA:

1 . Begin

2 . Initialize max generation (s0), population size (pop size), pc, pm.

3 . Randomly generate initial population p(n)

4 . Evaluate initial population p(n) (i.e. fitness of the objective
function from p(n))

5 . While n ≤ s0 do

a . n = n + 1

b . Probabilistic Selection

c . Cyclic Crossover
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d . Random Mutation

e . Evaluate p(n)

6 . Update

7 . End While

8 . Print optimum result

9 . End

(g) Complexity Analysis :
Genetic Algorithms are not chaotic, they are stochastic. The complexity de-

pends on the genetic operators, their implementation (which may have a very sig-
nificant effect on overall complexity), the representation of the individuals and
the population, and obviously on the fitness function. Given the usual choices,
a Genetic Algorithm, complexity is O(s0(mn + mn + m)) with s0 the number of
generations, m the population size and n the size of the individuals. Therefore
the complexity is on the order of O(s0nm)).

The genetic algorithms with cyclic crossover operators have time complexity
O(s0mn2 ). The n2 factor is due to the fact that all repair procedures need to scan
all the possible pairs of cities and the complexity of the algorithm is O(n2).

4.2.2 Mathematical Formulation and Its crisp equivalence

Model 4.1A: Constrained Solid TSP
The mathematical expression is already given in section 1.7.2(a).

Model 4.1B: CSTSP in Fuzzy Environment (FCSTSP)
If costs and safety factors and limit are fuzzy numbers, i.e, c̃(i, j, k), s̃(i, j, k)

and s̃min respectively, then the TSP problem given by Equ. 1.4 reduces to:
Determine a complete tour (x1, x2, ..., xN , x1) using any one available conveyance
in each step from the vehicle types (v1, v2, ..., vP )

to minimize Z =
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl)

subject to
N−1∑
i=1

s̃(xi, xi+1, vi) + s̃(xN , x1, vl) ≥ s̃min

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., or P}

 (4.1)
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Possibilistic (Optimistic) Approach:
The above Equ. 4.1 is converted as given below:
Determine a complete tour (x1, x2, ..., xN , x1) using any one of the available con-
veyances in each step from the vehicle types (v1, v2, ..., vP )

to minimize F

subject to Pos(
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl) < F ) ≥ α3

Pos(
N−1∑
i=1

s̃(xi, xi+1, vi) + s̃(xN , x1, vl) ≥ s̃min) ≥ β3

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., or P}


(4.2)

where α3, β3 are predefined levels of possibility which are entirely determined
by the salesman. If we consider the fuzzy numbers as TFNs,
c̃(i, j, k) = (c(i, j, k)1, c(i, j, k)2, c(i, j, k)3), S̃(i, j, k) = (s(i, j, k)1, s(i, j, k)2,

s(i, j, k)3), s̃min = (s1, s2, s3).

where Fj =
N−1∑
i=1

c(xi, xi+1, vi)j + c(xN , x1, vl)j, j = 1, 2, 3.

and Sj =
N−1∑
i=1

s(xi, xi+1, vi)j + s(xN , x1, vl)j, j = 1, 2, 3.

where xi 6= xj, i, j = 1, 2...N. vi, vl ∈ {1, 2.., or P}
The objective function in Equ. 4.2 changed to

minimize F1 + α3(F2 − F1)

subject to
S3 − s1

S3 − S2 + s2 − s1
≥ β3

}
(4.3)

Here α3, β3 are predefined possibility levels.

Necessity (Pessimistic) Approaches:
Similarly, converting the fuzzy expression of Equ. 4.1 in pessimistic sense, we
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get as follows: Using necessity measure, we have

minimize F

subject to Nes(
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl) < F ) ≥ α4

Nes(
N−1∑
i=1

s̃(xi, xi+1, vi) + s̃(xN , x1, vl) ≥ s̃min) ≥ β4

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(4.4)

where α4, β4 are predefined levels of necessity which are entirely determined by
the salesman. Then the above problem can be reduced accordingly as:
Determine a complete tour (x1, x2, ..., xN , x1) using any one of the available con-
veyance in each step from the vehicle types (v1, v2, ..., vP ) so as

to minimize F

subject to
F3 − F
F3 − F2

≤ 1− α4

s3 − S1

S2 − S1 + s3 − s2
≤ 1− β4

 (4.5)

The objective function is changed to

to minimize F3 − (1− α4)(F3 − F2)

subject to
s3 − S1

S2 − S1 + s3 − s2
≤ 1− β4

}
(4.6)

Here α4 and β4 are predefined necessity levels.
Model 4.1C: CSTSP under rough environments(RCSTSP):

Determine a complete tour (x1, x2, ..., xN , x1) using any one of the available con-
veyances in each step from the vehicle types (v1, v2, ..., vP )

to minimize Z =
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)

subject to
N−1∑
i=1

ŝ(xi, xi+1, vi) + ŝ(xN , x1, vl) ≥ ŝmin

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (4.7)

The above model can be converted as below: Here, the expected value of Ĉ,
E(Ĉ) = c1+c2+c3+c4

4 is used.
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Table 4.1: Test TSPLIB problems by IGA
Instance Problem Size Best Solution IGA Iteration GA Iteration
bays29 29× 29 2020 2020 349 2020 571
bayg29 29 × 29 1610 1610 256 1610 480

fri26 26× 26 937 937 202 937 368
dantzig42 42 × 42 699 699 245 699 986

Model 4.1D: CSTSP under fuzzy-rough environment:
Determine a complete tour (x1, x2, ..., xN , x1) using any one available conveyances
in each step from the vehicle types (v1, v2, ..., vP )

to minimize Z =
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl)

subject to
N−1∑
i=1

˜̂s(xi, xi+1, vi) + ˜̂s(xN , x1, vl) ≥ ˜̂smin

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (4.8)

Crisp Equivalent Model:
To get the crisp equivalent by using Possibility-Expectation on the model given
in Equ. 4.8, we have:
to minimize (c1+c2+c3+c4)

4 + ρR1−(1−ρ)L1

2

s.t. (s1+s2+s3+s4)
4 + ρR2−(1−ρ)L2

2 ≥ (smin1+smin2+smin3+cmin4)
4 + ρR3−(1−ρ)L3

2

4.2.3 Numerical Experiments

The proposed IGA is used for the standard TSP from the TSPLIB[162] and
the results are compared with the simple GA (RW selection, Cyclic crossover
and Random Mutation) in number of iteration the result shows the efficiency
of the proposed algorithm (Table 4.1). Here pc=0.34, pm=0.3 and Pop-size=30,
Max-Gen=400.

4.2.4 Statistical Test

Here, we study the best, worst and average results with standard deviation and
percentage error of the standard TSP from TSPLIB [162] under of 25 individual
run by IGA. The Table 4.11 given the results.
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Table 4.2: Input Data: Crisp cost in CSTSP (Model 4.1A)
i/j 1 2 3 4 5
1 ∞ 15, 16, 17 18, 19, 20 12, 13, 14 20, 21, 22
2 27, 28, 29 ∞ 20, 21, 22 48, 49, 50 35, 36, 37
3 42, 43, 44 28, 29, 30 ∞ 30, 31, 32 25, 26, 27
4 38, 39, 40 30, 31, 32 8, 9,10 ∞ 20, 21, 22
5 66, 67, 68 22, 23, 24 35, 36, 37 30, 31, 32 ∞

Table 4.3: Input Data: Crisp safety values in CSTSP (Model 4.1A)
i/j 1 2 3 4 5
1 ∞ .3, .4, .5 .5, .6, .7 .2, .3, .4 .1, .2, .3
2 .6, .7, .8 ∞ .2, .3, .4 .5, .6, .7 .3, .4, .5
3 .2, .3, .4 .3, .4, .5 ∞ .2, .3, .4 .1, .2, .3
4 .6, .7, .8 .4, .3, .2 .6, .7, .8 ∞ .3, .4, .5
5 .8, .7, .6 .3, .2, .1 .6, .5, .4 .4, .5, .6 ∞

Table 4.4: Input Data: FCSTSP (Model 4.1B)
i/j 1 2 3 4 5

∞ (14, 15, 16) (17, 18, 19) (11, 12, 13) (19, 20, 21)
1 (15, 16, 17) (18, 19, 20) (12, 13, 14) (20, 21, 22

(16, 17, 18) (19, 20, 21) (13, 14, 15) (21, 22, 23)
(26, 27, 28) (19, 20, 21) (47, 48, 49) (34, 35, 36)

2 (27, 28, 29) ∞ (20, 21, 22) (48, 49, 50) (35, 36, 37)
(28, 29, 30) (21, 22, 23) (49, 50, 51) (36, 37, 38)
(41, 42, 43) (27, 28, 29) (29, 30, 31) (24, 25, 26)

3 (42, 43, 44) (28, 29, 30) ∞ (30, 31, 32) (25, 26, 27)
(43, 44, 45) (29, 30, 31) (31, 32, 33) (26, 27 ,28)
(37, 38, 39) (29, 30, 31) (7, 8, 9) (19, 20, 21)

4 (38, 39, 40) (30, 31, 32) (8, 9, 10) ∞ (20, 21, 22)
(39, 40, 41) (31, 32, 33) (9, 10, 11) (21, 22, 23)
(65, 66, 67) (21, 22, 23) (21, 22, 23) (34, 35, 36)

5 (66, 67, 68) (67, 68, 69) (22, 23, 24) (23, 24, 25) ∞
(35, 36, 37) (36, 37, 38) (29, 30, 31) (30, 31, 32)
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Table 4.5: Input Data: Fuzzy safety in FCSTSP (Model 4.1B)
i/j 1 2 3 4 5

(.2, .3, .4) (.4, .5, .6) (.1, .2 .3) (.3, .4, .5)
1 ∞ (.3, .4, .5) (.5, .6, .7) (.2, .3, .4) (.4, .5, .6 )

(.4, .5, .6) (.6, .7, .8) (.3, .4, .5) (.5, .6, .7)
(.5, .6, .7) (.1, .2 .3) (.4, .5, .6) (.2, .3, .4)

2 (.6, .7, .8) ∞ (.2, .3, .4) (.5, .6, .7) (.3, .4, .5)
(.7, .8, .9) (.3, .4, .5) (.6, .7, .8) (.4, .5, .6)
(.1, .2 .3) (.2, .3, .4) (.1, .2 .3) (.1, .2 .3)

3 (.2, .3, .4) (.3, .4, .5) ∞ (.2, .3, .4) (.2, .3, .4)
(.3, .4, .5) (.4, .5, .6) (.3, .4, .5) (.3, .4, .5)
(.5, .6, .7) (.3, .2, .1) (.5, .6, .7) (.2, .3, .4)

4 (.6, .7, .8) (.4, .3, .2) (.6, .7, .8) ∞ (.3, .4, .5)
(.7, .8, .9) (.5, .4, .3) (.7, .8, .9) (.4, .5, .6)
(.9, .8, .7) (.4, .3, .2) (.7, .6, .5) (.3, .4, .5)

5 (.8, .7, .6) (.3, .2, .1) (.6, .5, .4) (.5, .4, .3) ∞
(.7, .6, .5) (.2, .1, .0) (.4, .5, .6 ) (.5, .6, .7)

Table 4.6: Input Data: Rough costs in RCSTSP (Model 4.1C)
i/j 1 2 3 4 5

∞ ([14, 15][13, 16]) ([17, 18][16, 19]) ([10, 11][9, 12]) ([18, 19,][17, 20])
1 ([15, 16][14, 17]) ([18, 19][17, 20]) ([11, 12][10, 13]) ([19, 20,][18, 21])

([16, 17][15, 18]) ([19, 20][18, 21]) ([12, 13][11, 14]) ([20, 21][19, 22])
([25, 26][24, 27 ]) ([18, 19][17, 20]) ([46, 47][45, 48]) ([33, 34][32, 35])

2 ([26, 27][25, 28]) ∞ ([19, 20][18, 21]) ([47, 48][46, 49]) ([34, 35][33, 36])
([27, 28][26, 29]) ([20, 21][19, 22]) ([48, 49][47, 50]) ([35, 36][]34, 37)
([40, 41][39, 42]) ([26, 27][25, 28]) ([28, 29][27, 30]) ([23,24][22, 25])

3 ([41, 42][40, 43]) ([27, 28][26, 29]) ∞ ([29, 30][28, 31]) ([24, 25][23, 26])
([42, 43][41, 44]) ([28, 29][27, 30]) ([30, 31][29, 32]) ([25,26][24, 27])
([36, 37][35, 38]) ([28, 29][27, 30]) ([6, 7][5, 8]) ([18, 19,][17, 20])

4 ([37, 38][36, 39]) ([29, 30][28, 31]) ([7, 8][6, 9]) ∞ ([38, 39][37, 40])
([30, 31][29, 32]) ([8, 9][7, 10]) ([19, 20,][18, 21]) ([20, 21][19, 22])
([64, 65][63, 66]) ([20, 21][19, 22]) ([33, 34][32, 35]) ([28, 29][27, 30])

5 ([65, 66][64, 67]) ([21, 22][20, 23]) ([34, 35][33, 36]) ([29, 30][28, 31]) ∞
([66, 67][65, 68]) ([22, 23][21, 24]) ([35, 36][]34, 37) ([30, 31][29, 32])

114



4.2. MODEL-4.1: AN IMPROVED GENETIC ALGORITHM (IGA) AND ITS
APPLICATION IN UNCERTAIN CSTSP

Table 4.7: Input Data: Rough safety in CSTSP (Model 4.1C)

i/j 1 2 3 4 5
([.1, .2][.01, .3]) ([.3, .4][.2, .5]) ([.2, .3][.1, .4]) ([.5, .6][.4, .7])

1 ∞ ([.2, .3][.1, .4]) ([.4, .5][.3, .6]) ([.3, .4][.2, .5]) ([.6, .7][.5, .8])
([.3, .4][.2, .5]) ([.5, .6][.4, .7]) ([.4, .5][.3, .6]) ([.7, .8][.6, .9])

([.5, .6][.4, .7]) ([.1, .2][.0, .3]) ([.3, .4][.2, .5]) ([.2, .3][.1, .4])
([.6, .7][.5, .8]) ∞ ([.2, .3][.1, .4]) ([.4, .5][.3, .6]) ([.3, .4][.2, .5])
([.7, .8][.6, .9]) ([.3, .4][.2, .5]) ([.5, .6][.4, .7]) ([.4, .5][.3, .6])
([.1, .2][.01, .3]) ([.2, .3][.1, .4]) ([.1, .2][.0, .3]) ([.2, .3][.1, .4])

3 ([.2, .3][.1, .4]) ([.3, .4][.2, .5]) ∞ ([.2, .3][.1, .4]) ([.3, .4][.2, .5])
([.3, .4][.2, .5]) ([.4, .5][.3, .6]) ([.3, .4][.2, .5]) ([.4, .5][.3, .6])
([.4, .5][.3, .6]) ([.2, .3][.1, .4]) ([.5, .6][.4, .7]) ([.2, .3][.1, .4])

4 ([.5, .6][.4, .7]) ([.3 .4][.2, .5]) ([.6, .7][.5, .8]) ∞ ([.3, .4][.2, .5])
([.6, .7][.5, .8]) ([.4, .5][.3, .6]) ([.7, .8][.6, .9]) ([.4, .5][.3, .6])
([.7, .8][.6, .9]) ([.4, .5][.3, .6]) ([.6, .7][.5, .8]) ([.2, .3][.1, .4])

5 ([.6, .7][.5, .8]) ([.3, .4][.2, .5]) ([.5, .6][.4, .7]) ([.3, .4][.2, .5]) ∞
([.5, .6][.4, .7]) ([.2, .3][.1, .4]) ([.4, .5][.3, .6]) ([.4, .5][.3, .6])

Table 4.8: Input Data: Fuzzy-rough costs in CSTSP (Model 4.1D)
i/j 1 2 3 4 5

([14, 15][13, 16]) ([17, 18][16, 19]) ([10, 11][9, 12]) ([18, 19,][17, 20])
(14.5-5, 14.5, 14.5+5) (17.5-5, 17.5, 17.5+5) (10.5-5, 10.5, 10.5+5) (18.5-5, 18.5, 18.5+5)

1 ∞ ([15, 16][14, 17]) ([18, 19][17, 20]) ([11, 12][10, 13]) ([19, 20,][18, 21])
(15.5-5, 15.5, 15.5+5) (18.5-5, 18.5, 18.5+5) (11.5-5, 11.5, 11.5+5) (19.5-5, 19.5, 19.5+5)

([16, 17][15, 18]) ([19, 20][18, 21]) ([12, 13][11, 14]) ([20, 21][19, 22])
(16.5-5, 16.5, 16.5+5) (19.5-5, 19.5, 19.5+5) (12.5-5, 12.5, 12.5+5) (20.5-5, 20.5, 20.5+5)

([25, 26][24, 27 ]) ([18, 19][17, 20]) ([46, 47][45, 48]) ([33, 34][32, 35])
(25.2-5, 25.5, 25.5+5) (18.5-5, 18.5, 18.5+5) (46.5-5, 46.5, 46.5+5) (33.5-5, 33.5, 33.5+5)

2 ([26, 27][25, 28]) ∞ ([19, 20][18, 21]) ([47, 48][46, 49]) ([34, 35][33, 36])
(26.5-5, 26.5, 26.5+5) (19.5-5, 19.5, 19.5+5) (47.5-5, 47.5, 47.5+5) (34.5-5, 34.5, 34.5+5)

([27, 28][26, 29]) ([20, 21][19, 22]) ([48, 49][47, 50]) ([35, 36][34, 37])
(27.5-5, 27.5, 27.5+5) (20.5-5, 20.5, 20.5+5) (48.5-5, 48.5, 48.5+5) (35.5-5, 35.5, 35.5+5)

[40, 41][39, 42]) ([26, 27][25, 28]) ([28, 29][27, 30]) ([23,24][22, 25])
(40.5-5, 40.5, 40.5+5) (26.5-5, 26.5, 26.5+5) (28.5-5, 28.5, 28.5+5) (23.5-5, 23.5, 23.5+5)

3 ([41, 42][40, 43]) ([27, 28][26, 29]) ∞ ([29, 30][28, 31]) ([24, 25][23, 26])
(41.5-5, 41.5, 41.5+5) (27.5-5, 27.5, 27.5+5) (29.5-5, 29.5, 29.5+5) (24.5-5, 24.5, 24.5+5)

([42, 43][41, 44]) ([28, 29][27, 30]) ([30, 31][29, 32]) ([25,26][24, 27])
(42.5-5, 42.5, 42.5+5) (28.5-5, 28.5, 28.5+5) (30.5-5, 30.5, 30.5+5) (25.5-5, 25.5, 25.5+5)

([36, 37][35, 38]) ([28, 29][27, 30]) ([6, 7][5, 8]) ([18, 19][17, 20])
(36.5-5, 36.5, 36.5+5) (28.5-5, 28.5, 28.5+5) (6.5-5, 6.5, 6.5+5) (18.5-5, 18.5, 18.5+5)

4 ([37, 38][36, 39]) ([29, 30][28, 31]) ([7, 8][6, 9]) ∞ ([19, 20][18, 21])
(37.5-5, 37.5, 37.5+5) (29.5-5, 29.5, 29.5+5) (7.5-5, 7.5, 7.5+5) (19.5-5, 19.5, 19.5+5)

([38, 39][37, 40]) ([30, 31][29, 32]) ([8, 9][7, 10]) ([20, 21][19, 22])
(38.5-5, 38.5, 38.5+5) (30.5-5, 30.5, 30.5+5) (8.5-5, 8.5, 8.5+5) (20.5-5, 20.5, 20.5+5)

([64, 65][63, 66]) ([20, 21][19, 22]) ([33, 34][32, 35]) ([28, 29][27, 30])
(64.5-5, 64.5, 64.5+5) (20.5-5, 20.5, 20.5+5) (33.5-5, 33.5, 33.5+5) (28.5-5, 28.5, 28.5+5)

5 ([65, 66][64, 67]) ([21, 22][20, 23]) ([34, 35][33, 36]) ([29, 30][28, 31]) ∞
(65.5-5, 65.5, 65.5+5) (21.5-5, 21.5, 21.5+5) (34.5-5, 34.5, 34.5+5) (29.5-5, 29.5, 29.5+5)

([66, 67][65, 68]) ([22, 23][21, 24]) ([35, 36][34, 37]) ([30, 31][29, 32])
(66.5-5, 66.5, 66.5+5) (22.5-5, 22.5, 22.5+5) (35.5-5, 35.5, 35.5+5) (30.5-5, 30.5, 30.5+5)
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Table 4.9: Input Data: Fuzzy-rough safety in CSTSP (Model 4.1D)
i/j 1 2 3 4 5

∞ ([.1, .2][.01, .3]) ([.3, .4][.2, .5]) ([.2, .3][.1, .4]) ([.5, .6][.4, .7])
(.15-.1, .15, .15+.1) (.35-.1, .35, .35+.1) (.25-.1, .25, .25+.1) (.55-.1, .55, .55+.1)

1 ([.2, .3][.1, .4]) ([.4, .5][.3, .6]) ([.3, .4][.2, .5]) ([.6, .7][.5, .8])
(.25-.1, .25, .25+.1) (.45-.1, .45, .45+.1) (.35-.1, .35, .35+.1) (.65-.1, .65, .65+.1)

([.3, .4][.2, .5]) ([.5, .6][.4, .7]) ([.4, .5][.3, .6]) ([.7, .8][.6, .9])
(.35-.1, .35, .35+.1) (.55-.1, .55, .55+.1) (.45-.1, .45, .45+.1) (.75-.1, .75, .75+.1)

([.5, .6][.4, .7]) ([.1, .2][.01, .3]) ([.3, .4][.2, .5]) ([.2, .3][.1, .4])
(.55-.1, .55, .55+.1) (.15-.1, .15, .15+.1) (.35-.1, .35, .35+.1) (.25-.1, .25, .25+.1)

2 ([.6, .7][.5, .8]) ∞ ([.2, .3][.1, .4]) ([.4, .5][.3, .6]) ([.3, .4][.2, .5])
(.65-.1, .65, .65+.1) (.25-.1, .25, .25+.1) (.45-.1, .45, .45+.1) (.35-.1, .35, .35+.1)

([.7, .8][.6, .9]) ([.3, .4][.2, .5]) ([.5, .6][.4, .7]) ([.4, .5][.3, .6])
(.75-.1, .75, .75+.1) (.35-.1, .35, .35+.1) (.55-.1, .55, .55+.1) (.45-.1, .45, .45+.1)

([.3, .4][.2, .5]) ([.2, .3][.1, .4]) ([.1, .2][.01, .3]) ([.2, .3][.1, .4])
(.35-.1, .35, .35+.1) (.25-.1, .25, .25+.1) (.15-.1, .15, .15+.1) (.25-.1, .25, .25+.1)

3 ([.4, .5][.3, .6]) ([.3, .4][.2, .5]) ∞ ([.2, .3][.1, .4]) ([.3, .4][.2, .5])
(.45-.1, .45, .45+.1) (.35-.1, .35, .35+.1) (.25-.1, .25, .25+.1) (.35-.1, .35, .35+.1)

([.5, .6][.4, .7]) ([.4, .5][.3, .6]) ([.3, .4][.2, .5]) ([.4, .5][.3, .6])
(.55-.1, .55, .55+.1) (.45-.1, .45, .45+.1) (.35-.1, .35, .35+.1) (.45-.1, .45, .45+.1)

([.4, .5][.3, .6]) ([.2, .3][.1, .4]) ([.5, .6][.4, .7]) ([.2, .3][.1, .4])
(.45-.1, .45, .45+.1) (.25-.1, .25, .25+.1) (.55-.1, .55, .55+.1) (.25-.1, .25, .25+.1)

4 ([.5, .6][.4, .7]) ([.3, .4][.2, .5]) ([.6, .7][.5, .8]) ∞ ([.3, .4][.2, .5])
(.55-.1, .55, .55+.1) (.35-.1, .35, .35+.1) (.65-.1, .65, .65+.1) (.35-.1, .35, .35+.1)

([.6, .7][.5, .8]) ([.4, .5][.3, .6]) ([.7, .8][.6, .9]) ([.4, .5][.3, .6])
(.65-.1, .65, .65+.1) (.45-.1, .45, .45+.1) (.75-.1, .75, .75+.1) (.45-.1, .45, .45+.1)

([.7, .8][.6, .9]) ([.4, .5][.3, .6]) ([.6, .7][.5, .8]) ([.2, .3][.1, .4])
(.75-.1, .75, .75+.1) (.45-.1, .45, .45+.1) (.65-.1, .65, .65+.1) (.25-.1, .25, .25+.1)

5 ([.6, .7][.5, .8]) ([.3, .4][.2, .5]) ([.5, .6][.4, .7]) ([.3, .4][.2, .5]) ∞
(.65-.1, .65, .65+.1) (.35-.1, .35, .35+.1) (.55-.1, .55, .55+.1) (.35-.1, .35, .35+.1)

([.5, .6][.4, .7]) ([.2, .3][.1, .4]) ([.4, .5][.3, .6]) ([.4, .5][.3, .6])
(.55-.1, .55, .55+.1) (.25-.1, .25, .25+.1) (.45-.1, .45, .45+.1) (.45-.1, .45, .45+.1)

Table 4.10: Results of different models by IGA

Model Path Costs Smin
(Model 4.1A) Crisp CSTSP (1,1)(4,2)(3,2)(5,3)(2,3) 100 2
(Model 4.1B) Fuzzy CSTSP (1,2)(4,1)(3,1)(5,1)(2,3) (110, 114, 118) (1.9, 2.2, 2.5)
(Model 4.1C) Rough CSTSP (1,1)(4,1)(3,2)(5,1)(2,2) ([87, 92][82, 97]) ([2.1, 2.6][1.6, 3.1])

(Model 4.1D) Fuzzy-Rough CSTSP (1,3)(4,2)(3,3)(5,3)(2,1) ([90, 95][85, 100]) [1.8, 2.3][1.3, 2.8]
(66.5, 91.5,116.5) (1.55, 2.05, 2.45)

Table 4.11: Statistical Test for IGA
Instances Best Worst Average SD Error
bays29 2020 2047 2028.4 1.32 0.72
bayg29 1610 1629 1617.25 0.97 0.02

fr26 937 954 939.75 0.76 1.64
dantzig42 699 721 707.25 0.81 1.02
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4.2.5 Discussion

The developed algorithm IGA is compared with simple GA for standard
TSP problem and the results shown in Table 4.1. In every test problem, the
proposed algorithm gives better result with respect to number of iterations.

In Table 4.2, crisp costs for the classical CSTSP with three conveyances are
given. Here we consider a 5×5 crisp matrix for the CSTSP. In Table 4.3 we have
given the individual safety values of the corresponding conveyances. In Table
4.4, the fuzzy cost values of FCSTSP are given, in Table 4.5 the fuzzy costs of
the safety values are presented. In this fuzzy environment, FCSTSP is solved by
IGA and the results obtained via different conveyances which are shown in Table
4.10.

Similarly we construct the rough costs and safety values for RCSTSPs which
are shown in Table 4.6 and 4.7 respectively. For the fuzzy-rough environments,
we present the costs and safety values as fuzzy-rough data in the Tables 4.8 and
4.9 for FRCSTSP respectively. The final Table 4.10 gives the results of the above
given matrices with imprecise costs and safety values for the imprecise TSPs
solved by the proposed IGA.
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4.3 Model-4.2: An Adaptive Genetic Algorithm for CSTSP
under Uncertain Environments 2

In this model, an Adaptive Genetic Algorithm (AGA) is developed to solve
the constrained solid traveling salesman problems (CSTSPs) in crisp, fuzzy and
rough environments. In the developed AGA, we model it with probabilistic se-
lection technique and proposed adaptive crossover with random mutation. Here
CSTSPs with costs and risk/discomforts values are in the form of crisp,fuzzy
and rough in nature. Also CSTSPs are illustrated numerically by some empirical
data using this algorithm. In each environment, some sensitivity studies due to
different risks/discomforts values and other system parameters are presented.

4.3.1 Proposed AGA

The proposed AGA and its procedures are presented below:
(i) Representation:

Here a complete tour of N cities represents a solution. So an N dimensional
integer vector Xi = (xi1, xi2, ..., xiN ) and Yi = (vi1, vi2, ..., viP ) are used to
represent a solution, where xi1, xi2, ..., xiN represent N consecutive cities in a
tour and Yi = (vi1, vi2, ..., viP ) represents the available conveyances. Populations
of such solutions Xi = (xi1, xi2, ..., xiN ), and Yi = (vi1, vi2, ..., viP ) i = 1, 2, ...,
N, are randomly generated by random number generator.

(ii) Probabilistic Selection Technique:
It is described in section 4.2.1(c).

(iii) Adaptive Crossover:
At first we select two individuals (parents) from the matting pool randomly

(say Pr1 and Pr2). Let these are Pr1: a1, a2,..., aN , (v1, v2,..., vp) and Pr2: s1, s2,...,
sN , (v1, v2,..., vp). Here (a1, a2,..., aN ) and (s1, s2,..., sN ) are nodes within (1, 2,
3,..., N), these are numbers of cities. Then we choose a city randomly from 1 to
N, say ai = sk(i=1, 2, ..., N), k=(1, 2,..., N). We modify the first parents by placing
ai or sk in the first place of Pr1 and Pr2. Now the modified parents are given by
Pr1: ai, a1, a2,.., ai−1, ai+1,....aN , (v1, v2,..., vp), Pr2: sk, s1, s2,., sk−1, sk+1,....., sN ,
(v1, v2,..., vp).To get the first child (Ch1), placing ai in the first place of Ch1, we
compare the travelling costs between the nodes respectively, A(ai, a1) and A(ai,

2This portion is published in Informatics, Electronics & Vision (ICIEV), Japan, 2015 International Confer-
ence on , IEEE, 1-6,Print ISBN:9781467369015, DOI:10.1109ICIEV.2015.7334044, with title Constrained solid
travelling salesman problem using Adaptive Genetic Algorithm in uncertain environment.
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s1), the cost between the two node ai to a1, and ai, s1. Minimum cost path be
selected for Ch1. The procedure is as follows:

if (A(ai, a1) < A(ai, s1))
concatenate a1 in Ch1.

else
concatenate s1 in Ch1.

Ch1: ai, s1(say).
Repeating this process, we get the first child Ch1: ai, s1, a1,....., aN (say) (v1,
v2,..., vp).

Now for the second child we modify the first parents by placing ai or sk at
the end of Pr1 and Pr2.The modified parents are given by Pr1: a1, a2,.., ai−1,
ai+1,....aN , ai, (v1, v2,..., vp), and Pr2: s1, s2,., sp−1, sp+1,....., sN , sk, (v1, v2,...,
vp). Following the previous procedure, we find the second child as Ch2: ai, sN ,
aN ,....., a1 (say) (v1, v2,..., vp). Since the above crossover is done only the by
exchange of the nodes(cities) but vehicle/conveyance are not changed, so here
we modify them with just only 20% of the number of vehicles. So finally the
offspring’s are Ch1: ai, s1, a1,....., aN (say) (v5, v4,..., vp)(say) and Ch2: ai, sN ,
aN ,....., a1 (say) (v3, v1,..., vp)(say). Hence by the above mechanism, using two
modified parents(Pr1) and (Pr2), the two children (offspring) Ch1 and Ch2 are
found. In every step of crossover, generate the children’s.

(iv) Random Mutation:
It is disused in section 2.1.4(ii)(c).
Thus the above proposed algorithm is as follows:

Algorithm of AGA:
1. Begin.
2. Randomly generate initial population p(t).
3. Evaluate initial population p(t).
4. Determine maximum generation number s0, population size(pop size), prob-

ability of crossover(pc) and probability of mutation (pm).
5. While t<= s0 do
6. t=t+1.
7. Selection Operation.

(a) Determine the Boltzmann Probability(pB).
(b) Select the matting pool based on pB.

8. Crossover Operation
(a) Select the parents using pc.
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(b) For each pair of parents do
(c) Modify the parents.
(d) Generate off springs from modified parents using the operations

presented in section 4.3.1(ii).
(e) End do.

9. Mutation Operation.
(a) Select the off springs for mutation based on Pm.
(b) Randomly choose any two node.
(c) Exchange the place of these nodes.
(d) Store the new off springs into offspring set.

10. Store the local optimum and near optimum solutions.

11. End while.

12. Store the global optimum and near optimum results.

13. End Algorithm.

4.3.2 Mathematical Formulation and Its crisp equivalence

Model 4.2A: Solid TSP with Risk Constraint in Crisp Environment

In a Solid TSP, a salesman has to travel N cities by choosing any one of the
P types of conveyances available at the cities. Risks/discomforts factors in travel-
ling from one city to another using different vehicles are different. The salesman
should choice such a path and conveyances such that a maximum risk/discom-
fort levels not exceed and the total travel cost is minimum for the entire tour.
Let c(i, j, k) be the cost and r(i, j, k) be the risk/discomfort value in travelling
from i-th city to j-th using k-th type conveyances. Then the salesman has to de-
termine a complete tour (x1, x2, ...,xN , x1) and corresponding conveyance types
(v1, v2, ..., vP ) to be used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N ,
vi ∈ {1, 2, ..P} for i = 1, 2, ..., N and all xi are distinct. Then the problem can
be mathematically formulated as:

Determine a complete tour (x1, x2, ..., xN , x1) using any one available cor-
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responding conveyance in each step from the vehicle types (v1, v2, ..., vP ) so as

to minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

to minimize subject to
N−1∑
i=1

r(xi, xi+1, vi) + r(xN , x1, vl) ≤ rmax,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (4.9)

where rmax is the allowable maximum risk/discomfort value that should be main-
tained by the salesman in the entire tour.

Model 4.2B: CSTSP in Fuzzy Environment (FCSTSP)

In the above section of the Equ. 4.9, if costs and risk/discomfort values
are fuzzy numbers, i.e, c̃(i, j, k) and r̃(i, j, k) respectively, risk/discomfort limit
rmax is also fuzzy number r̃max.

Determine a complete tour (x1, x2, ..., xN , x1) using any one available corre-
sponding conveyances in each step from the vehicle types (v1, v2, ..., vP )
Using Possibility Measure,

to minimize F,

subject to Pos(
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl) < F ) ≥ α3

Pos(
N−1∑
i=1

r̃(xi, xi+1, vi) + r̃(xN , x1, vl) ≤ r̃max) ≥ β3

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(4.10)

Similarly, using necessity measure, we have

minimize F

subject to Nes(
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl) < F ) ≥ α4

Nes(
N−1∑
i=1

r̃(xi, xi+1, vi) + r̃(xN , x1, vl) ≤ r̃max) ≥ β4

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(4.11)

where α3, β3, γ3 and α4, β4, γ4 are predefined levels of possibility and necessity
respectively which are entirely determined by the salesman. If we consider the
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TFN then,
c̃(i, j, k) = (c(i, j, k)1, c(i, j, k)2, c(i, j, k)3),
t̃(i, j, k) = (t(i, j, k)1, t(i, j, k)2, t(i, j, k)3),
r̃(i, j, k) = (r(i, j, k)1, r(i, j, k)2, r(i, j, k)3),
r̃max = (r1, r2, r3).

Then the above problems can be reduced to crisp ones accordingly as given in
section 3.4.4:
Determine a complete tour (x1, x2, ..., xN , x1) using any one available corre-
sponding conveyance in each step from the vehicle types (v1, v2, ..., vP ) so as
Using possibility measure,

to minimize F

subject to
F − F1

F2 − F1
≥ α3

r3 −R1

r3 − r2 +R2 −R1
≥ β3

 (4.12)

Using necessity measure, It is represented as

minimize F

subject to
F3 − F
F3 − F2

≤ 1− α4

R3 − r1

r2 − r1 +R3 −R2
≤ 1− β4

 (4.13)

where Fj =
N−1∑
i=1

c(xi, xi+1, vi)j + c(xN , x1, vl)j, j = 1, 2, 3.

and Rj =
N−1∑
i=1

r(xi, xi+1, vi)j + r(xN , x1, vl)j, j = 1, 2, 3.

where xi 6= xj, i, j = 1, 2...N. vi, vl ∈ {1, 2.., orP}
The objective function in Equ. 4.12 and Equ. 4.13 are respectively changed to

minimize F1 + α3(F2 − F1)

subject to
r3 −R1

r3 − r2 +R2 −R1
≥ β3

}
(4.14)
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and

minimize F3 − (1− α4)(F3 − F2)

subject to
R3 − r1

r2 − r1 +R3 −R2
≤ 1− β4

}
(4.15)

Model 4.2C: CSTSP in Rough Environment (RCSTSP)

In the section 4.9, if costs and risk/discomfort values are rough numbers,
i.e, ĉ(i, j, k) and r̂(i, j, k) respectively, risk/discomfort limit rmax is also fuzzy
number r̂max, then the above problem in Equ.4.9 reduces to:

Minimize Ẑ = Ĉ(x, v)

subject to R̂(x, v) ≤ R̃max

}
(4.16)

where Ĉ = ([a, b], [c, d]), R̂ = ([R1], [R2], [R3, R4]),

R̂max = ([Rmax1, Rmax2], [Rmax3, Rmax3, Rmax4]) are rough variables.
The above rough model Equ. 4.16 is reformed as given below

Minimize Z1

subject to Tr{Ĉ(x, v) ≤ Z1} ≥ α

Tr{R̂(x, v) ≤ R̃max} ≥ β

 (4.17)

Here α, β are confidence values of the trust levels and Z1 is crisp values. Tr
represents the trust measure.

The above rough model can also be converted to a deterministic one with the
help of lemma given in section 3.5.
E(Ĉ) = 1

4(a+ b+ c+ d) and E(R̂) = 1
4(R1 +R2 +R3 +R4).

Then converted crisp model is

minimize a+b+c+d
4

subject to
R1 +R2 +R3 +R4

4
≤ Rmax1 +Rmax2 +Rmax3 +Rmax4

4

}
(4.18)
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Table 4.12: Test TSPLIB Problems by AGA
Instances Problem Size Optimum Result AGA AGA GA GA

Cost Iteration Cost Iteration
fri26 26 937 937 78 937 269

bays29 29 2020 2020 61 2020 451
bayg29 29 1610 1610 66 1610 378

dantzig42 42 699 699 152 699 612
eil51 51 426 426 98 426 341

berlin52 52 7542 7542 145 7542 526
st70 70 675 675 165 675 813
eil76 76 538 538 124 538 457
pr76 76 108159 108159 165 108159 410
rat99 99 1211 1211 147 1211 328

kroa100 100 21282 21282 276 21282 285

4.3.3 Numerical Experiments

Testing for AGA:
To judge the effectiveness and feasibility of developed algorithm AGA, we

have applied it on the standard TSP problems from TSPLIB [162]. Table 4.12
gives the results along with the simple GA in terms of total cost and GA itera-
tions.

Input data for Model 4.2A:
Here, for a CSTSP, where we consider three types of conveyances. The cost

matrix for the CSTSP and corresponding risk/discomfort matrix are presented in
Table 4.13.

For AGA, we have taken maximum generation=2000, pc=0.34, pm=0.43 .
Input Data for Model 4.2B:
Here we take the cost and risk/discomfort values as fuzzy for the FCSTSP

in Equ. 4.12 and Equ. 4.13. Also we consider three types of conveyances.
The fuzzy cost matrix for the FCSTSP and corresponding fuzzy risk/discomfort
matrix are given in Table 4.15.

Input Data for Rough costs (Model 4.2C)
Here we take the cost and risk/discomfort values as rough values for the RC-

STSP. Also we consider three types of conveyances. Assume that Ĉ is a rough
number which are travelling costs and R̂ is the risk/discomfort values with rough
maximum level R̂max . The rough cost matrix for the RCSTSP and corresponding
rough risk/discomfort matrix are presented in Table 4.17.
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Table 4.13: Input Data: Crisp CSTSP (Model 4.2A)
Crisp Cost Matrix(10 *10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 35,36,27 18,39,30 20,33,34 30,21,62 6,23,8 15,36,47 27,38,19 40,31,42 20,31,42
2 35,26,17 ∞ 40,21,32 18,29,10 35,26,37 40,31,22 40,31,59 33,42,59 18,37,20 24,16,18
3 38,30,29 17,58,34 ∞ 12,25,14 42,25,46 35,36,34 19,11,8 32,33,25 30,19,41 30,22,33
4 28,20,11 10,22,14 17,8,29 ∞ 30,19,24 25,16,27 21,31,33 35,36,17 12,23,34 27,48,39
5 17,15,9 42,23,34 35,36,37 20,31,43 ∞ 30,21,42 45,16,27 30,31,13 19,10,8 28,26,7
6 15,6,7 30,21,29 5,26,28 8,9,12 28,29,40 ∞ 33,42,24 40,31,22 32,23,35 30,41,32
7 38,39,30 25,54,26 30,38,26 22,43,24 37,58,39 40,21,45 ∞ 10,41,13 32,33,35 20,15,26
8 40,41,23 25,6,17 32,53,45 40,21,42 35,36,47 25,16,5 40,22,43 ∞ 22,53,24 37,37,39
9 40,11,33 40,39,36 3,36,37 25,34,29 20,32,21 22,33,25 7,38,39 32,33,14 ∞ 28,19,26

10 18,27,29 30,21,32 28,19,30 20,31,22 11,33,22 32,12,34 37,28,39 40,41,33 30,51,33 ∞
Crisp Risks/Discomforts Matrix(10 *10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ .69,.68,.75 .84,.63,.7 .82,.7,.71 .72,.8,.42 .96,.79,.93 .87,.66,.55 .74,.42,.81 .41,.7,.59 .81,.7,.59
2 .67,.76,.84 ∞ .61,.8,.7 .83,.73,.92 .67,.76,.65 .41,.71,.79 .41,.71,.43 .69,.6,.42 .83,.64,.81 .77,.85,.3
3 .63,.71,.73 .83,.44,.67 ∞ .89,.76,.86 .59,.76,.55 .66,.65,.67 .83,.91,.94 .69,.68,.76 .71,.82,.6 .71,.79,.68
4 .73,.81,.9 .9,.78,.86 .84,.93,.72 ∞ .71,.82,.77 .77,.86,.75 .81,.71,.69 .66,.65,.84 .89,.79,.77 .74,.53,.43
5 .84,.86,.92 .59,.78,.67 .66,.65,.64 .82,.71,.59 ∞ .71,.81,.59 .57,.85,.74 .71,.7,.88 .82,.91,.93 .74,.75,.93
6 .85,.84,.93 .7,.8,.71 .95,.74,.72 .92,.91,.89 .73,.72,.61 ∞ .69,.59,.77 .61,.71,.79 .69,.78,.66 .71,.6,.69
7 .63,.62,.71 .77,.47,.76 .71,.63,.76 .79,.59,.77 .66,.43,.62 .6,.79,.55 ∞ .9,.6,.87 .69,.68,.66 .81,.87,.76
8 .61,.6,.78 .76,.95,.84 .69,.47,.56 .61,.81,.6 .67,.66,.55 .6,.85,.95 .61,.8,.59 ∞ .79,.48,.77 .64,.64,.62
9 .61,.91,.71 .61,.62,.65 .97,.65,.64 .76,.77,.72 .81,.69,.73 .79,.68,.76 .94,.66,.63 .69,.68,.87 ∞ .73,.82,.75

10 .83,.74,.72 .71,.8,.69 .73,.83,.72 .8,.69,.78 .89,.67,.78 .7,.9,.71 .64,.74,.22 .61,.59,.68 .71,.5,.67 ∞

Table 4.14: Results of CSTSP in Crisp (Model 4.2A)
Algorithm Path(Vehicle) Cost Risk achieved Rmax

AGA 1(1)-10(1)-5(2)-4(1)-2(1)-9(1)-3(2)-7(1)-8(3)-6(2) 107.00 8.71 8.75
AGA 9(1)-7(1)-8(1)-6(2)-1(1)-3(1)-4(1)-2(1)-10(1)-5(3) 131.00 8.50 8.75
AGA 2(2)-10(1)-9(1)-6(2)-4(2)-3(3)-7(2)-5(2)-1(3) 141.00 8.50 8.75
AGA 7(1)-8(1)-6(2)-1(1)-10(3)-5(2)-4(3)-2(3)-9(1)-3(2) 144.00 8.19 8.75
GA 2(2)-9(1)-3(3)-7(3)-8(1)-6(2)-1(3)-10(2)-5(2)-4(1) 190.00 8.73 8.75

AGA 5(2)-4(3)-2(1)-9(3)-8(1)-6(3)-1(1)-3(2)-7(1)-10(1) 151.00 8.25 8.25
AGA 2(2)-10(3)-9(1)-3(1)-7(1)-8(1)-6(2)-1(1)-5(2)-4(1) 165.00 7.99 8.00
AGA 7(1)-592)-4(1)-2(3)-9(2)-3(3)-8(1)-6(2)-1(2)-10(1) 240.00 7.25 7.25

Table 4.15: Input Data: FCSTSP (Model 4.2B)
Fuzzy Cost Matrix(10 × 10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 32,35,36 17,19,20 17,21,22 29,30,31 5,7,10 15,16,18 25,28,29 39,41,42 20,22,23

∞ 36,37,39 38,39,42 31,33,34 20,21,23 22,23,25 35,33,37 37,39,43 26,31,33 30,31,34
26,28,29 26,30,31 33,35,36 60,62,63 6,8,9 46,47,48 16,19,20 41,42,43 42,43,45

2 34,35,38 40,41,44 16,18,19 32,35,37 39,40,41 39,40,42 30,33,34 17,19,22 23,24,26
22,26,27 ∞ 18,21,22 28,29,32 25,26,27 30,31,32 29,30,32 41,42,45 36,37,38 13,16,17
14,17,19 27,32,33 6,10,12 34,37,38 21,23,26 57,59,60 58,59,62 17,20,21 17,18,20

3 36,38,39 16,17,20 10,12,13 40,42,45 33,35,36 17,19,20 30,32,33 28,30,31 29,30,31
29,30,32 54,58,60 ∞ 24,25,26 23,25,26 34,36,39 11,11,12 30,33,34 18,19,21 19,22,23
28,29,32 31,34,35 12,14,17 45,46,48 33,34,35 5,8,10 24,25,27 40,41,44 32,33,35

4 27,28,30 9,10,11 16,18,20 29,30,33 23,25,26 19,21,22 33,35,36 10,12,13 24,27,29
18,20,21 19,22,23 7,9,10 ∞ 17,19,20 15,16,18 30,31,32 32,36,38 20,23,24 47,48,49
9,10,12 12,14,15 27,29,30 23,24,25 25,27,28 30,33,34 16,17,18 32,34,35 37,39,40

16,18,19 41,42,44 34,35,37 17,20,21 29,30,31 42,45,46 27,30,31 18,19,22 26,28,29
5 14,15,18 21,23,24 35,36,37 12,13,14 ∞ 20,21,23 14,16,18 30,31,32 8,10,11 25,26,27

6,8,9 32,34,37 33,38,39 40,43,44 40,41,42 25,27,27 12,13,16 7,8,9 25,27,28
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13,15,16 26,29,30 4,4,6 6,8,9 26,28,29 31,33,34 39,40,42 30,32,33 28,30,31
6 5,6,8 20,21,23 25,26,27 7,9,11 26,29,30 ∞ 40,43,44 30,31,31 22,23,24 40,41,42

5,7,8 27,29,30 27,28,30 10,12,13 38,39,41 23,24,26 20,22,23 35,35,36 30,32,34
36,37,39 23,25,26 27,30,32 21,22,24 35,37,38 38,40,41 7,10,11 31,33,34 19,20,22

7 37,39,40 53,53,55 37,38,39 40,43,44 56,58,60 20,21,22 ∞ 40,43,44 33,34,35 13,15,16
28,30,32 25,26,27 24,26,27 23,24,25 37,39,40 43,45,46 11,13,14 34,36,37 25,26,28
39,41,42 24,26,28 30,32,33 38,40,42 34,35,37 23,25,26 39,40,42 20,22,23 35,37,38

8 41,42,43 5,6,7 52,53,54 19,21,22 34,36,37 15,16,18 19,21,22 ∞ 52,53,54 35,36,38
20,23,24 16,17,18 43,45,46 40,42,43 46,47,48 4,5,6 41,43,44 23,24,27 39,40,41
38,40,41 39,41,42 4,6,9 23,25,26 20,21,23 22,23,25 5,7,8 30,32,33 27,28,30

9 10,11,13 38,39,40 34,36,37 33,34,36 31,32,33 31,33,34 36,38,39 32,33,34, ∞ 18,19,20
31,32,33 34,36,37 36,37,39 28,29,30 20,21,22 23,25,26 38,39,41 11,13,15 24,26,27
15,17,18 28,30,31 26,28,29 18,20,21 9,11,12 30,32,34 35,38,39 40,41,43 29,31,32

10 25,26,28 20,21,22 18,19,20 29,31,32 32,33,34 10,12,13 26,28,29 41,42,43 51,52,54 ∞
25,29,30 31,32,34 28,30,32 21,22,24 20,22,24 33,34,35 38,39,41 30,33,34 30,32,33

Fuzzy Risks/Discomforts Matrix(10 ×10) With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

.7,.65,.63 .85,.81,.78 .8,.78,.77 .75,.72,.71 .9,.87,.85 .85,.83,.8 .7,.67,.61 .54,.5,.47 .79,.75,.7
1 ∞ .69,.67,.66 .59,.57,.56 .7,.67,.65 .8,.81,.83 .78,.74,.72 .64,.61,.59 .6,.58,.54 .65,.6,.58 .61,.58,.54

.75,.72,.7 .65,.63,.6 .69,.71,.7 .37,.32,.29 .89,.84,.81 .51,.5,.47 .79,.75,.73 .54,.5,.48 .48,.42,.41
.58,.55,.5 .56,.41,.47 .78,.77,.71 .65,.61,.59 .53,.5,.47 .59,.52,.48 .7,.63,.59 .75,.7,.68 .69,.64,.61

2 .7,.66,.61 ∞ .76,.71,.69 .67,.62,.6 .75,.68,.65 .68,.64,.61 .69,.63,.6 .51,.45,.4 .6,.57,.53 .8,.76,.71
.8,.75,.71 .68,.61,.59 .9,.85,.82 .6,.58,.5 .7,.65,.62 .31,.26,.2 .32,.34,.19 .7,.69,.62 .81,.76,.7

.55,.51,.48 .72,.69,.62 .81,.76,.7 .51,.46,.4 .59,.55,.52 .8,.75,.71 .65,.6,.59 .58,.55,.51 .67,.61,.58
3 .6,.56,.53 .38,.31,.26 ∞ .71,.68,.66 .7,.64,.61 .61,.58,.56 .9,.86,.81 .64,.6,.58 .8,.76,.71 .76,.71,.68

.61,.58,.56 .6,.58,.51 .8,.76,.71 .48,.44,.4 .62,.6,.57 .89,.86,.81 .68,.65,.61 .55,.5,.48 .64,.6,.57

.69,.64,.62 .86,.81,.79 .79,.75,.72 .65,.63,.6 .69,.65,.62 .78,.74,.71 .6,.56,.52 .85,.82,.8 .68,.63,.59
4 .78,.75,.71 .76,.71,.69 .9,.85,.82 ∞ .76,.72,.7 .78,.75,.71 .68,.65,.61 .59,.58,.56 .78,.74,.71 .5,.45,.41

.85,.83,.8 .81,.78,.74 .7,.64,.6 .78,.71,.69 .68,.67,.65 .6,.54,.5 .79,.76,.72 .71,.69,.64 .6,.54,.5

.8,.75,.71 .65,.63,.6 .85,.82,.78 .88,.84,.79 .7,.67,.63 .64,.6,.58 .55,.52,.48 .68,.61,.58 .65,.61,.58
6 .81,.79,.76 .75,.72,.7 .7,.68,.62 .87,.84,.8 .6,.58,.55 ∞ .55,.51,.46 .65,.63,.6 .73,.7,.68 .55,.52,.48

.88,.85,.81 .66,.61,.59 .65,.62,.6 .85,.81,.78 .58,.54,.49 .7,.68,.65 .76,.71,.68 .62,.58,.55 .65,.62,.6

.58,.54,.49 .65,.63,.6 .64,.6,.58 .7,.68,.65 .56,.54,.51 .55,.51,.46 .85,.81,.78 .65,.61,.59 .78,.74,.69
7 .56,.52,.48 .44,.38,.33 .6,.58,.55 .55,.51,.45 .38,.32,.28 .75,.71,.68 ∞ .55,.54,.51 .58,.54,.5 .71,.68,.64

.65,.62,.58 .71,.65,.6 .67,.64,.6 .71,.68,.64 .55,.53,.51 .52,.47,.4 .75,.76,.72 .65,.61,.58 .65,.62,.58

.56,.52,.49 .7,.68,.65 .64,.6,.58 .56,.52,.5 .62,.58,.53 .55,.52,.48 .55,.54,.51 .78,.76,.73 .58,.56,.51
8 .54,.52,.51 .9,.88,.84 .41,.38,.37 .76,.74,.7 .62,.57,.55 .8,.77,.7 .78,.72,.7 ∞ .43,.4,.36 .6,.54,.5

.5,.43,.4 .8,.81,.78 .51,.45,.4 .56,.52,.49 .52,.48,.45 .88,.83,.8 .54,.53,.5 .73,.7,.68 .58,.54,.49
.56,.51,.48 .58,.52,.5 .9,.85,.82 .7,.68,.64 .78,.75,.71 .74,.7,.68 .85,.81,.8 .62,.6,.58 .69,.65,.63

9 .88,.85,.81 .59,.57,.56 .62,.61,.58 .74,.7,.67 .65,.61,.58 .64,.61,.59 .62,.6,.57 .65,.61,.6 ∞ .78,.73,.7
.68,.65,.51 .58,.55,.53 .6,.54,.5 .68,.52,.58 .74,.7,.68 .67,.64,.6 .58,.54,.49 .79,.75,.72 .72,.7,.68
.78,.71,.69 .66,.61,.58 .69,.65,.62 .74,.7,.68 .83,.78,.75 .65,.61,.58 .59,.54,.5 .55,.52,.47 .64,.59,.58

10 .7,.67,.64 .77,.74,.7 .8,.76,.74 .65,.6,.57 .62,.58,.56 .87,.83,.78 .68,.64,.61 .52,.48,.54 .45,.41,.37 ∞
.69,.64,.6 .78,.76,.71 .68,.65,.63 .76,.71,.68 .75,.71,.66 .68,.64,.59 .59,.55,.51 .64,.6,.58 .61,.59,.58

Table 4.16: Optimum Results of FCSTSP (Model 4.2B)

α β Algorithm DM Path(Vehicle) Obj Value Fuzzy Cost Risk Value Rmax

AGA ODM 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 99 80,100,115 8.72,8.31,7.93 9.25.,9,8.5
PDM 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 114.35 80,100,115 8.72,8.31,7.93 9.25.,9,8.5

0.95 0.8 AGA ODM 5(3)-9(1)-3(3)-7(3)-8(2)-2(1)-10(2)-6(1)-4(3)-1(1) 126.15 110,127,142 8.33,8.08,7.73 9.25.,9,8.5
PDM 7(3)-8(2)-4(3)-6(2)-1(2)-5(1)-9(3)-10(2)-3(2) 139.3 126,140,154 8.21,7.97,7.65 9.25.,9,8.5

AGA ODM 8(3)-6(2)-1(1)-4(1)-2(2)-10(1)-5(3)-9(1)-3(3)-7(3) 103.25 84,104,118 8.42,8.09,7.74 8.75,8.5,8.25
PDM 1(3)-5(3)-9(1)-3(3)-7(3)-8(2)-2(2)-10(2)-6(2)-4(3) 119.5 101,120,135 8.43,8.2,7.84 8.75,8.5,8.25

GA ODM 4(3)-1(1)-5(3)-9(1)-3(3)-7(3)-8(3)-2(2)-10(2)-6(3) 126.15 110,127,141 8.31,7.98,7.61 8.75,8.5,8.25
PDM 5(3)-8(3)-2(1)-4(2)-9(1)-3(3)-7(2)-10(2)-6(2)-1(2) 138.1 121,139,156 8.16,7.93,7.59 8.75,8.5,8.25

.8 .9 AGA ODM 6(3)-4(3)-1(2)-5(3)-9(1)-3(2)-7(3)-8(3)-2(2)-10(2) 125.25 111,126,141 8.42,8.19,7.83 8.5.8,7.75
PDM 10(2)-2(1)-4(3)-1(2)-5(3)-9(3)-8(2)-612)-3(3)-7(1) 138.35 126,139,156 8.21,7.96,7.54 8.5.8,7.75
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Table 4.17: Input Data: RCSTSP (Model 4.2C)
Rough Cost Matrix(10 ×10) for RCSTSP With Three Conveyances

i/j 1 2 3 4 5
([32,33],[30,36]) ([17,19],[15,20]) ([17,21],[16,22]) ([29,30],[27,31])

1 ∞ ([36,37],[35,39]) ([38,39],[36,42]) ([31,33],[30,34]) ([(20,21],[17,23])
([26,28],[24,29]) ([26,30],[25,31]) ([(33,35],[31,36]) ([60,62],[58,63])]

([34,35],[33,38]) ([40,41],[38,44]) ([16,18],[15,19]) ([(32,35],[30,37])
2 ([22,26],[21,27]) ∞ ([18,21],[16,22]) ([28,29],[27,32]) ([25,26],[24,27])

([14,17],[18,19]) ([(27,32],[26,33]) ([6,10],[5,12]) ([34,37],[33,38])
([36,38],[35,39]) ([16,17],[15,20]) ([10,12],[9,13]) ([40,42],[38,45])

3 ([29,30],[28,32]) ([54,58],[53,60]) ∞ ([24,25],[23,26]) ([23,25],[22,26])
([28,29],[26,32]) ([(31,34],[30,35]) ([(12,14],[11,17]) ([(45,46],[44,48])
([27,28],[25,30]) ([9,10],[8,11]) ([16,18],[14,20]) ([(29,30],[28,33])

4 ([18,20],[17,21]) ([19,22],[18,23]) ([7,9],[6,10]) ∞ ([17,19],[15,20])
([9,10],[8,12]) ([12,14],[11,15]) ([27,29],[25,30]) ([23,24],[22,25])

([16,18],[15,19]) ([41,42],[40,44]) ([34,35],[32,37]) ([17,20],[16,21])
5 ([14,15],[12,18]) ([21,23],[20,24]) ([35,36],[33,37]) ([12,13],[10,14]) ∞

([6,8],[4,9]) ([32,34],[31,37]) ([33,38],[31,39]) ([40,43],[39,44])
[(13,15],[11,16]) ([26,29],[25,30]) ([7,9],[6,10]) ([6,8],[5,9]),1.3]) ([26,28],[24,29])

6 ([5,6],[4,8]) ([20,21],[19,23]) ([25,26],[24,27]) ([7,9],[6,11]) ([26,29],[25,30])
([5,7],[4,8) ([27,29],[26,30]) ([27,28],[26,30]) ([10,12],[9,13]) ([38,39],[37,41])

([36,37],[35,39]) ([23,25],[22,26]) ([27,30],[26,32]) ((21,22],[20,24]) ([35,37],[34,38])
7 ([37,39],[36,40]) ([53,54],[51,55]) ([37,38],[36,39]) ([40,43],[39,44]) ([56,58],[55,60])

([(28,30],[27,32]) ([25,26],[24,27]) ([24,26],[23,27]) ([23,24],[22,25]) ([37,39],[36,40])
([39,41],[38,42] ([24,26],[23,28]) ([30,32],[29,33]) ([38,40],[37,42]) ([34,35],[33,37])

8 ([41,42],[40,43]) ([5,6],[4,7]) ([52,53],[50,54]) ([19,21],[18,22]) ([34,36],[33,37])
([20,23],[19,24]) ([16,17],[15,18]) ([43,45],[42,46]) ([40,42],[38,43]) ([46,47],[44,48])
([38,40],[37,41]) ([39,41],[38,42]) ([4,6],[3,9]) ([23,25],[22,26]) ([20,21],[18,23])

9 ([10,11],[9,13]) ([38,39],[37,40]) ([34,36],[33,37]) ([33,34],[32,36]) ([31,32],[29,33])
([31,32],[30,33]) ([34,36],33,37]) ([36,37],[35,39]) ([28,29],[27,30]) ([20,21],[19,22])
([15,17],[14,18]) ([28,30],[27,31]) ([26,28],[25,29]) ([18,20],[17,21]) ([9,11],[8,12])

10 ([25,26],[24,28]) ([20,21],[19,22]) ([18,19],[17,20]) ([29,31],[28,32]) ([32,33],[31,34])
([25,26],[24,29]) ([31,32],[28,34]) ([28,30],[27,32]) ([21,22],[20,24]) ([20,22],[19,24])

Rough Cost Matrix(10 ×10) for RCSTSP With Three Conveyances
i/j 6 7 8 9 10

([5,7],[4,10]) ([15,16],[14,18]) ([25,28],[23,29]) ([39,41],[38,42]) ([20,22],[19,23])
1 ([22,23],[21,25]) ([34,35],[33,37]) ([37,39],[36,43]) ([26,31],[25,33]) ([30,31],[29,34])

([6,8],[5,9]) ([46,47],[45,48]) ([16,17],[15,20]) ([41,42],[40,43]) ([42,43],[41,45])
([39,40],[38,41]) ([39,40],[38,42]) ([30,33],[28,34]) ([17,19],[16,22]) ([23,24],[22,26])

2 ([30,31],[29,32]) ([29,30],[28,32]) ([41,42],[40,45]) ([36,37],[35,38]) ([13,16],[12,17])
([21,23],[20,26]) ([57,59],[55,60]) ([58,59],[57,62]) ([17,20],[16,21]) ([17,18],[15,20])
([33,35],[32,36]) ([17,19],[16,20]) ([30,32],[28,33]) [(28,30],[27,31]) ([29,30],[28,31])

3 ([34,36],[33,39]) ([11,12],[10,13]) ([30,33],[29,34]) ([18,19],[17,21]) ([19,22],[18,23])
([33,34],[31,35]) ([5,8],[4,10]) ([24,25],[23,27]) ([40,41],[39,44]) ([32,33],[31,35])
([23,25],[22,26]) ([19,21],[18,22]) ([33,35],[32,36]) ([10,12],[9,13]) ([24,27],[22,29])

4 ([15,16],[14,18]) ([30,31],[29,32]) ([32,36],[31,38]) ([20,23],[19,24]) ([47,48],[45,49])
([25,27],[24,28]) ([30,33],[29,34]) ([16,17],[15,18]) ([32,34],[31,35]) ([37,39],[36,40])
([29,30],[28,31]) ([42,45],[41,46]) ([27,30],[26,31]) ([18,19],[17,22]) ([26,28],[25,29])

5 ([20,21],[19,23]) ([14,16],[12,18]) ([30,31],[29,32]) ([8,10],[7,11]) ([25,26],[24,27])
([40,41],[39,42]) ([25,27],[24,27]) ([12,13],[14,16]) ([7,8],[6,9]) ([25,27],[24,28])

([31,33],[30,34]) ([39,40],[38,42]) ([30,32],[29,33]) [28,30],[27,31])
6 ∞ ([40,43],[38,44]) ([30,31],[27,31]) ([22,23],[21,24]) ([40,41],[38,42])

([23,24],[22,26]) ([20,22],[18,23]) ([35,36],[34,37]) ([30,32],[29,34])
7 ([38,40],[37,41]) ([7,10],[6,11]) ([31,33],[29,34]) ([19,20],[18,22])

([20,21],[19,22]) ∞ ([40,43],[39,44]) ([33,34],[31,35]) ([13,15],[12,16])
([43,45],[42,46]) ([11,13],[10,14]) ([34,36],[33,37]) ([25,26],[24,28])

8 ([23,25],[22,26]) ([39,40],[38,42]) ([20,22],[19,23]) ([35,37],[34,38])
([15,16],[13,18]) ([19,21],[18,22]) ∞ ([52,53],[50,54]) ([35,36],[34,38])

([4,5],[3,6]) ([41,43],[40,45]) ([23,24],[22,27]) ([39,40],[38,41])
9 ([22,23],[20,25]) ([5,7],[4,8]) ([30,32],[29,33]) [(27,28],[26,30])

([31,33],[28,34]) ([36,38],[33,39]) ([32,33],[31,34]) ∞ ([18,19],[17,20])
([23,25],[22,26]) ([38,39],[37,41]) ([11,13],[10,15]) ([24,26],[22,27])

127



CHAPTER 4. SINGLE OBJECTIVE OPTIMIZATION USING SINGLE HEURISTIC
METHODS

10 ([30,32],[29,34]) ([35,38],[33,39]) ([40,41],[39,43]) ([29,31],[28,32])
([10,12],[9,13]) ([26,28],[27,29]) ([41,42],[40,43]) ([51,52],[50,54]) ∞

([33,34],[32,35]) ([38,39],[37,41]) ([30,33],[27,34]) ([30,32],[26,33])
Rough Risks/Discomforts Matrix(10 × 10) for RCSTSP With Three Conveyances

i/j 1 2 3 4 5
([.69,.7],[.65,.71]) ([.7,.71],[.68,.73]) ([.73,.74],[.72,.76]) ([.31,.32],[.29,.33])

1 ∞ ([.36,.37],[.35,.39]) ([.38,.39],[.37,.42]) ([.31,.33],[.3,.34]) ([.20,.21],[.19,.23])
([.26,.28],[.25,.29]) ([.26,.30],[.25,.31]) ([.33,.35],[.31,.36) ([.60,.62],[.59,.63])

([.34,.35],[.32,.38]) ([.40,.41],[.38,.44]) ([.16,.18],[.15,.19]) ([.32,.35],[.31,.37])
2 ([.22,.26],[.21,.27]) ∞ [[(.18,.21],[.17,.22]) ([.28,.29],[.27,.32]) ([.25,.26],[.24,.27])

([.14,.17],[.13,.19]) ([.27,.32],[.26,.33]) ([.06,.10],[.0.05,.12]) ([.34,.37],[0.33,.38])
([.36,.38],[0.35,.39]) ([.16,.17],[.15,.2]) ([.10,.12],[0.9,.13]) [(.40,.42],[.39,.45])

3 ([.29,.3],[.28,.32]) ([.54,.58],[.55,.61]) ∞ ([.24,.25],[.23,.26]) ([.23,.25],[.22,.26])
([.28,.29],[.27,.32]) ([.31,.34],[.3,.35]) ([.12,.14],[.1,.17]) ([.45,.46],[.44,.48])
([.27,.28],[.26,.30]) ([.09,.1],[.08,.11]) ([.16,.18],[.15,.2]) ([.29,.3],[.8,.33])]

4 [(.18,.20],[.17,.21]) ([.19.,22],[.18,.23]) ([.07,.09],[.06,.10]) ∞ ([.17,.19],[.16,.2])
([.09,.1],[.08,.12]) ([.12,.14],[.11,.15]) ([.27,.29],[.26,.3]) ([.23,.24],[.22,.25])
([.16,.18],[.15,.19]) ([.41,.42],[.4,.44]) ([.34,.35],[.33,.37]) ([.17,.2],[.16,.21])

5 ([14.,.15],[.13,.18]) ([.21,.23],[.2,.24]) ([.35,.36],[.33,.37]) ([.12,.13],[.11,.14]) ∞
([.06,.08],[.05,.09]) ([.32,.34],[31,.37]) ([.33,.38],[.32,.39]) ([.4,.43],[.39,.44])
([.13,.15],[.12,.16]) ([.26,.29],[.25,.30]) ([.4,.41],[.39,.44]) ([.06,.08],[.05,.09]) ([.26,.28],[.25,.29])

6 ([.05,.06],[.04,.08]) ([.2,.21],[.19,.23]) ([.25,.26],[.24,.27]) ([.07,.09],[.06,.11]) ([.26,.29],[.25,.3])
([.05,.07],[0.4,.08]) ([.27,.29],[.26,.30]) ([.27,.28],[.25,.3]) ([.1,.12],[.09,.13]) ([.38,.39],[.37,.41])
([.36,.37],[.35,.39]) ([.23,.25],[.22,.26]) ([.27,.3],[.26,.32]) ([.21,.22],[.2,.24]) ([.35,.37],[.34,.38])

7 ([.37,.39],[.36,.4]) ([.53,.54],[.52,.55]) ([.37,.38],[.36,.39]) ([.4,.43],[.39,.44]) ([.56,.58],[.55,.6])
([.28,.3],[.27,.32]) ([.25,.26],[.24,.27]) ([.24,.26],[.25,.27]) ([.23,.24],[.22,.25]) ([.37,.39],[.36,.4])
([.39,.41],[.4,.42]) ([.24,.26],[.23,.28]) ([.3,.32],[.29,.33]) ([.38,.4],[.37,.42]) ([.34,.35],[.33,.37])

8 ([.41,.42],[.4,.43]) ([.05,.06],[.04,.07]) ([.52,.53],[.51,.54]) ([.19,.21],[.17,.22]) ([.34,.36],[.33,.37])
([.2,.23],[.21,.24]) ([.16,.17],[.15,.18]) ([.43,.45],[.41,.46]) ([.4,.42],[.39,.43]) ([.46,.47],[.44,.48])
([.38,.4],[.37,.41]) ([.39,.41],[.38,.42]) ([.04,.06],[.03,.09]) ([.23,.25],[.22,.26]) ([.2,.21],[.19,.23])

9 ([.1,.11],[.09,.13]) ([.38,.39],[.37,.4]) ([.34,.36],[.33,.37]) ([.33,.34],[.31,.36]) ([.31,.32],[.3,.33])
([.31,.32],[.3,.33]) ([.34,.36],[.33,.37]) ([.36,.37],[.35,.39]) ([.28,.29],[.27,.3]) ([.2,.21],[.19,.22])
([.15,.17],[.14,.18]) ([.28,.3],[.27,.31]) ([.26,.28],[.25,.29]) ([.18,.2],[.17,.21]) ([.09,.11],[.08,.12])

10 ([.25,.26],[.24,.28]) ([.2,.21],[.19,.22]) ([.18,.19],[.17,.2]) ([.29,.31],[.28,.32]) ([.32,.33],[.31,.34])
([.25,.29],[.24,.3]) ([.31,.32],[.3,.34]) ([.28,.3],[.27,.32]) ([.21,.22],[.2,.24]) ([.2,.22],[.19,.24])

Rough Risks/Discomforts Matrix(10 ×10) for RCSTSP With Three Conveyances
i/j 6 7 8 9 10

([.05,.07],[.04,.10]) ([.15,.16],[.14,.18]) ([.25,.28],[.23,.29]) ([.39,.41],[.38,.42]) ([.2,.22],[.19,.23])
1 ([.22,.23],[.21,.25]) ([.35,.33],[.31,.37]) ([.37,.39],[.36,.43]) ([.26,.31],[.25,.33]) ([.3,.31],[.29,.34])

([.06,.08],[.05,.09]) ([.46,.47],[.45,.48]) ([.16,.19],[.15,.2]) ([.41,.42],[.4,.43]) ([.42,.43],[.4,.45])
([.39,.4],[.38,.41]) ([.39,.4],[.37,.42]) ([.3,.33],[.29,.34]) ([.17,.19],[.16,.22]) ([.23,.24],[.22,.26])

2 ([.3,.31],[.29,.32]) ([.29,.3],[.27,.32]) ([.41,.42],[.4,.45]) ([.36,.37],[.35,.38]) ([.13,.16],[.15,.17])
([.21,.23],[.2,.26]) ([.57,.59],[.55,.6]) ([.58,.59],[.57,.62]) ([.17,.2],[.16,.21]) ([.17,.18],[.19,.2])
([.33,.35],[.32,.36]) ([.17,.19],[.16,.2]) ([.3,.32],[.29,.33]) ([.28,.3],[.27,.31]) ([.29,.3],[.28,.31])

3 ([.34,.36],[.33,.39]) ([.11,.12],[.1,.13]) ([.3,.33],[.29,.34]) ([.18,.19],[.17,.21]) ([.19,.22],[.18,.23])
([.33,.34],[.32,.35]) ([.05,.08],[.04,.1]) ([.24,.25],[.23,.27]) ([.4,.41],[.39,.44]) ([.32,.33],[.31,.35])]
([.23,.25],[.22,.26]) ([.19,.21],[.18,.22]) ([.33,.35],[.32,.36]) ([.1,.12],[.09,.13]) ([.24,.27],[.22,.29])

4 ([.15,.16],[.14,.18]) ([.3,.31],[.29,.32]) ([.32,.36],[.31,.38]) ([.2,.23],[.19,.24]) ([.47,.48],[.45,.49])
([.25,.27],[.24,.28]) ([.3,.33],[.29,.34]) ([.16,.17],[.15,.18]) ([.32,.34],[.31,.35]) ([.37,.39],[.36,.4])
([.29,.3],[.28,.31]) ([.42,.45],[.41,.46]) ([.27,.3],[.25,.31]) ([.18,.19],[.17,.22]) ([.26,.28],[.24,.29])

5 ([.2,.21],[.19,.23]) ([.14,.16],[.13,.18]) ([.3,.31],[.28,.32]) ([.08,.1],[.07,.11]) ([.25,.26],[.23,.27])
([.4,.41],[.39,.42]) ([.25,.27],[.23,.28]) ([.12,.13],[.11,.16]) ([.07,.08],[.06,.09]) ([.25,.27],[.23,.28])

([.31,.33],[.3,.34]) ([.39,.4],[.37,.42]) ([.3,.32],[.29,.33]) ([.28,.3],[.27,.31])
6 ∞ ([.4,.43],[.39,.44]) ([.3,.31],[.29,.31]) ([.22,.23],[.21,.24]) ([.4,.41],[.39,.42])

([.23,.24],[.22,.26]) ([.2,.22],[.19,.23]) ([.35,.36],[.33,.37]) ([.3,.32],[.29,.34])
([.38,.4],[.37,.41]) ([.07,.1],[.06,.11]) ([.31,.33],[.28,.34]) ([.19,.2],[.18,.22])

7 ([.2,.21],[.19,.22]) ∞ ([.4,.43],[.39,.44]) ([.33,.34],[.31,.35]) ([.13,.15],[.12,.16])
([.43,.45],[.41,.46]) ([.11,.13],[.1,.14]) ([.34,.36],[.33,.37]) ([.25,.26],[.23,.28])
([.23,.25],[.21,.26]) ([.39,.4],[.38,.42]) ([.2,.22],[.19,.23]) ([.35,.37],[.34,.38])

8 ([.15,.16],[.14,.18]) ([.19,.21],[.18,.22]) ∞ ([.52,.53],[.5,.54]) ([.35,.36],[.33,.38])
([.04,.05],[.03,.06]) ([.41,.43],[.4,.44]) ([.23,.24],[.22,.27]) ([.39,.4],[.38,.41])
([.22,.23],[.2,.25]) ([.05,.07],[.04,.08]) ([.3,.32],[.29,.33]) ([.27,.28],[.26,.3])

9 ([.31,.33],[.3,.34]) ([.36,.38],[.35,.39]) ([.32,.33],[.3,.34]) ∞ ([.18,.19],[.17,.2])
([.23,.25],[.21,.26]) ([.38,.39],[.37,.41]) ([.11,.13],[.1,.15]) ([.24,.26],[.23,.27])
([.3,.32],[.29,.34]) ([.35,.38],[.33,.39]) ([.4,.41],[.38,.43]) ([.29,.31],[.28,.32])

10 ([.1,.12],[.09,.13]) ([.26,.28],[.25,.29]) ([.41,.42],[.39,.43]) ([.51,.52],[.5,.54]) ∞
([.33,.34],[.31,.35]) ([.38,.39],[.37,.41]) ([.3,.33],[.29,.34]) ([.3,.32],[.28,.33])
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Table 4.18: Results of RCSTSP (Model 4.2C)
Algorithm Path(Vehicle) Costs Rmax

3(1)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) 152.68 8.5
AGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 156.52 8.5

10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) 156.61 6.75
GA 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) 172.21 6.0

6(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) 175.29 6.75
AGA 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) 194.96 6.5

3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) 215.21 6.0

Table 4.19: Statistical Test for AGA
Instances Best Worst Average SD Error

fri26 937 964 940.2 0.912 0.01
bays29 2020 2046 2027.8 1.35 1.52
bayg29 1610 1639 1620.35 1.61 1.65

dantzig42 699 736 704.5 0.32 0.98
eil51 426 445 429.15 1.03 0.76

berlin52 7542 7576 7549.45 1.32 2.04
st70 675 689 683.5 1.75 2.03
eil76 538 563 552.75 1.43 1.93
pr76 108159 110342 108567.45 3.78 2.87
rat99 1211 1229 1218.35 0.75 1.46

kroa100 21282 21763 21347.76 2.34 0.98

4.3.4 Statistical Test

Here, we study the best, worst and average results with standard deviation and
percentage error of the standard TSP from TSPLIB [162] under of 20 individual
run by proposed AGA. The Table 4.19 given the results.

4.3.5 Discussion

To validate the feasibility and effectiveness of the proposed algorithm,
we have applied the proposed AGA on some standard TSP problem taken from
TSPLIB [162]. The proposed algorithm was implemented in C++ with following
parameters as 100 chromosomes, 2000 iterations in maximum. Table 4.12 shows
the comparison between AGA and SGA for the some standard TSP problems. It
is seen that the number of iterations is less in AGA than the simple GA. Here
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also, AGA performs better than the SGA.
For a two-dimensional CTSP, we take a single conveyance in CSTSP and the

corresponding crisp costs and risk/discomfort matrices are given in Table 4.13
by (10 × 10 × 1) matrices. The CTSP is solved by both AGA and SGA and
the results are presented in Table 4.14. It is observed that CTSP without risk
constraint gives the lowest minimum cost. Here as the maximum allowable risk
value decreases, the total cost increases. This as per expectation. Moreover, GA
gives more cost than the AGA for the allowable risk value.

Again, we form a CSTSP with the three conveyances i.e. (10 ×10× 3) costs
and risk/discomfort matrices are presented in Table 4.13 for Model 4.2A. Along
each route, the corresponding conveyance is in parentheses. Next the optimum
results of CSTSP are given in Table 4.14. Here also as total risk/discomfort goes
down, the corresponding travelling cost increases.

A (10 ×10 × 3) FCSTSP is presented in Table 4.15 where both costs and
risk/discomfort values along with the targeted total risk/discomfort are triangu-
lar fuzzy numbers for Model 4.2B. The optimum results in both optimistic and
pessimistic senses with different possibility and necessity levels are presented in
Table 4.16. As expected, optimistic model fetches less travelling cost than the
pessimistic model.

In Table 4.17, the costs and risk/discomfort values for the same size CSTSP
are rough data for Model 4.2C. Last Table 4.18 shows the results of RCSTSP
in rough environment. In all cases, the near-optimum solutions and optimum
solution are available. Also AGA gives better results than the SGA.
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4.4 Model-4.3: A Modified Genetic Algorithm for solving Un-
certain CSTSPs 3

In this investigation, a Modified Genetic Algorithm (MGA) is developed to
solve constrained solid travelling salesman problems (CSTSPs) in crisp, fuzzy,
random, random-fuzzy, fuzzy-random and bi-random environments. In the pro-
posed MGA, for the, a probabilistic selection technique and a comparison crossover
are used along with conventional random mutation. Here we model the CSTSP
with travelling costs and route risk/discomfort factors as crisp, fuzzy, random,
random-fuzzy, fuzzy-random and bi-random in nature. A number of benchmark
problems from standard data set, TSPLIB [162] are tested against the SGA and
the proposed MGA, hence the efficiency of the proposed algorithm is established.
In this investigation, CSTSPs are illustrated numerically by some empirical data
using this algorithm. In each environment, some sensitivity studies due to differ-
ent risk/discomfort factors and other system parameters are presented.

4.4.1 Proposed MGA

Here using the probabilistic selection (Boltzmann Probability), comparison
crossover and pm dependent random mutation operators, we develop modified
GA (MGA). The proposed MGA and its procedures are presented below

i. Representation: Here a complete tour of N cities represents a solution. So
an N dimensional integer vector Xi = (xi1, xi2, ..., xiN ) and Yi = (vi1, vi2, ...,
viP ) are used to represent a solution, where xi1, xi2, ..., xiN represent N con-
secutive cities in a tour and Yi = (vi1, vi2, ..., viP ) represents the corresponding
conveyances. Populations with the solutions Xi = (xi1, xi2, ..., xiN ), and Yi =
(vi1, vi2, ..., viP ) i = 1, 2, ..., N, are randomly generated by random number gen-
erator.

ii. Probabilistic Selection:
a. Probability of Selection Parameter (ps):

Here we introduce a predefined value say probability of selection parameter
(ps). For each solution of Xi, generate a random number r from the range [0,1].
If r < ps then the corresponding chromosome is stored at matting pool.

3This portion is published in Computers & Industrial Engineering, Elsevier, 83 (2015), 273-296,
http://dx.doi.org/10.1016/j.cie.2015.02.023, with title A Modified Genetic Algorithm for solving uncertain Con-
strained Solid Travelling Salesman Problems.
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b. Boltzmann-Probability: It is described in section 4.2.1(c)
Here pB=e((fmin−f(Xi))/T ), T=T0(1-a)k, k=(1+100*(g/G)), g(current)

and G(maximum)generation, T0= rand[5,100], a=rand[0,1], Xi means the chro-
mosome corresponding to Xi, i=chromosome number.

c. Pseudo code of Selection:
input : Max-gen (G), Probability of selection (ps), pop - size.
output : Matting pool.
begin

for (i=1 to G)
for (j=1 to pop - size)

r=rand[0,1];
T0= rand[5,100];
a=rand[0,1];
k=(1+100*(i/G));
T=T0(1-a)k;
pB=e((fmin−f(Xj))/T );

if (r < ps )
{

choose the current chromosome;
j++;
}

else if (r < pB)
{

select Xj;
j++;
}

else
{
Select the corresponding chromosome of fmin;

j++;
}

end for
end for

end
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iii. Comparison Crossover: It is described in the section 4.3.1(iii).
Pseudo code of Crossover:

input: Matting Pool, pc, Tptal number of node (N).
output: Offspring (child).
begin

for ( j=1; j<=N; j++) // N= total number of nodes.
if (c (ai, a1) < c (ai, s1)) // i ∈ {1, 2, ..., N}
{

if (a1 exist in Ch1)
{

j++;
compare next node from Pr1;
}

else
{

concatenate a1 in Ch1;
j++;
}

}
else
{

if (s1 exist in Ch1)
{

j++;
compare next node from Pr2;
}

else
{

concatenate s1 in Ch1;
j++;
}

}
end for

end
During every comparison, concatenate a node such that the travel path satisfies
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the TSP conditions. Firstly in every comparison, check if the node already exists
in the child, then the cost of the next node in modified parents will be considered
i.e. repetition of the nodes are not allowed. Secondly comparison will occur until
every node of the modified parents are checked i.e. every node must exist in the
child.

iv. pm dependent Random Mutation:
a. Selection for mutation: For each solution of p(t), generate a random

number r from the range [0,1]. If r < pm then the solution is taken for mutation.
b. Mutation process: At first determined the total number of mutated node

(T). To mutate a solution X = (x1, x2, ..., xN), number of mutated node T= pm*
N, N=total number of nodes.

c. Pseudo code of Mutation:
input: pop size, (pm) and total number of nodes (N).
output: Mutated offspring (child).

begin
Determine T= pm*N // total number of mutated node

for i=0 to pop size
r=rand(0,1)
if( r< pm){

Select chromosome depending pm
for j=1 to T

Randomly select two different nodes between [1,N];
Swap the nodes;

end for
}

end for
end

Procedure of MGA:

procedure name: Modified Genetic Algorithm (MGA).
input: Max Gen (S0), Population Size (pop−size), Probability of Selection

(ps), Probability of Crossover (pc), Probability of Mutation (pm), Problem Data
(cost and risk matrices).
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output: The optimum and near optimum solutions.
1. Start
2. Set initial generation t← 0.
3. (Initialization) Randomly generate initial population p(t) where Xi, i=1,2...,pop−size

are the chromosomes, N numbers of node in each chromosome represent a solu-
tion/path of the TSP.

4. Evaluate the fitness of each solution of the initial population p(t).
5. Check the condition while (t≤ S 0) do upto step 21.
6. Update the generation t← t+1.
7. Selection Procedure.
8. Determine the Boltzmann Probability (pB) of each chromosome
9. Create the matting pool based on ps and pB.
10. Crossover Procedure.
11. Select the parents using pc from matting pool.
12. According to Subsection 4.4.1.(iii) perform the crossover
13. Modified the parents.
14. Generate off springs and replace the parents.
15. Repeat the Step 11 to Step 14 depend on pc.
16. Mutation Procedure done according the Subsection 3.iv.c.
17. Select the off springs for mutation based on pm.
18. Exchange the place of these nodes;
19. Store the new off springs into offspring set.
20. Compare the fitness and Store the local, near optimum.
21. Repeat the Step 5 to Step 21.
22. (Optimum Solution) Store the optimum and near optimums
23. Stop.

4.4.2 Mathematical Formulation and Its crisp equivalence
STSP with risk/discomfort Constraints (CSTSP):

Model 4.3A: This model is same as given in section 4.3.2.

CSTSP in Fuzzy Environment (FCSTSP):

Model 4.3A1: This model given in section 4.3.2.
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Deterministic form of Model 4.3A1: Possibility and Necessity Approaches
Deterministic forms due to possibilistic and necessity approaches are given in
Equs. 4.14 and 4.15 respectively.

Deterministic form of Model 4.3A1: GMIV approach:
Again the Model 4.3A1 defined in Equ.4.1 can be converted, using the section

3.4.2. Applying GMIV method on FCSTSP, redesigned crisp model is given be-
low:
Determine a complete tour (x1, x2, ..., xN , x1) using any one of the available con-
veyances in each step from the vehicle types (v1, v2, ..., vP )

to minimize Z = 1
6 [F1 − 4F2 + F3]

subject to 1
6 [R1 − 4R2 +R3] ≤ 1

6 [r1 − 4r2 + r3]

}
(4.19)

Deterministic form of Model 4.3A1: Credibility Approach:
Now for the model defined in section 4.3.2, crisp form according to credibility

measure given in Equ. 3.18. is :
Determine a complete tour (x1, x2, ..., xN , x1) using any one of the available con-
veyances in each step from the vehicle types (v1, v2, ..., vP )

to minimize F

subject to Cr(
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl) < F )

Cr(
N−1∑
i=1

r̃(xi, xi+1, vi) + r̃(xN , x1, vl)) ≤ Cr(r̃max)

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(4.20)

Using Equ. 3.18, the above Equ. 4.20 is transformed as
to minimize F

subject to
F − F1

2(F2 − F1)
≥ α5 if F1 ≤ F ≤ F2

F − 2F2 + F3

2(F3 − F2)
≥ α5 if F2 ≤ F ≤ F3

r1 −R1

2(R2 −R1 − r2 + r1)
≥ α6 if α6 > 0.5

2(r2 −R2) +R3 − r3

2(R3 −R2 − r3 + r2)
≤ α6 if α6 ≤ 0.5


(4.21)
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Here α5, α6 are predefined confidence levels and F be crisp values given by the
salesman.
Thus above equation can be written as

to minimize F1 + 2α5(F2 − F1) if F1 ≤ F ≤ F2

subject to
r1 −R1

2(R2 −R1 − r2 + r1)
≥ α6 if α6 > 0.5

 (4.22)

and

to minimize 2F2 + F3 + 2α5(F3 − F2) if F2 ≤ F ≤ F3

subject to
2(r2 −R2) +R3 − r3

2(R3 −R2 − r3 + r2)
≤ α6 if α6 ≤ 0.5

 (4.23)

Deterministic form of Model 4.3A1: EVM Approach:
Again we rewrite the model 4.3.2 according to another crisp conversion form

given in section 3.9 known as expected value model.
Determine a complete tour (x1, x2, ..., xN , x1) using any one of teh available cor-
responding conveyances in each step from the vehicle types (v1, v2, ..., vP )

to minimize Z = E(
N−1∑
i=1

c̃(xi, xi+1, vi) + c̃(xN , x1, vl))

subject to E(
N−1∑
i=1

r̃(xi, xi+1, vi) + r̃(xN , x1, vl)) ≤ E(r̃max)

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., or P}

 (4.24)

Thus the above form is written as

to minimize 1
4(F1 + 2F2 + F3)

subject to 1
4(R1 + 2R2 +R3) ≤ 1

4(r1 + 2r2 + r3)

}
(4.25)

Model 4.3A2: CSTSP in Random Environment (RaCSTSP)

In the problem formulation section 4.3.2, if costs and risk/discomfort fac-
tors are random parameters, i.e, ĉ(i, j, k) and r̂(i, j, k) respectively and maximum
risk/discomfort limit rmax also a random variable r̂max then the Equ. 4.9 reduces
to:
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Determine a complete tour (x1, x2, ..., xN , x1) using suitable one among the avail-
able conveyances in each step from the vehicle types (v1, v2, ..., vP ) so as

to minimize Z =
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)

subject to
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂(xN , x1, vl) ≤ r̂max

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (4.26)

Now using Chance-constrained programming technique according to sec-
tion 3.13.2, the above model reduces to:

to minimize Z =
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)

subject to P [
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂(xN , x1, vl) ≤ r̂max] ≥ pi,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.
Here pi are crisp values.


(4.27)

Also we consider all random variables are normal variate. Then the objective
function also a normal variate. Thus the mean and variance are given by

Z̄ = E[
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)]

V ar(Z) = XTV X
where V is the covariance matrix of cj.

 (4.28)

Thus the above constrained stochastic problem given by Equ. 4.27 finally reduce
as to:

Minimize F(X) = k1 ∗ E[
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)]

+k2 ∗
√

(XTV X),

subject to h̄i + si
√

(V ar(hi) ≤ 0, i = 1, 2, ....n
xj ≥ 0, j = 1, 2, ...., n

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(4.29)

Here h̄i = E[
N−1∑
i=1

r̂(xi, xi+1, vi)+r̂(xN , x1, vl)]−r̄max,k1, k2 ≥ 0

where k1 and k2 are constants indicating the weights of mean and variance func-
tions, si is the tabulated value of the normal distribution.
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Model 4.3A3: CSTSP in Random-Fuzzy Environment (RFCSTSP):

In the problem section 4.3.2, if costs and risk/discomfort factors are random-
fuzzy parameters, i.e, ˆ̃c(i, j, k) and ˆ̃r(i, j, k) respectively and maximum risk/dis-
comfort limit rmax also is a random-fuzzy data ˆ̃rmax, then the Equ. 4.9 reduces
to:

Determine a complete tour (x1, x2, ..., xN , x1) using a suitable one among
the available conveyances in each step from the vehicle types (v1, v2, ..., vP ) so
as

to minimize Z =
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl)

subject to
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.

 (4.30)

Above Equ. 4.30 can be reformulated as given below where the objective func-
tion

N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ F1, F1 is a crisp values.

Using section 3.11, the Equ. 4.30 can be defined as possibilistic and necessity
chance constraint forms

minimize F1

Pos{Prob{
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ F1} ≥ θ̂obj} ≥ ĥobj

Nes{Prob{
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ F1} ≥ θ̂obj} ≥ ĥobj

s.t. Pos{Prob{
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

Nes{Prob{
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.



(4.31)
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The above Equ. 4.31 equivalently is written as

Pos{Prob{ ˆ̃Cx ≤ F1} ≥ θ̂obj} ≥ ĥobj

Nes{Prob{ ˆ̃Cx ≤ F1} ≥ θ̂obj} ≥ ĥobj

subject to Pos{Prob{ ˆ̃Rx ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

Nes{Prob{ ˆ̃Rx ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

 (4.32)

where ˆ̃C =
N−1∑
i=1

ˆ̃c1(xi, xi+1, vi)+ˆ̃c1(xN , x1, vl), ˆ̃R =
N−1∑

i=1

ˆ̃r(xi, xi+1, vi)+ˆ̃r(xN , x1, vl)

The above Equ. 4.32 using section 3.11 is equivalently transformed into

N∑
i=1

{mc
i − L ∗ (ĥi

obj
)αci}xi + Φ−1(θ̂obj)

√
(xtV cx) ≤ F1

N∑
i=1

{mc
i + L ∗ (1− ĥi

obj
)βci }xi + Φ−1(θ̂obj)

√
(xtV cx) ≤ F1

s.t.
N∑
i=1

{mR
i − L ∗ (ĥi

cst
)αRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2) ≤

mr
i + L ∗ (ĥcsti )βri

N∑
i=1

{mR
i + L ∗ (1− ĥi

cst
)βRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2) ≤

mr
i − L ∗ (1− ĥcsti )αri



(4.33)

Finally the above random-fuzzy model is transformed into the crisp model as
given below:

Determine a complete tour (x1, x2, ..., xN , x1) using a suitable one among
the available conveyances in each step from the vehicle types (v1, v2, ..., vP )

to min F1 =
N∑
i=1

{mc
i − L ∗ (ĥi

obj
)αci}xi + Φ−1(θ̂obj)

√
(xtV cx)

s.t.
N∑
i=1

{mR
i − L ∗ (ĥi

cst
)αRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2)

≤ mr
i + L ∗ (ĥcsti )βri

 (4.34)
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and

to min F1 =
N∑
i=1

{mc
i + L ∗ (1− ĥi

obj
)βci }xi + Φ−1(θ̂obj)

√
(xtV cx)

s.t.
N∑
i=1

{mR
i + L ∗ (1− ĥi

cst
)βRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2)

≤ mr
i − L ∗ (1− ĥcsti )αri

(4.35)

where αci , α
R
i , β

c
i , β

R
i and βri are predetermined given values. Again ĥobj, ĥcst are

permissible possibility or necessity levels for the objectives and risk/discomfort
constraints. Also θ̂obj, θ̂cst are permissible probability levels for the objectives
and constraints respectively.

Model 4.3A4: CSTSP in Fuzzy Random Environment (FRCSTSP):

In the problem formulated in the section 4.3.2, if costs and risk/discomfort
factors are fuzzy random parameters, i.e, ˜̂c(i, j, k) and ˜̂r(i, j, k) respectively and
allowable maximum risk/discomfort limit rmax is also a fuzzy random variables
˜̂rmax, then the Equ. 4.9 reduces to:

Determine a complete tour (x1, x2, ..., xN , x1) using a suitable one among
the available conveyances in each step from the vehicle types (v1, v2, ..., vP ) so
as

to minimize Z =
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl)

subject to
N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r(xN , x1, vl) ≤ ˜̂rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.

 (4.36)

Above Equ. 4.36 can be reformulated as given below, where the objective func-
tion is

N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl) ≤ F,

F is a given crisp value, and equations evaluated using fuzzy random chance
constrained programming technique according to the Theorem 3.9.
Determine a complete tour (x1, x2, ..., xN , x1) using a suitable one among the

141



CHAPTER 4. SINGLE OBJECTIVE OPTIMIZATION USING SINGLE HEURISTIC
METHODS

available conveyance in each step from the vehicle types (v1, v2, ..., vP ) to mini-
mize F

s.t. Ch{
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl) ≤ F}(γ) ≥ δ

Ch
N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r(xN , x1, vl) ≤ ˜̂rmax}(η) ≥ θ

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.

 (4.37)

Here the parameters γ, δ, θ, η are predetermined confidence levels in [0,1].
Now the above Equ. 4.37 is reformulated as

minimize F

s.t Ch{ ˜̂
Cx ≤ F}(γ) ≥ δ

Ch{ ˜̂
R1x ≤ ˜̂

Rmax}(η) ≥ θ
x ∈ X

 (4.38)

where ˜̂
C =

N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl),

˜̂
R1 =

N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r1(xN , x1, vl),

˜̂
Rmax = ˜̂rmax,

and X is a fixed set that usually determined by a finite of inequalities involving
functions of x as a decision vectors.
It follows from section 3.13.10, the Equ. 4.37 is converted as follows for Proba-
bility Possibility measure

minimize{F}
s.t. Pr{ω|Pos{ ˜̂

Cx ≤ F} ≥ δ} ≥ γ

Pr{ω|Pos{ ˜̂
R1x ≤ ˜̂

Rmax} ≥ θ} ≥ η
x ∈ X

 (4.39)

and the Probability Necessity measure form as given below

minimize{F}
s.t. Pr{ω|Nes{ ˜̂

Cx ≤ F} ≥ δ} ≥ γ

Pr{ω|Nes{ ˜̂
R1x ≤ ˜̂

Rmax} ≥ θ} ≥ η
x ∈ X

 (4.40)
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where γ, δ, η, θ ∈ [0, 1] are the predetermined confidence levels.
To find the crisp values of probability possibility model according the Theo-

rems 3.8 and 3.9 given by the above model Equ. 4.39 is converted as

minimize F = R−1(δ)βCTx+ dCTx+ φ−1(1− γ)
√

(xTV Cx)
s.t R−1(θ)βRmax + L−1(θ)αR1Tx− (dR1Tx− db)−

φ−1(η)
√

(xTV R1x+ (σRmax)2) ≥ 0

 (4.41)

Similarly for the possibility necessity approaches, according to the Theorems
3.9 and 3.10, the Equ.4.40 converted as

minimize F = dCTx− L−1(1− δ)αCTx+ φ−1(1− γ)
√

(xTV Cx)

s.t φ−1(1− η)
√

(xTV R1x+ (σRmax)2)− L−1(1− θ)αRmax−
R−1(θ)βR1Tx+

(dRmax − dR1Tx) ≥ 0

 (4.42)

Model 4.3A5: CSTSP in Bi-random Environment (BRCSTSP):

For the wide range of statistical data values for the long time interval, de-
cision maker are more affiniated towards the bi-random features. In the problem
section 4.3.2, if costs and risk/discomfort factors are bi-random parameters, i.e,
˜̃c(i, j, k) and ˜̃r(i, j, k) respectively and maximum risk/discomfort limit rmax also
bi-random variable ˜̃rmax, then the Equ. 4.9 reduces to:

Determine a complete tour (x1, x2, ..., xN , x1) using a suitable one among
the available conveyances in each step from the vehicle types (v1, v2, ..., vP ) so
as

to minimize Z =
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl)

subject to
N−1∑
i=1

˜̃r(xi, xi+1, vi) + ˜̃r(xN , x1, vl) ≤ ˜̃rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.

 (4.43)

Above Equ. 4.43 can be reformulated as given, where the objective function
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl) ≤ F,

F is a crisp value, and equations are evaluated using equilibrium chance con-
strained programming technique.
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Determine a complete tour (x1, x2, ..., xN , x1) using a suitable one among the
available conveyances in each step from the vehicle types (v1, v2, ..., vP ) to mini-
mize F

subject to Che{
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl) ≤ F} ≥ α

Che
N−1∑
i=1

˜̃r(xi, xi+1, vi) + ˜̃r(xN , x1, vl) ≤ ˜̃rmax} ≥ β

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.

 (4.44)

Here α, β are predetermined confidence levels.
Now the above Equ. 4.44 is reformulated as

minimize F
subject to Che{ ˜̃Cx ≤ F} ≥ α

Che{ ˜̃Rx ≤ ˜̃Rmax} ≥ β
x ∈ D

 (4.45)

where ˜̃C =
N−1∑
i=1

˜̃c(xi, xi+1, vi)+˜̃c(xN , x1, vl), ˜̃R =
N−1∑

i=1

˜̃r(xi, xi+1, vi)+˜̃r1(xN , x1, vl),

˜̃Rmax = ˜̃rmax,
and D is a fixed set that usually determined by a finite of inequalities involving
functions of x.
Using the Theorem 3.3, the Equ. 4.45 can be written as

subject to Pr{ω ∈ Ω|Pr{ ˜̃C(ω)x ≤ F} ≥ α} ≥ α

Pr{ω ∈ Ω|Pr{ ˜̃R(ω)x ≤ ˜̃Rmax} ≥ β} ≥ β
x ∈ D

 (4.46)

Finally the above problem using Lemmas 3.3 and 3.4 reduces: to determine
a complete tour (x1, x2, ..., xN , x1) and using a suitable one among the available
conveyances in each step from the vehicle types (v1, v2, ..., vP )

minimize F = µcx+ Φ−1(α)
√

(xTV cx) + Φ−1(α)
√

(xTV ncx)

s.t µRx+ Φ−1(β)
√

(xTV Rx+ (σRmax)2)+

Φ−1(β)
√

(xTV nRx+ (σRnmax)2)) ≤ µRmax,
x ∈ D.

 (4.47)
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Table 4.20: Test TSPLIB Problems by MGA
Instances Problem Size Optimum Result MGA MGA GA GA

Cost Iteration Cost Iteration
fri26 26 937 937 78 937 269

bays29 29 2020 2020 61 2020 451
bayg29 29 1610 1610 66 1610 378

dantzig42 42 699 699 152 699 612
eil51 51 426 426 98 426 341

berlin52 52 7542 7542 145 7542 526
st70 70 675 675 165 675 813
eil76 76 538 538 124 538 457
pr76 76 108159 108159 165 108159 410
rat99 99 1211 1211 147 1211 328

kroa100 100 21282 212820 276 21282 285

Here α, β are given values. Again σRmax, σRnmax, V R, V nR, V c, V nc are standard
deviation and variances of maximum of risk/discomfort factors and costs in two
fold randomness. Also Φ is a standard normal variate distributions.

Solution Procedures:
The deterministic forms of the uncertain CSTSPs given by Equ. 4.9 for crisp

values, Equ.s 4.5, 4.6, 4.19, 4.22, 4.23 and 4.25 for FCSTSP in fuzzy values,
Equ. 4.29 for RaCSTSP in random values parameters, Equ.s 4.34 and 4.35 for
RFCSTSP in random fuzzy, Equ.s 4.41 and 4.42 for FRCSTSP with fuzzy ran-
dom values and Equ.4.47 for BRCSTSP with bi-random values are solved by the
MGA, developed for this purpose in section 4.4.1.

4.4.3 Numerical Experiments

Testing for MGA:
To judge the effectiveness and feasibility of developed algorithm MGA, we

have applied it on the standard TSP problems from TSPLIB[162]. Table- 4.20
gives the results of test functions by both MGA and SGA and on comparison is
made in terms of total cost and GA iterations.

Moreover, for a particular test problem bayg29, both standard GA and pro-
posed MGA are used with different Pc’s, Pm’s and proposed Ps’s. The obtained
results are presented in Table 4.21.
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Table 4.21: Comparison of MGA and SGA with different parameter
Algorithm Selection Crossover Generation pc pm ps Result

GA Roulette Wheel Cyclic 678 0.31 0.43 - 1610
GA Probabilistic Cyclic 309 0.31 0.43 - 1610
GA Probabilistic Comparison 256 0.4 0.43 - 1610

MGA Probabilistic Comparison 176 0.44 0.43 - 1610
MGA Probabilistic Comparison 66 0.34 0.43 0.3 1610
MGA Roulette Wheel Comparisons 211 0.34 0.43 - 1610
MGA Roulette Wheel Cyclic 411 0.5 0.43 - 1610

Model 4.3A: Results of CTSP with risk/discomfort Constraint in Crisp
Environment:

Now, we consider a deterministic TSP given by Equ.4.9, whose cost and
risk/discomfort matrices are given by Table 4.22. The problem is solved by MGA
and the results are presented in Table 4.23.

Here GA parameter are : maximum generation=1000, ps=0.3, pc=0.34, pm=0.4.
Model 4.3A: CSTSP with risk/discomfort Constraint in Crisp Environ-

ment:
Now for a CSTSP, we consider three types of conveyances. The cost and

risk/discomfort matrices are given for the CSTSP in Table 4.24.
Here we have taken maximum generation=2000, ps=0.31, pc=0.34, pm=0.43.

This CSTSP is solved by MGA and the results are presented in Table 4.25.
Model 4.3A1: FCSTSP with risk/discomfort Constraint in Fuzzy Envi-

ronments:
Here the cost and risk/discomfort values are fuzzy for the FCSTSP. Also we

consider three types of conveyances. The fuzzy cost and corresponding fuzzy
risk/discomfort matrices for the FCSTSP are given in the Table 4.26. This FC-
STSP is solved by MGA and the results are presented in Table 4.27.

Model 4.3A2: RaCSTSP with risk/discomfort Constraint in Random
Environment:

Here the cost and risk/discomfort values are random for the RaCSTSP. Also
only three types of conveyances are available for transportation. The random
cost and risk/discomfort values for the RaCSTSP are random and these values
are presented in the form of mean and variances in Table 4.28. This RaCSTSP is
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Table 4.22: Input Data: Crisp CTSP (Model 4.3A)
Crisp Cost Matrix(10×10)

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 35 18 20 17 36 37 42 33 44
2 24 ∞ 20 28 35 40 30 43 28 14
3 38 27 ∞ 25 22 35 9 32 40 30
4 28 10 7 ∞ 20 25 30 35 22 37
5 27 22 35 30 ∞ 20 25 30 9 28
6 15 30 25 8 28 ∞ 33 40 32 30
7 38 25 30 22 37 40 ∞ 32 20 25
8 40 5 32 40 35 25 40 ∞ 37 38
9 40 40 23 25 20 2 37 32 ∞ 28

10 28 30 28 20 11 32 37 40 30 ∞
Crisp risk/discomfort Matrix

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 0.5 0.8 0.7 0.82 0.59 0.58 0.59 0.6 0.57
2 0.78 ∞ 0.81 0.75 0.5 0.6 0.7 0.58 0.75 0.9
3 0.59 0.79 ∞ 0.85 0.78 0.65 0.81 0.68 0.6 0.7
4 0.72 0.9 0.94 ∞ 0.8 0.75 0.7 0.65 0.78 0.63
5 0.83 0.79 0.69 0.72 ∞ 0.82 0.79 0.71 0.9 0.72
6 0.88 0.7 0.75 0.91 0.72 ∞ 0.67 0.6 0.7 0.77
7 0.68 0.59 0.8 0.7 0.6 0.61 ∞ 0.68 0.8 0.77
8 0.6 0.94 0.69 0.6 0.59 0.79 0.6 ∞ 0.59 0.73
9 0.6 0.81 0.77 0.75 0.8 0.99 0.63 0.68 ∞ 0.72

10 0.85 0.7 0.73 0.53 0.9 0.69 0.64 0.59 0.7 ∞

Table 4.23: Results of Crisp CTSP (Model 4.3A)
Algorithm Path Value Rmax

MGA 8-2-10-5-9-6-1-4-3-7 124.00 Without Rmax

MGA 8-2-10-5-9-6-1-4-3-7 124.00 8.64
MGA 5-9-6-4-3-7-10-8-2-1 130.00 8.64
MGA 8-2-10-4-3-7-9-1-5 139.00 8.64
MGA 4-8-2-10-5-9-6-1-3-7 140.00 8.64
GA 10-8-2-5-9-6-1-4-3-7 167.00 8.75

MGA 8-5-9-6-1-4-3-7-2-10 176.00 8.00
GA -2-5-10-4-3-7-9-6-4 192.00 8.00

MGA 7-2-6-9-1-4-8-5-10-3 292.00 6.75
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Table 4.24: Input Data: Crisp CSTSP(Model 4.3A)
Crisp Cost Matrix(10×10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 35,36,27 18,39,30 20,33,34 30,21,62 6,23,8 15,36,47 27,38,19 40,31,42 20,31,42
2 35,26,17 ∞ 40,21,32 18,29,10 35,26,37 40,31,22 40,31,59 33,42,59 18,37,20 24,16,18
3 38,30,29 17,58,34 ∞ 12,25,14 42,25,46 35,36,34 19,11,8 32,33,25 30,19,41 30,22,33
4 28,20,11 10,22,14 17,8,29 ∞ 30,19,24 25,16,27 21,31,33 35,36,17 12,23,34 27,48,39
5 17,15,9 42,23,34 35,36,37 20,31,43 ∞ 30,21,42 45,16,27 30,31,13 19,10,8 28,26,7
6 15,6,7 30,21,29 5,26,28 8,9,12 28,29,40 ∞ 33,42,24 40,31,22 32,23,35 30,41,32
7 38,39,30 25,54,26 30,38,26 22,43,24 37,58,39 40,21,45 ∞ 10,41,13 32,33,35 20,15,26
8 40,41,23 25,6,17 32,53,45 40,21,42 35,36,47 25,16,5 40,22,43 ∞ 22,53,24 37,37,39
9 40,11,33 40,39,36 3,36,37 25,34,29 20,32,21 22,33,25 7,38,39 32,33,14 ∞ 28,19,26

10 18,27,29 30,21,32 28,19,30 20,31,22 11,33,22 32,12,34 37,28,39 40,41,33 30,51,33 ∞
Crisp risk/discomfort Matrix(10 ×10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ .69,.68,.75 .84,.63,.7 .82,.7,.71 .72,.8,.42 .96,.79,.93 .87,.66,.55 .74,.42,.81 .41,.7,.59 .81,.7,.59
2 .67,.76,.84 ∞ .61,.8,.7 .83,.73,.92 .67,.76,.65 .41,.71,.79 .41,.71,.43 .69,.6,.42 .83,.64,.81 .77,.85,.3
3 .63,.71,.73 .83,.44,.67 ∞ .89,.76,.86 .59,.76,.55 .66,.65,.67 .83,.91,.94 .69,.68,.76 .71,.82,.6 .71,.79,.68
4 .73,.81,.9 .9,.78,.86 .84,.93,.72 ∞ .71,.82,.77 .77,.86,.75 .81,.71,.69 .66,.65,.84 .89,.79,.77 .74,.53,.43
5 .84,.86,.92 .59,.78,.67 .66,.65,.64 .82,.71,.59 ∞ .71,.81,.59 .57,.85,.74 .71,.7,.88 .82,.91,.93 .74,.75,.93
6 .85,.84,.93 .7,.8,.71 .95,.74,.72 .92,.91,.89 .73,.72,.61 ∞ .69,.59,.77 .61,.71,.79 .69,.78,.66 .71,.6,.69
7 .63,.62,.71 .77,.47,.76 .71,.63,.76 .79,.59,.77 .66,.43,.62 .6,.79,.55 ∞ .9,.6,.87 .69,.68,.66 .81,.87,.76
8 .61,.6,.78 .76,.95,.84 .69,.47,.56 .61,.81,.6 .67,.66,.55 .6,.85,.95 .61,.8,.59 ∞ .79,.48,.77 .64,.64,.62
9 .61,.91,.71 .61,.62,.65 .97,.65,.64 .76,.77,.72 .81,.69,.73 .79,.68,.76 .94,.66,.63 .69,.68,.87 ∞ .73,.82,.75

10 .83,.74,.72 .71,.8,.69 .73,.83,.72 .8,.69,.78 .89,.67,.78 .7,.9,.71 .64,.74,.22 .61,.59,.68 .71,.5,.67 ∞

Table 4.25: Results for Crisp CSTSP (Model 4.3A )
Algorithm Path(Vehicle) Cost Risk achieved Rmax

MGA 1(1)-10(1)-5(2)-4(1)-2(1)-9(1)-3(2)-7(1)-8(3)-6(2) 107.00 8.71 8.75
MGA 9(1)-7(1)-8(1)-6(2)-1(1)-3(1)-4(1)-2(1)-10(1)-5(3) 131.00 8.50 8.75
MGA 2(2)-10(1)-9(1)-6(2)-4(2)-3(3)-7(2)-5(2)-1(3) 141.00 8.50 8.75
MGA 7(1)-8(1)-6(2)-1(1)-10(3)-5(2)-4(3)-2(3)-9(1)-3(2) 144.00 8.19 8.75
GA 2(2)-9(1)-3(3)-7(3)-8(1)-6(2)-1(3)-10(2)-5(2)-4(1) 190.00 8.73 8.75

MGA 5(2)-4(3)-2(1)-9(3)-8(1)-6(3)-1(1)-3(2)-7(1)-10(1) 151.00 8.25 8.25
MGA 2(2)-10(3)-9(1)-3(1)-7(1)-8(1)-6(2)-1(1)-5(2)-4(1) 165.00 7.99 8.00
MGA 7(1)-592)-4(1)-2(3)-9(2)-3(3)-8(1)-6(2)-1(2)-10(1) 240.00 7.25 7.25

Table 4.26: Input Data for FCSTSP (Model 4.3A1)
Fuzzy Cost Matrix(10 ×10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 32,35,36 17,19,20 17,21,22 29,30,31 5,7,10 15,16,18 25,28,29 39,41,42 20,22,23

∞ 36,37,39 38,39,42 31,33,34 20,21,23 22,23,25 35,33,37 37,39,43 26,31,33 30,31,34
26,28,29 26,30,31 33,35,36 60,62,63 6,8,9 46,47,48 16,19,20 41,42,43 42,43,45

2 34,35,38 40,41,44 16,18,19 32,35,37 39,40,41 39,40,42 30,33,34 17,19,22 23,24,26
22,26,27 ∞ 18,21,22 28,29,32 25,26,27 30,31,32 29,30,32 41,42,45 36,37,38 13,16,17
14,17,19 27,32,33 6,10,12 34,37,38 21,23,26 57,59,60 58,59,62 17,20,21 17,18,20

3 36,38,39 16,17,20 10,12,13 40,42,45 33,35,36 17,19,20 30,32,33 28,30,31 29,30,31
29,30,32 54,58,60 ∞ 24,25,26 23,25,26 34,36,39 11,11,12 30,33,34 18,19,21 19,22,23
28,29,32 31,34,35 12,14,17 45,46,48 33,34,35 5,8,10 24,25,27 40,41,44 32,33,35

4 27,28,30 9,10,11 16,18,20 29,30,33 23,25,26 19,21,22 33,35,36 10,12,13 24,27,29
18,20,21 19,22,23 7,9,10 ∞ 17,19,20 15,16,18 30,31,32 32,36,38 20,23,24 47,48,49
9,10,12 12,14,15 27,29,30 23,24,25 25,27,28 30,33,34 16,17,18 32,34,35 37,39,40

16,18,19 41,42,44 34,35,37 17,20,21 29,30,31 42,45,46 27,30,31 18,19,22 26,28,29
5 14,15,18 21,23,24 35,36,37 12,13,14 ∞ 20,21,23 14,16,18 30,31,32 8,10,11 25,26,27

6,8,9 32,34,37 33,38,39 40,43,44 40,41,42 25,27,27 12,13,16 7,8,9 25,27,28
13,15,16 26,29,30 4,4,6 6,8,9 26,28,29 31,33,34 39,40,42 30,32,33 28,30,31

6 5,6,8 20,21,23 25,26,27 7,9,11 26,29,30 ∞ 40,43,44 30,31,31 22,23,24 40,41,42
5,7,8 27,29,30 27,28,30 10,12,13 38,39,41 23,24,26 20,22,23 35,35,36 30,32,34
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36,37,39 23,25,26 27,30,32 21,22,24 35,37,38 38,40,41 7,10,11 31,33,34 19,20,22
7 37,39,40 53,53,55 37,38,39 40,43,44 56,58,60 20,21,22 ∞ 40,43,44 33,34,35 13,15,16

28,30,32 25,26,27 24,26,27 23,24,25 37,39,40 43,45,46 11,13,14 34,36,37 25,26,28
39,41,42 24,26,28 30,32,33 38,40,42 34,35,37 23,25,26 39,40,42 20,22,23 35,37,38

8 41,42,43 5,6,7 52,53,54 19,21,22 34,36,37 15,16,18 19,21,22 ∞ 52,53,54 35,36,38
20,23,24 16,17,18 43,45,46 40,42,43 46,47,48 4,5,6 41,43,44 23,24,27 39,40,41
38,40,41 39,41,42 4,6,9 23,25,26 20,21,23 22,23,25 5,7,8 30,32,33 27,28,30

9 10,11,13 38,39,40 34,36,37 33,34,36 31,32,33 31,33,34 36,38,39 32,33,34, ∞ 18,19,20
31,32,33 34,36,37 36,37,39 28,29,30 20,21,22 23,25,26 38,39,41 11,13,15 24,26,27
15,17,18 28,30,31 26,28,29 18,20,21 9,11,12 30,32,34 35,38,39 40,41,43 29,31,32

10 25,26,28 20,21,22 18,19,20 29,31,32 32,33,34 10,12,13 26,28,29 41,42,43 51,52,54 ∞
25,29,30 31,32,34 28,30,32 21,22,24 20,22,24 33,34,35 38,39,41 30,33,34 30,32,33

Fuzzy risk/discomfort Matrix(10×10) With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

.7,.65,.63 .85,.81,.78 .8,.78,.77 .75,.72,.71 .9,.87,.85 .85,.83,.8 .7,.67,.61 .54,.5,.47 .79,.75,.7
1 ∞ .69,.67,.66 .59,.57,.56 .7,.67,.65 .8,.81,.83 .78,.74,.72 .64,.61,.59 .6,.58,.54 .65,.6,.58 .61,.58,.54

.75,.72,.7 .65,.63,.6 .69,.71,.7 .37,.32,.29 .89,.84,.81 .51,.5,.47 .79,.75,.73 .54,.5,.48 .48,.42,.41
.58,.55,.5 .56,.41,.47 .78,.77,.71 .65,.61,.59 .53,.5,.47 .59,.52,.48 .7,.63,.59 .75,.7,.68 .69,.64,.61

2 .7,.66,.61 ∞ .76,.71,.69 .67,.62,.6 .75,.68,.65 .68,.64,.61 .69,.63,.6 .51,.45,.4 .6,.57,.53 .8,.76,.71
.8,.75,.71 .68,.61,.59 .9,.85,.82 .6,.58,.5 .7,.65,.62 .31,.26,.2 .32,.34,.19 .7,.69,.62 .81,.76,.7

.55,.51,.48 .72,.69,.62 .81,.76,.7 .51,.46,.4 .59,.55,.52 .8,.75,.71 .65,.6,.59 .58,.55,.51 .67,.61,.58
3 .6,.56,.53 .38,.31,.26 ∞ .71,.68,.66 .7,.64,.61 .61,.58,.56 .9,.86,.81 .64,.6,.58 .8,.76,.71 .76,.71,.68

.61,.58,.56 .6,.58,.51 .8,.76,.71 .48,.44,.4 .62,.6,.57 .89,.86,.81 .68,.65,.61 .55,.5,.48 .64,.6,.57

.69,.64,.62 .86,.81,.79 .79,.75,.72 .65,.63,.6 .69,.65,.62 .78,.74,.71 .6,.56,.52 .85,.82,.8 .68,.63,.59
4 .78,.75,.71 .76,.71,.69 .9,.85,.82 ∞ .76,.72,.7 .78,.75,.71 .68,.65,.61 .59,.58,.56 .78,.74,.71 .5,.45,.41

.85,.83,.8 .81,.78,.74 .7,.64,.6 .78,.71,.69 .68,.67,.65 .6,.54,.5 .79,.76,.72 .71,.69,.64 .6,.54,.5

.8,.76,.71 .55,.52,.49 .6,.58,.4 .78,.75,.71 .62,.58,.55 .51,.45,.41 .67,.62,.59 .8,.76,.7 .69,.66,.62
5 .81,.79,.75 .75,.74,.72 .58,.55,.5 .65,.62,.61 ∞ .81,.75,.72 .81,.78,.75 .66,.61,.58 .88,.81,.78 .7,.68,.65

.88,.81,.79 .61,.58,.54 .59,.58,.54 .55,.51,.48 .55,.51,.45 .71,.68,.66 .82,.79,.75 .9,.87,.81 .9,.87,.83
.8,.75,.71 .65,.63,.6 .85,.82,.78 .88,.84,.79 .7,.67,.63 .64,.6,.58 .55,.52,.48 .68,.61,.58 .65,.61,.58

6 .81,.79,.76 .75,.72,.7 .7,.68,.62 .87,.84,.8 .6,.58,.55 ∞ .55,.51,.46 .65,.63,.6 .73,.7,.68 .55,.52,.48
.88,.85,.81 .66,.61,.59 .65,.62,.6 .85,.81,.78 .58,.54,.49 .7,.68,.65 .76,.71,.68 .62,.58,.55 .65,.62,.6
.58,.54,.49 .65,.63,.6 .64,.6,.58 .7,.68,.65 .56,.54,.51 .55,.51,.46 .85,.81,.78 .65,.61,.59 .78,.74,.69

7 .56,.52,.48 .44,.38,.33 .6,.58,.55 .55,.51,.45 .38,.32,.28 .75,.71,.68 ∞ .55,.54,.51 .58,.54,.5 .71,.68,.64
.65,.62,.58 .71,.65,.6 .67,.64,.6 .71,.68,.64 .55,.53,.51 .52,.47,.4 .75,.76,.72 .65,.61,.58 .65,.62,.58
.56,.52,.49 .7,.68,.65 .64,.6,.58 .56,.52,.5 .62,.58,.53 .55,.52,.48 .55,.54,.51 .78,.76,.73 .58,.56,.51

8 .54,.52,.51 .9,.88,.84 .41,.38,.37 .76,.74,.7 .62,.57,.55 .8,.77,.7 .78,.72,.7 ∞ .43,.4,.36 .6,.54,.5
.5,.43,.4 .8,.81,.78 .51,.45,.4 .56,.52,.49 .52,.48,.45 .88,.83,.8 .54,.53,.5 .73,.7,.68 .58,.54,.49

.56,.51,.48 .58,.52,.5 .9,.85,.82 .7,.68,.64 .78,.75,.71 .74,.7,.68 .85,.81,.8 .62,.6,.58 .69,.65,.63
9 .88,.85,.81 .59,.57,.56 .62,.61,.58 .74,.7,.67 .65,.61,.58 .64,.61,.59 .62,.6,.57 .65,.61,.6 ∞ .78,.73,.7

.68,.65,.51 .58,.55,.53 .6,.54,.5 .68,.52,.58 .74,.7,.68 .67,.64,.6 .58,.54,.49 .79,.75,.72 .72,.7,.68

.78,.71,.69 .66,.61,.58 .69,.65,.62 .74,.7,.68 .83,.78,.75 .65,.61,.58 .59,.54,.5 .55,.52,.47 .64,.59,.58
10 .7,.67,.64 .77,.74,.7 .8,.76,.74 .65,.6,.57 .62,.58,.56 .87,.83,.78 .68,.64,.61 .52,.48,.54 .45,.41,.37 ∞

.69,.64,.6 .78,.76,.71 .68,.65,.63 .76,.71,.68 .75,.71,.66 .68,.64,.59 .59,.55,.51 .64,.6,.58 .61,.59,.58

Table 4.27: Optimum Results of FCSTSP (Model 4.3A1)
Method α β Algo. DM Path(Vehicle) Obj Value Fuzzy Cost Risk Value Rmax

ODM 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 99 80,100,115 8.72,8.31,7.93 9.25.,9,8.5
PDM 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 114.35 80,100,115 8.72,8.31,7.93 9.25.,9,8.5

0.95 0.8 MGA ODM 5(3)-9(1)-3(3)-7(3)-8(2)-2(1)-10(2)-6(1)-4(3)-1(1) 126.15 110,127,142 8.33,8.08,7.73 9.25.,9,8.5
PDM 7(3)-8(2)-4(3)-6(2)-1(2)-5(1)-9(3)-10(2)-3(2)-2(2) 139.3 126,140,154 8.21,7.97,7.65 9.25.,9,8.5

POS. ODM 8(3)-6(2)-1(1)-4(1)-2(2)-10(1)-5(3)-9(1)-3(3)-7(3) 103.25 84,104,118 8.42,8.09,7.74 8.75,8.5,8.25
PDM 1(3)-5(3)-9(1)-3(3)-7(3)-8(2)-2(2)-10(2)-6(2)-4(3) 119.5 101,120,135 8.43,8.2,7.84 8.75,8.5,8.25

NES. GA ODM 4(3)-1(1)-5(3)-9(1)-3(3)-7(3)-8(3)-2(2)-10(2)-6(3) 126.15 110,127,141 8.31,7.98,7.61 8.75,8.5,8.25
PDM 5(3)-8(3)-2(1)-4(2)-9(1)-3(3)-7(2)-10(2)-6(2)-1(2) 138.1 121,139,156 8.16,7.93,7.59 8.75,8.5,8.25

.8 .9 MGA ODM 6(3)-4(3)-1(2)-5(3)-9(1)-3(2)-7(3)-8(3)-2(2)-10(2) 125.25 111,126,141 8.42,8.19,7.83 8.5.8,7.75
PDM 10(2)-2(1)-4(3)-1(2)-5(3)-9(3)-8(2)-612)-3(3)-7(1) 138.35 126,139,156 8.21,7.96,7.54 8.5.8,7.75

α ω Algo DM Path(Vehicle) Obj Value Fuzzy Cost Risk Value Rmax

0.5 MGA - 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 99.16 80,100,115 8.72,8.31,7.93 9.25.,9,8.5
GMIV - 0.25 MGA - 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 96.25 80,100,115 8.72,8.31,7.93 9.25.,9,8.5

0.5 MGA - 5(3)-9(1)-3(3)-7(3)-8(2)-2(1)-10(2)-6(1)-4(3)-1(1) 126.66 110,127,142 8.33,8.08,7.73 9.25.,9,8.5
.75 MGA - 7(3)-8(2)-4(3)-6(2)-1(2)-5(1)-9(3)-10(2)-3(2)-2(2) 129.16 126,140,154 8.21,7.97,7.65 9.25.,9,8.5

Crede 0.6 - MGA - 5(2)-6(2)-1(1)-4(1)-2(2)-10(1)-8(1)-9(1)-3(3)-7(3) 126.5 97,116,12 8.42,8.09,7.74 8.75,8.5,8.25
bility 0.5 - MGA - 1(3)-5(3)-9(1)-3(3)-7(3)-8(2)-2(2)-10(2)-6(2)-4(3) 119.5 101,120,135 8.43,8.2,7.84 8.75,8.5,8.25

0.6 - GA - 4(3)-1(1)-5(3)-9(1)-3(3)-7(3)-8(3)-2(2)-10(2)-6(3) 126.15 110,127,141 8.31,7.98,7.61 8.75,8.5,8.25
0.5 - GA - 5(3)-8(3)-2(1)-4(2)-9(1)-3(3)-7(2)-10(2)-6(2)-1(2) 138.1 121,139,156 8.16,7.93,7.59 8.75,8.5,8.25

EVM - .5 MGA - 6(3)-4(3)-1(2)-5(3)-9(1)-3(2)-7(3)-8(3)-2(2)-10(2) 126 111,126,141 8.42,8.19,7.83 8.5.8,7.75
10(2)-2(1)-4(3)-1(2)-5(3)-9(3)-8(2)-612)-3(3)-7(1) 140 126,139,156 8.21,7.96,7.54 8.5.8,7.75
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solved by MGA and the results are given in Table 4.29.

Model 4.3A3: RFCSTSP with risk/discomfort Constraint in Random-
Fuzzy Environment:

Here the cost and risk/discomfort matrices are random-fuzzy values for the
RFCSTSP. Also only three types of conveyances are available for transportation.
Assume that mean, m̃c is a triangular fuzzy number. The random-fuzzy cost and
risk/discomfort matrices for the RFCSTSP are given in Table 4.30, where first
part is a TFN and second part is a variance.

Here we have take permissible probability levels θ̂obj = θ̂cst=0.94. We
derive L(x)=1-x, the left and right spreads respectively are αc = mc − ĥobj,
βc = mc − 2 ∗ ĥobj and αR = mR − ĥcst, βR = mR − 2 ∗ ĥcst, αr = mr − ĥcst,
βr = mr − 2 ∗ ĥcst for the cost and risks. With these input data, RFCSTSP is
solved by MGA and the results are given in Table 4.31.

Model 4.3A4: FRCSTSP with risk/discomfort Constraint in Fuzzy Ran-
dom Environment:

Here the costs and risk/discomfort parameters are Fu-Ra values for the FRC-
STSP. Also we consider three types of conveyances. The extended operations on
the basis of min-max cannot be directly applied to fuzzy numbers with discrete
supports, but fuzzy numbers in LR-representation are helpful for computational.
Assume that the costs are LR-type Fu-Ra as (ĉ, α, β) where ĉ is a normal vari-
ate and α, β are left and right spreads of the LR- fuzzy variables. Similarly
for risk/discomforts are taken as LR-type Fu-Ra variables (r̂, α, β) where r̂ is a
normal random variate and α, β are left and right spreads of the LR- fuzzy vari-
ables. The Fu-Ra cost matrix for the CSTSP and the corresponding fuzzy random
risk/discomfort matrix are presented in Table 4.32.

In the Table 4.32, risk/discomfort data are LR-type fuzzy numbers pre-
sented in the tuple where mean also a normal variate N(m, σ). Probability levels
γ = η = 0.9 and set L(x)=1-x, left and right spreads are also taken in the Table
4.32. For input data in Table 4.31, the FRCSTSP is solved by MGA and the re-
sults are presented in Table 4.33.

Model 4.3A5: BRCSTSP with risk/discomfort Constraint in Bi-random
Environment:

Here the cost and risk/discomfort factors are in bi-random values for the BRC-
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Table 4.28: Input Data for RaCSTSP (Model 4.3A2)
Random Cost Matrix(10 ×10) for RCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
(32,1.1) (19,.9) (21,1.02) (30,1.01) (7,1.23) (16,1.11) (28,1.04) (41,1.12) (21,1.02)

1 ∞ (37,1.21) (39,1.07) (33,1.15) (21,.98) (23,1.02) (36,1.03) (39,1.12) (31,1.13) (31,1.1)
(28,1.02) (30,1.11) (35,1.17) (62,1.2) (8,1.19) (47,.97) (19,1.18) (42,1.03) (43,1.01)

(35,1.12) (41,1.03) (18,1.11) (35,1.07) (40,1.02) (40,1.13) (33,1.03) (19,1.2) (24,1.19)
2 (26,1.18) ∞ (21,1.17) (29,1.12) (26,1.2) (31,1.2) (30,1.15) (42,1.21) (37,1.13) (16,1.12)

(17,1.13) (32,1.32) (10,1.03) (37,1.2) (23,1.31) (59,1.14) (59,1.16) (20,1.3) (18,1.03)
(38,1.29) (17,1.21) (12,1.25) (42,1.23) (35,1.21) (19,1.13) (32,1.1) (30,1.11) (30,1.21)

3 (30,1.13) (58,1.43) ∞ (25,1.21) (25,1.23) (36,1.4) (11,1.1) (33,1.21) (19,1.22) (22,1.16)
(29,1.15) (34,1.32) (14,1.11) (46,1.24) (34,1.12) (8,1.3) (25,1.16) (41,1.41) (33,1.33)
(28,1.14) (10,1.2) (18,1.21) (30,1.13) (25,1.23) (21,1.4) (35,1.3) (12,1.21) (27,1.6)

4 (20,1.1) (22,1.32) (9,1.4) ∞ (19,1.15) (16,1.12) (31,1.4) (36,1.2) (23,1.31) (48,1.2)
(10,1.31) (14,1.2) (29,1.31) (24,1.21) (27,1.13) (33,1.19) (17,1.23) (34,1.2) (39,1.28)
(18,1.31) (42,1.2) (35,1.12) (20,1.31) (30,1.21) (45,1.16) (30,1.24) (19,1.34) (28,1.42)

5 (15,1.2) (23,1.31) (36,1.41) (13,1.31) ∞ (21,1.36) (16,1.02) (31,1.27) (10,1.01) (26,1.47)
(8,1.2) (34,1.21) (38,1.34) (43,1.15) (41,1.5) (27,1.31) (13,1.02) (8,1.04) (27,1.21)

(15,1.31) (29,1.15) (4,1.32) (8,1.41) (28,1.61) (33,1.26) (40,1.53) (32,1.21) (30,1.54)
6 (6,1.65) (21,1.75) (26,1.62) (9,1.7) (29,1.21) ∞ (42,1.31) (31,1.32) (23,1.34) (41,1.52)

(7,1.27) (29,1.15) (28,1.72) (12,1.04) (39,1.37) (24,1.32) (22,1.65) (35,1.21) (32,1.52)
(37,1.6) (25,1.21) (30,1.5) (22,1.61) (37,1.98) (40,1.76) (10,1.31) (33,1.54) (20,1.04)

7 (39,1.43) (53,1.6) (38,1.71) (43,1.31) (58,1.21) (21,1.65) ∞ (43,1.65) (34,1.71) (15,1.2)
(30,1.32) (26,1.54) (26,1.56) (24,1.76) (40,1.21) (45,1.61) (13,1.21) (36,1.37) (26,1.6)
(41,1.27) (26,1.43) (32,1.34) (40,1.21) (35,1.53) (25,1.53) (40,1.27) (22,1.31) (37,1.76)

8 (42,1.43) (6,1.32) (53,1.43) (21,1.21) (36,1.21) (16,1.06) (21,1.03) ∞ (53,1.62) (36,1.78)
(23,1.15) (17,1.23) (45,1.17) (42,1.31) (47,1.32) (5,1.03) (43,1.04) (24,1.02) (40,1.02)
(40,1.72) (41,1.56) (6,1.24) (25,1.71) (21,1.04) (23,1.32) (7,1.01) (32,1.32) (28,1.41)

9 (11,1.21) (39,1.56) (36,1.42) (34,1.57) (32,1.3) (33,1.06) (38,1.02) (33,1.76) (19,1.32)
(32,1.02) (36,1.42) (37,1.76) (29,1.08) (21,1.02) (25,1.03) (39,1.21) (13,1.52) ∞ (26,1.72)
(17,1.51) (30,1.31) (28,1.15) (20,1.72) (11,1.82) (32,1.52) (38,1.02) (41,1.62) (31,1.52)

10 (26,1.01) (21,1.04) (19,1.21) (31,1.02) (33,1.27) (12,1.18) (28,1.13) (42,1.81) (52,1.37) ∞
(29,1.21) (32,1.92) (30,1.72) (22,1.51) (22,1.19) (34,1.17) (39,1.16) (33,1.21) (32,1.15)

Random risk/discomfort Matrix(10 ×10) for RCSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

(.62,1.1) (.75,.9) (.7,1.02) (.66,1.01) (.87,1.23) (.8,1.11) (.68,1.04) (.5,1.12) (.74,1.02)
1 ∞ (.54,1.21) (.53,1.07) (.61,1.15) (.78,.98) (.71,1.02) (.58,1.03) (.52,1.12) (.64,1.13) (.63,1.1)

(.28,1.02) (.64,1.11) (.59,1.17) (.34,1.2) (.88,1.19) (.49,.97) (.76,1.18) (.55,1.03) (.52,1.01)
(.6,1.12) (.54,1.03) (.77,1.11) (.6,1.07) (.55,1.02) (.54,1.13) (.62,1.03) (.76,1.2) (.71,1.19)

2 (.65,1.18) ∞ (.74,1.17) (.62,1.12) (.68,1.2) (.64,1.2) (.66,1.15) (.53,1.21) (.58,1.13) (.78,1.12)
(.79,1.13) (.63,1.32) (.85,1.03) (.58,1.2) (.7,1.31) (.35,1.14) (.32,1.16) (.73,1.3) (.74,1.03)
(.58,1.29) (.77,1.21) (.79,1.25) (.54,1.23) (.59,1.21) (.76,1.13) (.62,1.1) (.66.11) (.61,1.21)

3 (.64,1.13) (.35,1.43) ∞ (.7,1.21) (.745,1.23) (.59,1.4) (.85,1.1) (.61,1.21) (.76,1.22) (.72,1.16)
(.66,1.15) (.62,1.32) (.81,1.11) (.49,1.24) (.62,1.12) (.86,1.3) (.7,1.16) (.52,1.41) (.62,1.33)
(.65,1.14) (.86,1.2) (.78,1.21) (.66,1.13) (.7,1.23) (.77,1.4) (.69,1.3) (.82,1.21) (.69,1.6)

4 (.76,1.1) (.73,1.32) (.9,1.4) ∞ (.79,1.15) (.77,1.12) (.63,1.4) (.6,1.2) (.71,1.31) (.47,1.2)
(.84,1.31) (.79,1.2) (.65,1.31) (.71,1.21) (.7,1.13) (.63,1.19) (.77,1.23) (.59,1.2) (.54,1.28)
(.8,1.31) (.54,1.2) (.6,1.12) (.75,1.31) (.65,1.21) (.5,1.16) (.63,1.24) (.76,1.34) (.68,1.42)

5 (.8,1.2) (.69,1.31) (.6,1.41) (.82,1.31) ∞ (.76,1.36) (.8,1.02) (.64,1.27) (.84,1.01) (.48,1.47)
(.88,1.2) (.6,1.21) (.56,1.34) (.51,1.15) (.54,1.5) (.68,1.31) (.8,1.02) (.86,1.04) (.64,1.21)
(.8,1.31) (.69,1.15) (.89,1.32) (.85,1.41) (.7,1.61) (.63,1.26) (.55,1.53) (.63,1.21) (.65,1.54)

6 (.89,1.65) (.79,1.75) (.76,1.62) (.88,1.7) (.68,1.21) ∞ (.55,1.31) (.67,1.32) (.72,1.34) (.52,1.52)
(.85,1.27) (.7,1.15) (.65,1.72) (.8,1.04) (.53,1.37) (.73,1.32) (.74,1.65) (.7,1.21) (.61,1.52)
(.55,1.6) (.7,1.21) (.67,1.5) (.72,1.61) (.62,1.98) (.54,1.76) (.84,1.31) (.62,1.54) (.84,1.04)

7 (.57,1.43) (.42,1.6) (.59,1.71) (.52,1.31) (.37,1.21) (.76,1.65) ∞ (.58,1.65) (.62,1.71) (.79,1.2)
(.66,1.32) (.7,1.54) (.71,1.56) (.69,1.76) (.54,1.21) (.5,1.61) (.82,1.21) (.6,1.37) (.68,1.6)
(.55,1.23) (.7,1.43) (.65,1.34) (.58,1.21) (.59,1.53) (.68,1.53) (.57,1.27) (.72,1.31) (.58,1.76)

8 (.55,1.43) (.78,1.32) (.42,1.43) (.74,1.21) (.6,1.21) (.76,1.06) (.72,1.03) ∞ (.44,1.62) (.6,1.78)
(.72,1.15) (.77,1.02) (.5,1.32) (.54,1.03) (.48,1.05) (.88,1.31) (.52,1.38) (.61,1.73) (.57,1.28)
(.54,1.72) (.51,1.56) (.88,1.24) (.7,1.71) (.72,1.04) (.71,1.32) (.87,1.01) (.7,1.32) (.68,1.41)

9 (.84,1.21) (.56,1.56) (.6,1.42) (.61,1.57) (.67,1.3) (.61,1.06) (.62,1.02) (.63,1.76) (.74,1.32)
(.57,1.02) (.59,1.42) (.6,1.76) (.67,1.08) (.75,1.02) (.74,1.03) (.58,1.21) (.82,1.52) ∞ (.7,1.72)
(.8,1.51) (.68,1.31) (.69,1.15) (.76,1.72) (.8,1.82) (.61,1.52) (.58,1.02) (.56,1.62) (.63,1.52)

10 (.7,1.01) (.74,1.04) (.55,1.21) (.64,1.02) (.61,1.27) (.8,1.18) (.68,1.13) (.55,1.81) (.42,1.37) ∞
(.64,1.21) (.65,1.92) (.66,1.72) (.73,1.51) (.74,1.19) (.54,1.17) (.58,1.16) (.57,1.21) (.6,1.15)
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Table 4.29: Results of RaCSTSP (Model 4.3A2)

K1 K2 Algorithm Path(Vehicle) Costs Rmax

MGA 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 50.80 8.5
0.5 0.5 MGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 54.32 8.5

MGA 7(3)-4(2)-1(3)-5(1)-6(1)-2(2)-3(3)-10(1)-8(2)-9(3) 56.60 8.5
0.5 0.5 GA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 64.32 8.5
0.4 0.6 MGA 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 41.36 8.5.
0.6 0.4 MGA 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) 60.24 8.5

Table 4.30: Input Data for RFCSTSP (Model 4.3A3)
Random-Fuzzy Cost Matrix(10×10) for RFCSTSP With Three Conveyances

i/j 1 2 3 4 5
[(32,35,36),1.21] [(17,19,20),.98] [(17,21,22),1.76] [(29,30,31),1.13]

1 ∞ [(36,37,39),1.21] [(38,39,42),1.32] [(31,33,34),1.16] [(20,21,23),1.13]
[(26,28,29),1.08] [(26,30,31),1.03] [(33,35,36),1.23] [(60,62,63),1.05]

[(34,35,38),1.34] [(40,41,44),1.42] [(16,18,19),1.13] [(32,35,37),1.45]
2 [(22,26,27),1.12] ∞ [(18,21,22),1.14] [(28,29,32),1.17] [25,26,27),1.18]

[(14,17,19),1.54] [(27,32,33),1.36] [(6,10,12),1.12] [(34,37,38),1.4]
[(36,38,39),1.18] [(16,17,20),1.43] [(10,12,13),1.17] [(40,42,45)1.54]

3 [(29,30,32),1.41] [(54,58,60),1.31] ∞ [(24,25,26),1.17] [(23,25,26),1.02]
[(28,29,32),1.72] [(31,34,35),1.32] [(12,14,17),1.03] [(45,46,48),1.13]
[(27,28,30),1.42] [(9,10,11),1.17] [(16,18,20),1.18] [(29,30,33),.9]

4 [(18,20,21),1.46] [(19,22,23),1.32] [(7,9,10),1.62] ∞ [(17,19,20),1.54]
[(9,10,12),1.14] [(12,14,15),1.17] [(27,29,30),1.14] [(23,24,25),1.76]
[(16,18,19,1.17] [(41,42,44),1.17] [(34,35,37),1.14] [(17,20,21)1.2]

5 [(14,15,18),1.3] [(21,23,24),1.3] [(35,36,37),1.3] [(12,13,14),1.38] ∞
[(6,8,9),1.3] [(32,34,37),1.3] [(33,38,39),1.3] [(40,43,44),1.16]

[(13,15,16),1.3] [(26,29,30),1.54] [(4,4,6),1.17] [(6,8,9),1.3]),1.13] [(26,28,29),1.34]
6 [(5,6,8),1.3] [(20,21,23),1.17] [(25,26,27),1.41] [(7,9,11),1.2] [(26,29,30),1.73]

[(5,7,8),1.3] [(27,29,30),1.3] [(27,28,30),1.3] [(10,12,13),1.24] [(38,39,41),1.3]
[(36,37,39),1.71] [(23,25,26),1.16] [(27,30,32),1.3] [(21,22,24),1.3] [(35,37,38),1.43]

7 [(37,39,40),1.43] [(53,53,55),1.13] [(37,38,39),1.3] [(40,43,44),1.17] [(56,58,60),1.3]
[(28,30,32),1.43] [(25,26,27),1.31] [(24,26,27),.98] [(23,24,25),1.3] [(37,39,40),1.23]
[(39,41,42),1.37] [(24,26,28),1.43] [(30,32,33),1.54] [(38,40,42),1.27] [(34,35,37),1.3]

8 [(41,42,43),1.14] [(5,6,7),1.33] [(52,53,54),1.22] [(19,21,22),1.3] [(34,36,37),1.25]
[(20,23,24),1.46] [(16,17,18),1.23] [(43,45,46),1.79] [(40,42,43),1.3] [( 46,47,48),1.3]
[(38,40,41),1.41] [(39,41,42),1.21] [(4,6,9),1.16] [(23,25,26),1.3] [(20,21,23),1.3]

9 [(10,11,13),1.02] [(38,39,40),1.28] [(34,36,37),1.45] [(33,34,36),1.3] [(31,32,33),1.41]
[(31,32,33),1.37] [(34,36,37),1.11] [(36,37,39),1.19] [(28,29,30),1.3] [(20,21,22),1.3]
[(15,17,18),1.12] [(28,30,31),1.34] [(26,28,29),1.32] [(18,20,21),1.3] [(9,11,12),1.47]

10 [(25,26,28),1.13] [(20,21,22),1.33] [(18,19,20),1.23] [(29,31,32),1.43] [(32,33,34),1.63]
[(25,29,30),1.2] [(31,32,34),1.63] [(28,30,32),1.13] [(21,22,24),1.53] [(20,22,24),1.37]
Random-Fuzzy Cost Matrix(10 ×10) for RFCSTSP With Three Conveyances

i/j 6 7 8 9 10
[(5,7,10),1.32] [(15,16,18),.99) [(25,28,29),1.1] [(39,41,42),1.13] [(20,22,23),1.12]

1 [(22,23,25),1.16] [(35,33,37),1.14] [(37,39,43),1.11] [(26,31,33),1.15] [(30,31,34),1.09]
[(6,8,9),1.06] [(46,47,48),1.23] [(16,19,20),1.9] [(41,42,43)1.22] [(42,43,45),1.41]

[(39,40,41),1.2] [(39,40,42),1.67] [(30,33,34),1.13] [(17,19,22),1.16] [(23,24,26),1.14]
2 [(30,31,32),1.34] [(29,30,32),1.32] [(41,42,45),1.41] [(36,37,38),1.3] [(13,16,17),1.17]

[(21,23,26),1.76] [(57,59,60),1.33] [(58,59,62),1.72] [(17,20,21),1.8] [(17,18,20),1.17]
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[(33,35,36),1.13] [(17,19,20),1.15] [(30,32,33),1.98] [(28,30,31),1.09] [(29,30,31),1.31]
3 [(34,36,39),1.13] [(11,11,12),1.17] [(30,33,34),1.07] [(18,19,21),1.73] [(19,22,23),1.32]

[(33,34,35),1.5] [(5,8,10),1.14] [(24,25,27),1.53] [(40,41,44),1.72] [(32,33,35),1.36]
[(23,25,26),1.3] [(19,21,22),.78] [(33,35,36),1.7] [(10,12,13),1.6] [(24,27,29),1.65]

4 [(15,16,18),1.43] [(30,31,32),1.52] [(32,36,38),1.15] [(20,23,24),1.76] [(47,48,49),1.17]
[(25,27,28),1.9] [(30,33,34),1.31] [(16,17,18),1.7] [(32,34,35),1.45] [(37,39,40),1.76]

[(29,30,31),1.26] [(42,45,46),1.23] [(27,30,31),1.18] [(18,19,22),1.3] [(26,28,29),1.51]
5 [(20,21,23),1.3] [(14,16,18),1.3] [(30,31,32),1.3] [(8,10,11),1.3] [(25,26,27),1.3]

[(40,41,42),1.15] [(25,27,27),1.54] [(12,13,16),1.71] [(7,8,9),1.3] [(25,27,28),1.3]
[(31,33,34),1.21] [(39,40,42),1.3] [(30,32,33),1.3] [(28,30,31),1.3]

6 ∞ [(40,43,44),1.3] [(30,31,31),1.3] [(22,23,24),1.3] [(40,41,42),1.47]
[(23,24,26),1.3] [(20,22,23),1.3] [(35,35,36),1.28] [(30,32,34),1.3]

7 [(38,40,41),1.14] [(7,10,11),1.3] [(31,33,34),1.3] [(19,20,22),1.46]
[(20,21,22),1.16] ∞ [(40,43,44),1.3] [(33,34,35),1.45] [(13,15,16),1.3]
[(43,45,46),1.24] [(11,13,14),1.3] [(34,36,37),1.3] [(25,26,28),1.3]

8 [(23,25,26),1.3] [(39,40,42),1.3] [(20,22,23),1.67] [(35,37,38),1.3]
[(15,16,18),1.3] [(19,21,22),1.04] ∞ [(52,53,54),1.61] [(35,36,38),1.3]

[(4,5,6),1.3] [(41,43,4),1.12] [(23,24,27),1.3] [(39,40,41),1.15]
9 [(22,23,25),1.3] [(5,7,8),1.17] [(30,32,33),1.7] [(27,28,30),1.04]

[(31,33,34),1.68] [(36,38,39),1.3] [(32,33,34),1.27] ∞ [(18,19,20),1.3]
[(23,25,26),1.3] [(38,39,41),1.3] [(11,13,15),1.3] [(24,26,27),1.3]

10 [(30,32,34),1.49] [(35,38,39),1.3] [(40,41,43),1.23] [(29,31,32),1.25]
[(10,12,13),1.41] [(26,28,29),1.8] [(41,42,43),1.3] [(51,52,54),1.3] ∞
[(33,34,35),1.57] [(38,39,41),1.17] [(30,33,34),1.15] [(30,32,33),1.2]

Random-Fuzzy risk/discomfort Matrix(10×10) for RFCSTSP With Three Conveyances
i/j 1 2 3 4 5

[(.69,.65,.61),1.12] [(.72,.7,.68),.1.13 [(.73,.71,.62),1.76] [(.61,.30,.31),1.13]
1 ∞ [(.36,.37,.39),1.21] [(.38,.39,.42),1.32] [(.31,.33,.34),1.16] [(.20,.21,.23),1.13]

[(.26,.28,.29),1.08] [(.26,.30,.31),1.03] [(.33,.35,.36),1.23] [(.60,.62,.63),1.05]
[(.34,.35,.38),1.34] [(.40,.41,.44),1.42] [(.16,.18,.19),1.13] [(.32,.35,.37),1.45]

2 [(.22,.26,.27),1.12] ∞ [(.18,.21,.22),1.14] [(.28,.29,.32),1.17] [.25,.26,.27),1.18]
[(.14,.17,.19),1.54] [(.27,.32,.33),1.36] [(.6,.10,.12),1.12] [(.34,.37,.38),1.4]
[(.36,.38,.39),1.18] [(.16,.17,.20),1.43] [(.10,.12,.13),1.17] [(.40,.42,.45)1.54]

3 [(.29,.30,.32),1.41] [(.54,.58,.61),1.31] ∞ [(.24,.25,.26),1.17] [(.23,.25,.26),1.02]
[(.28,.29,.32),1.72] [(.31,.34,.35),1.32] [(.12,.14,.17),1.03] [(.45,.46,.48),1.13]
[(.27,.28,.30),1.42] [(.9,.10,.11),1.17] [(.16,.18,.20),1.18] [(.29,.30,.33),.9]

4 [(.18,.20,.21),1.46] [(.19.,22,.23),1.32] [(.7,.9,.10),1.62] ∞ [(.17,.19,.20),1.54]
[(.9,.10,.12),1.14] [(.12,.14,.15),1.17] [(.27,.29,.30),1.14] [(.23,.24,.25),1.76]
[(.16,.18,.19,1.17] [(.41,.42,.44),1.17] [(.34,.35,.37),1.14] [(.17,.20,..21)1.2]

5 [(14.,.15,.18),1.3] [(.21,.23,.24),1.3] [(.35,.36,.37),1.3] [(.12,.13,.14),1.38] ∞
[(.6,.8,.9),1.3] [(.32,.34,.37),1.3] [(.33,.38,.39),1.3] [(.40,.43,.44),1.16]

[(.13,.15,.16),1.3] [(.26,.29,.30),1.54] [(.4,.4,.6),1.17] [(.6,.8,.9),1.3]),1.13] [(.26,.28,.29),1.34]
6 [(.5,.6,.8),1.3] [(.20,.21,.23),1.17] [(.25,.26,.27),1.41] [(.7,.9,.11),1.2] [(.26,.29,.30),1.73]

[(.5,.7,.8),1.3] [(.27,.29,.30),1.3] [(.27,.28,.30),1.3] [(.10,.12,.13),1.24] [(.38,.39,.41),1.3]
[(.36,.37,.39),1.71] [(.23,.25,.26),1.16] [(.27,.30,.32),1.3] [(.21,.22,.24),1.3] [(.35,.37,.38),1.43]

7 [(.37,.39,.40),1.43] [(.53,.53,.55),1.13] [(.37,.38,.39),1.3] [(.4,.43,.44),1.17] [(.56,.58,.60),1.3]
[(.28,.3,.32),1.43] [(.25,.26,.27),1.31] [(.24,.26,.27),.98] [(.23,.24,.25),1.3] [(.37,.39,.40),1.23]
[(.39,.41,.42),1.37] [(.24,.26,.28),1.43] [(.30,.32,.33),1.54] [(.38,.40,.42),1.27] [(.34,.35,.37),1.3]

8 [(.41,.42,.43),1.14] [(.5,.6,.7),1.33] [(.52,.53,.54),1.22] [(.19,.21,.22),1.3] [(.34,.36,.37),1.25]
[(.2,.23,.24),1.46] [(.16,.17,.18),1.23] [(.43,.45,.46),1.79] [(.4,.42,.43),1.3] [(.46,.47,.48),1.3]
[(.38,.40,.41),1.41] [(.39,.41,.42),1.21] [(.4,.6,.9),1.16] [(.23,.25,.26),1.3] [(.20,.21,.23),1.3]

9 [(.1,.11,.13),1.02] [(.38,.39,.4),1.28] [(.34,.36,.37),1.45] [(.33,.34,.36),1.3] [(.31,.32,.33),1.41]
[(.31,.32,.33),1.37] [(.34,.36,.37),1.11] [(.36,.37,.39),1.19] [(.28,.29,.30),1.3] [(.2,.21,.22),1.3]
[(.15,.17,.18),1.12] [(.28,.30,.31),1.34] [(.26,.28,.29),1.32] [(.18,.20,.21),1.3] [(.9,.11,.12),1.47]

10 [(.25,.26,.28),1.13] [(.2,.21,.22),1.33] [(.18,.19,.20),1.23] [(.29,.31,.32),1.43] [(.32,.33,.34),1.63]
[(.25,.29,.30),1.2] [(.31,.32,.34),1.63] [(.28,.30,.32),1.13] [(.21,.22,.24),1.53] [(.20,.22,.24),1.37]
Random-Fuzzy risk/discomfort Matrix(10 ×10) for RCSTSP With Three Conveyances

i/j 6 7 8 9 10
[(.5,.7,.10),1.32] [(.15,.16,.18),.99) [(.25,.28,.29),1.1] [(.39,.41,.42),1.13] [(.20,.22,.23),1.12]

1 [(.22,.23,.25),1.16] [(.35,.33,.37),1.14] [(.37,.39,.43),1.11] [(.26,.31,.33),1.15] [(.30,.31,.34),1.09]
[(.6,.8,.9),1.06] [(.46,.47,.48),1.23] [(.16,.19,.20),1.9] [(.41,.42,.43)1.22] [(.42,.43,.45),1.41]

[(.39,.40,.41),1.2] [(.39,.40,.42),1.67] [(.30,.33,.34),1.13] [(.17,.19,.22),1.16] [(.23,.24,.26),1.14]
2 [(.30,.31,.32),1.34] [(.29,.30,.32),1.32] [(.41,.42,.45),1.41] [(.36,.37,.38),1.3] [(.13,.16,.17),1.17]

[(.21,.23,.26),1.76] [(.57,.59,.60),1.33] [(.58,.59,.62),1.72] [(.17,.20,.21),1.8] [(.17,.18,.20),1.17]
[(.33,.35,.36),1.13] [(.17,.19,.20),1.15] [(.30,.32,.33),1.98] [(.28,.30,.31),1.09] [(.29,.30,.31),1.31]

3 [(.34,.36,.39),1.13] [(.11,.11,.12),1.17] [(.3,.33,.34),1.07] [(.18,.19,.21),1.73] [(.19,.22,.23),1.32]
[(.33,.34,.35),1.5] [(.05,.08,.1),1.14] [(.24,.25,.27),1.53] [(.4,.41,.44),1.72] [(.32,.33,.35),1.36]
[(.23,.25,.26),1.3] [(.19,.21,.22),.78] [(.33,.35,.36),1.7] [(.1,.12,.13),1.6] [(.24,.27,.29),1.65]

4 [(.15,.16,.18),1.43] [(.30,.31,.32),1.52] [(.32,.36,.38),1.15] [(.2,.23,.24),1.76] [(.47,.48,.49),1.17]
[(.25,.27,.28),1.9] [(.3,.33,.34),1.31] [(.16,.17,.18),1.7] [(.32,.34,.35),1.45] [(.37,.39,.4),1.76]
[(.29,.3,.31),1.26] [(.42,.45,.46),1.23] [(.27,.3,.31),1.18] [(.18,.19,.22),1.3] [(.26,.28,.29),1.51]

5 [(.2,.21,.23),1.3] [(.14,.16,.18),1.3] [(.3,.31,.32),1.3] [(.08,.1,.11),1.3] [(.25,.26,.27),1.3]
[(.4,.41,.42),1.15] [(.25,.27,.27),1.54] [(.12,.13,.16),1.71] [(.07,.08,.09),1.3] [(.25,.27,.28),1.2]
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[(.31,.33,.34),1.21] [(.39,.40,.42),1.3] [(.3,.32,.33),1.3] [(.28,.3,.31),1.3]
6 ∞ [(.4,.43,.44),1.3] [(.3,.31,.31),1.3] [(.22,.23,.24),1.3] [(.4,.41,.42),1.47]

[(.23,.24,.26),1.3] [(.2,.22,.23),1.3] [(.35,.35,.36),1.28] [(.3,.32,.34),1.3]
7 [(.38,.4,.41),1.14] [(.07,.1,.11),1.3] [(.31,.33,.34),1.3] [(.19,.2,.22),1.46]

[(.2,.21,.22),1.16] ∞ [(.4,.43,.44),1.3] [(.33,.34,.35),1.45] [(.13,.15,.16),1.3]
[(.43,.45,.46),1.24] [(.11,.13,.14),1.3] [(.34,.36,.37),1.3] [(.25,.26,.28),1.3]

8 [(.23,.25,.26),1.3] [(.39,.4,.42),1.3] [(.2,.22,.23),1.67] [(.35,.37,.38),1.3]
[(.15,.16,.18),1.3] [(.19,.21,.22),1.04] ∞ [(.52,.53,.54),1.61] [(.35,.36,.38),1.43]
[(.04,.05,.06),1.3] [(.41,.43,.4),1.12] [(.23,.24,.27),1.3] [(.39,.4,.41),1.15]

9 [(.22,.23,.25),1.3] [(.05,.07,.08),1.17] [(.3,.32,.33),1.7] [(.27,.28,.3),1.04]
[(.31,.33,.34),1.68] [(.36,.38,.39),1.3] [(.32,.33,.34),1.27] ∞ [(.18,.19,.2),1.3]
[(.23,.25,.26),1.3] [(.38,.39,.41),1.3] [(.11,.13,.15),1.3] [(.24,.26,.27),1.3]

10 [(.3,.35,.38),1.49] [(.35,.38,.39),1.3] [(.4,.41,.48),1.23] [(.29,.31,.32),1.25]
[(.1,.12,.13),1.41] [(.26,.28,.29),1.8] [(.41,.42,.43),1.3] [(.51,.52,.54),1.47] ∞
[(.33,.34,.35),1.57] [(.38,.39,.41),1.17] [(.3,.33,.34),1.15] [(.3,.32,.33),1.2]

Table 4.31: Results of RFCSTSP (Model 4.3A3)

ĥobj ĥcst Algorithm DM Path(Vehicle) Costs Rmax

MGA PDM 3(1)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) 152.68 8.5
ODM 3(1)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) 144.23 8.5

MGA PDM 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 156.52 8.5
ODM 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 146.52 8.5

0.95 0.95 MGA PDM 10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) 156.61 6.75
ODM 10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) 148.34 6.75

GA PDM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) 172.21 6.0
ODM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) 162.45 6.0

0.95 0.7 MGA PDM 6(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) 145.29 6.75
ODM 6(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) 141.78 6.75

0.7 0.95 MGA PDM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) 164.96 6.5
ODM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) 154.13 6.5

0.8 0.75 MGA PDM 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) 151.21 6.0
ODM 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) 147.36 6.0

Table 4.32: Input Data: FRCSTSP (Model 4.3A4)
Fuzzy Random Cost Matrix(10×10) for FRCSTSP With Three Conveyances

i/j 1 2 3 4 5
[(c,5,6),c∼ N(35,1)] [(c,1,2),c∼N(17,2)] [(c,1,2),c∼N(16,3)] [(c,3,3),c∼N(29,2)]

1 ∞ [(c,3,3),c∼N(36,2)] [(c,3,2),c∼N(38,2)] [(c,3,4),c∼N(31,2)] [(c,1,2),c∼N(20,2)]
[(c,2,2),c∼N(26,2)] [(c,3,3),c∼N(26,2)] [(c,5,6),c∼N(33,2)] [(c,2,3),c∼N(60,4)]

[(c,3,3),c∼N(31,1)] [(c,4,4),c∼N(40,2)] [(c,1,1),c∼N(16,2)] [(c,3,3),c∼N(32,2)]
2 [(c,2,2),c∼N(22,3)] ∞ [(c,2,2),c∼N(18,2)] [(c,2,3),c∼N(28,2)] [(c,2,2),c∼N(25,2)]

[(c,1,1),c∼N(14,4)] [(c,2,3),c∼N(27,1)] [(c,1,1),c∼N(6,3)] [(c,3,4),c∼N(38,1)]
[(c,3,3),c∼N(36,2)] [(c,1,2),c∼N(16,3)] [(c,1,1),c∼N(10,2)] [(c,4,4)c∼N(40,1)]

3 [(c,3,3),c∼N(26,3)] [(c,5,6),c∼N(54,1)] ∞ [(c,2,2),c∼N(24,1)] [(c,2,2),c∼N(26,3)]
[(c,2,3),c∼N(28,2)] [(c,3,3),c∼N(31,2)] [(c,1,1),c∼N(12,1)] [(c,4,4),c∼N(45,5]
[(c,2,3),c∼N(26,1)] [(c,1,1),c∼N(9,2)] [(c,1,2),c∼N(16,4)] [(c,3,3),c∼N(29,3)]

4 [(c,2,2),c∼N(18,2)] [(c,2,2),c∼N(19,1)] [(c,5,4),c∼N(7,2)] ∞ [(c,1,2),c∼N(17,3)]
[(c,1,1),c∼N(9,2)] [(c,1,1),c∼N(12,4)] [(c,2,3),c∼N(27,2)] [(c,2,2),c∼N(23,4)]
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[(c,1,1,c∼N(16,1)] [(c,4,4),c∼N(41,3)] [(c,3,3),c∼N(34,2)] [(c,2,2),c∼N(17,2)]
5 [(c,1,1),c∼N(14,1)] [(c,2,2),c∼N(22,2)] [(c,6,7),c∼N(36,2)] [(c,1,1),c∼N(12,2)] ∞

[(c,1,1),c∼N(6,2)] [(c,3,3),c∼N(32,3)] [(c,3,3),c∼N(33,2)] [(c,4,4),c∼N(38,3)]
[(c,1,1),c∼N(15,1)] [(c,2,3),c∼N(26,2)] [(c,1,1),c∼N(5,5)] [(c,2,3),c∼N(6,2)])] [(c,2,2),c∼N(26,1)]

6 [(c,1,4),c∼N(6,2)] [(c,2,2),c∼N(20,1)] [(c,6,7),c∼N(36,2)] [c,1,1),c∼N(13,3)] [(c,2,3),c∼N(26,2)]
[(c,2,3),c∼N(6,2)] [(c,2,3),c∼N(26,2)] [(c,2,3),c∼N(26,3)] [(c,1,1),c∼N(10,3)] [(c,3,4),c∼N(38,4)]

[(c,3,3),c∼N(36,1)] [(c,2,2),c∼N(36,3)] [(c,3,3),c∼N(27,1)] [(c,2,4),c∼N(20,2)] [(c,3,3),c∼N(35,2)]
7 [(c,3,4),c∼N(37,2)] [(c,3,5),c∼N(53,4)] [(c,3,3),c∼N(37,2)] [(c,4,4),c∼N(43,1)] [(c,5,4),c∼N(56,2)]

[(c,3,3),c∼N(26,1)] [(c,2,2),c∼N(25,2)] [(c,2,2),c∼N(26,3)] [(c,2,2),c∼N(20,1)] [(c,3,4),c∼N(39,3)]
[(c,4,4),c∼N(39,2)] [(c,2,2),c∼N(24,1)] [(c,3,3),c∼N(30,3)] [(c,4,4),c∼N(38,2)] [(c,3,3),c∼N(34,3)]

8 [(c,4,3),c∼N(41,2)] [(c,1,1),c∼N(6,4)] [(c,3,4),c∼N(53,1)] [(c,2,2),c∼N(20,3)] [(c,6,3),c∼N(32,2)]
[(c,2,2),c∼N(20,2)] [(c,1,1),c∼N(16,3)] [(c,4,4),c∼N(40,2)] [(c,4,3),c∼N(40,2)] [( c,1,2),c∼N(43,1)]
[c,4,1),c∼N(38,2)] [(c,4,4),c∼N(39,3)] [(c,1,2),c∼N(4,2)] [(c,2,2),c∼N(23,2)] [(c,1,3),c∼N(20,6)]

9 [(c,1,1),c∼N(10,4)] [(c,3,4),c∼N(38,3)] [(,3,3),c∼N(34,5)] [(c,3,3),c∼N(33,3)] [(c,3,3),c∼N(31,4)]
[(c,3,3),c∼N(31,2)] [(c,3,3),c∼N(34,1)] [(c,3,3),c∼N(36,1)] [(c,2,3),c∼N(28,1)] [(c,2,2),c∼N(20,2)]
[(c,1,1),c∼N(15,2)] [(c,3,3),c∼N(28,3)] [(c,2,2),c∼N(28,3)] [(c,2,2),c∼N(18,2)] [(c,1,1),c∼N(9,2)]

10 [(c,2,2),c∼N(25,1)] [(c,2,2),c∼N(20,2)] [(c,1,2),c∼N(18,3)] [(c,3,2),c∼N(29,2)] [(c,3,3),c∼N(32,2)]
[(c,2,3),c∼N(25,2)] [(c,3,3),c∼N(31,3)] [(c,3,3),c∼N(28,2)] [(c,2,2),c∼N(21,5)] [(c,2,4),c∼N(20,4)]

Fuzzy Random Cost Matrix(10 ×10) for RCSTSP With Three Conveyances
i/j 6 7 8 9 10

[(c,1,1),c∼N(5,2)] [(c,1,1),c∼N(15,1)) [(c,2,3),c∼N(25,3)] [(c,1,2),c∼N(39,3)] [(c,2,2),c∼N(20,3)]
1 [(c,2,2),c∼N(22,3)] [(c,3,3),c∼N(35,3)] [(c,3,4),c∼N(37,2)] [(c,3,1),c∼N(26,4)] [(c,1,3),c∼N(30,2)]

[(c,1,2),c∼N(6,1)] [(c,4,4),c∼N(46,6)] [(c,1,2),c∼N(16,2)] [(c,2,3),c∼N(41,2)] [(c,4,5),c∼N(42,4)]
[(c,4,1),c∼N(39,2)] [(c,1,2),c∼N(39,3)] [(c,3,3),c∼N(30,2)] [(c,1,2),c∼N(17,1)] [(c,2,2),c∼N(23,2)]

2 [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(29,1)] [(c,2,4),c∼N(41,2)] [(c,3,8),c∼N(36,2)] [(c,1,1),c∼N(13,2)]
[(c,3,2),c∼N(30,1)] [(c,5,6),c∼N(57,2)] [(c,5,6),c∼N(58,1)] [(c,2,2),c∼N(17,2)] [(c,1,2),c∼N(17,3)]
[(c,3,3),c∼N(33,1)] [(c,1,2),c∼N(17,3)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(28,2)] [(c,3,3),c∼N(29,1)]

3 [(c,3,3),c∼N(34,3)] [(c,1,2),c∼N(11,4)] [(c,3,3),c∼N(30,2)] [(c,1,2),c∼N(18,1)] [(c,2,2),c∼N(19,4)]
[(c,4,5),c∼N(33,4)] [(c,1,1),c∼N(5,1)] [(c,2,2),c∼N(24,2)] [(c,4,4),c∼N(40,4)] [(c,3,3),c∼N(32,3)]
[(c,2,2),c∼N(23,2)] [(c,1,2),c∼N(19,5)] [(c,3,3),c∼N(33,1)] [(c,2,3),c∼N(10,3)] [(c,2,2),c∼N(24,4)]

4 [(c,6,8),c∼N(15,1)] [(c,1,3),c∼N(30,2)] [(c,3,8),c∼N(32,5)] [(c,2,4),c∼N(20,1)] [(c,4,9),c∼N(47,2)]
[(c,2,2),c∼N(25,3)] [(c,3,3),c∼N(30,4)] [(c,1,1),c∼N(16,3)] [(c,3,5),c∼N(32,3)] [(c,3,4),c∼N(37,2]
[(c,3,3),c∼N(29,1)] [(c,5,6),c∼N(42,2)] [(c,3,3),c∼N(27,1)] [(c,1,2),c∼N(18,3)] [(c,2,2),c∼N(26,1)]

5 [(c,2,2),c∼N(20,2)] [(c,1,1),c∼N(14,1)] [(c,3,3),c∼N(30,4)] [(c,1,1),c∼N(8,1)] [(c,2,2),c∼N(25,1)]
[(c,4,4),c∼N(40,2)] [(c,2,2),c∼N(25,3)] [(c,1,6),c∼N(12,1)] [(c,8,9),c∼N(7,1)] [(c,2,2),c∼N(25,1)]

[(c,3,3),c∼N(31,1)] [(c,4,2),c∼N(39,3)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(28,4)]
6 ∞ [(c,4,4),c∼N(40,1)] [(c,3,3),c∼N(30,1)] [(c,2,2),c∼N(22,1)] [(c,4,4),c∼N(40,1)]

[(c,2,6),c∼N(23,1)] [(c,2,2),c∼N(20,1)] [(c,3,3),c∼N(35,1)] [(c,3,3),c∼N(30,1)]
7 [(c,4,4),c∼N(38,1)] [(c,1,1),c∼N(7,1)] [(c,3,3),c∼N(31,1)] [(c,2,2),c∼N(19,1)]

[(c,2,2),c∼N(20,1)] ∞ [(c,4,4),c∼N(40,1)] [(c,3,3),c∼N(33,1)] [(c,1,1),c∼N(13,1)]
[(c,4,6),c∼N(43,1)] [(c,1,4),c∼N(11,1)] [(c,3,7),c∼N(34,3)] [(c,6,8),c∼N(25,2)]

8 [(c,2,2),c∼N(23,1)] [(c,4,4),c∼N(39,1)] [(c,2,2),c∼N(20,1)] [(c,3,3),c∼N(35,1)]
[(c,1,1),c∼N(15,1)] [(c,2,2),c∼N(19,1)] ∞ [(c,3,4),c∼N(52,1)] [(c,6,8),c∼N(35,3)]
[(c,1,2),c∼N(4,2)] [(c,3,4),c∼N(41,4)] [(c,4,2),c∼N(23,1)] [(c,4,4),c∼N(39,1)]

9 [(c,2,2),c∼N(22,1)] [(c,1,3),c∼N(5,1)] [(c,3,3),c∼N(30,1)] [(c,2,3),c∼N(27,1)]
[(c,3,3),c∼N(31,1)] [(c,3,3),c∼N(36,1)] [(c,3,3),c∼N(32,1)] ∞ [(c,1,2),c∼N(18,1)]
[(c,2,2),c∼N(23,1)] [(c,3,4),c∼N(38,1)] [(c,1,1),c∼N(11,2)] [(c,2,7),c∼N(24,3)]

10 [(c,3,3),c∼N(30,1)] [(c,3,39),c∼N(3,1)] [(c,4,3),c∼N(40,2)] [(c,3,3),c∼N(29,1)]
[(c,1,1),c∼N(10,1)] [(c,8,9),c∼N(26,1)] [(c,4,4),c∼N(41,3)] [(c,5,5),c∼N(51,5)] ∞
[(c,3,3),c∼N(33,1)] [(c,3,4),c∼N(38,1)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(30,1)]
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Fuzzy Random risk/discomfort Matrix(10×10) for FRCSTSP With Three Conveyances
i/j 1 2 3 4 5

(.69, .05, .01) (.72, .07, .08) (.73, .01, .02), (.61, .03, .01)
1 ∞ (.36, .03, .03) (.38, .03, .04) (.31, .03, .03) (.2, .02, .02)

(.26, .02, .02) (.26, .03, .03) (.33, .03, .03) (.6, .06, .06)
(.34, .03, .03) (.4, .04, .04) (.16, .01, .01) (.32, .03, .03)

2 (.22, .02, .02) ∞ (.18, .02, .02) (.28, .02, .03) (.25, .02, .02)
(.14, .01, .01) (.27, .03, .02) (.06, .01, .02) (.34, .03, .03)
(.36, .03, .03) (.16, .01, .02) (.1, .02, .03) (.4, .04, .03)

3 (.29, .03, .03) (.54, .08, .01) ∞ (.24, .02, .02) (.23, .02, .02)
(.28, .02, .03) (.31, .03, .03) (.12, .01, .01) (.45, .04, .04)
(.27, .02, .03) (.09, .01, .01) (.16, .01, .02) (.29, .03, .03)

4 (.18, .02, .02) (.19, .02, .02) (.7, .09, .01) ∞ (.17, .01, .02)
(.9, .01, .01) (.12, .01, .01) (.27, .02, .03) (.23, .02, .02)

(.16, .01, .01) (.41, .04, .04) (.34, .03, .03) (.17, .02, .02)
5 (.14, .01, .01) (.21, .02, .02) (.35, .03, .03) (.12, .01, .01) ∞

(.6, .01, .02) (.32, .03, .02) (.33, .03, .03) (.4, .04, .03)
(.13, .05, .01) (.26, .02, .03) (.4, .04, .03) (.6, .08, .09) (.26, .02, .02)

6 (.5, .06, .08) (.2, .02, .02) (.25, .02, .02) (.7, .09, .01) (.26, .02, .03)
(.5, .07, .03) (.27, .02, .03) (.27, .02, .03) (.1, .01, .01) (.38, .03, .01)

(.36, .03, .03) (.23, .02, .02) (.27, .03, .03) (.21, .02, .02) (.35, .03, .03)
7 (.37, .03, .04) (.53, .05, .05) (.37, .03, .03) (.4, .04, .04) (.56, .05, .01)

(.28, .03,.03) (.25, .02, .02) (.24, .02, .27) (.23, .02, .021) (.37, .03,.04)
(.39, .04, .04) (.24, .02, .02) (.3, .03, .03) (.38, .04, .04) (.34, .03, .03)

8 (.41, .04, .04) (.5, .01, .02) (.52, .05, .05) (.19, .02, .02) (.34, .03, .031)
(.2, .02, .02) (.16, .01, .01) (.43, .04, .04) (.4, .04, .04) (.46, .04, .04)

(.38, .04, .04) (.39, .04, .04) (.4, .01, .02) (.23, .025, .02) (.2, .021, .023)
9 (.1, .01, .01) (.38, .03, .04) (.34, .03, .03) (.33, .03, .03) (.31, .03, .03)

(.31, .03, .03) (.34, .03, .03) (.36, .03, .03) (.28, .02, .03) (.2, .02, .02)
(.15, .01, .01) (.28, .03, .03) (.26, .02, .02) (.18, .02, .02) (.9, .01, .01)

10 (.25, .02, .02) (.2, .02, .02) (.18, .01, .02) (.29, .03, .03) (.32, .03, .03)
(.25, .02, .03) (.31, .03, .03) (.28, .03, .03) (.21, .02, .02) (.2, .01, .01)
Fuzzy Random risk/discomfort Matrix(10 ×10) for FRCSTSP With Three Conveyances

i/j 6 7 8 9 10
(.5, .07, .01) (.15, .01, .01) (.25, .02, .02) (.39, .04, .05) (.2, .02, .03)

1 (.22, .02, .02) (.35, .03, .03) (.37, .03, .04) (.26, .03, .03) (.3, .03, .03)
(.6, .08, .09) (.46, .07, .08) (.16, .01, .02) (.41, .04, .04) (.42, .01, .04)

(.39, .04, .04) (.39, .04, .04) (.3, .03, .03) (.17, .01, .02) (.23, .02, .02)
2 (.3, .03, .03) (.29, .03, .03) (.41, .04, .04) (.36, .03, .03) (.13, .01, .01)

(.21, .02, .02) (.57, .05, .06) (.58, .05, .06) (.17, .02, .02) (.17, .01, .02)
(.33, .03, .03) (.17, .01, .02) (.3, .03, .04) (.28, .03, .03) (.29, .03, .03)

3 (.34, .03, .03) (.11, .01, .01) (.3, .03, .03) (.18, .01, .02) (.19, .02, .02)
(.33, .03, .03) (.05, .01, .01) (.24, .02, .02) (.4, .04, .04) (.32, .03, .03)
(.23, .02, .02) (.19, .02, .02) (.33, .03, .03) (.1, .01, .013) (.24, .02, .029)

4 (.15, .01, .01) [(.3, .03, .03) (.32, .03, .03) (.2, .02, .02) (.47, .04, .04)
(.25, .02, .02) (.3, .03, .03) (.16, .01, .01) (.32, .03, .03) (.37, .03, .04)
(.29, .03, .03) (.42, .04, .04) (.27, .03, .03) (.18, .01, .02) (.26, .02, .02)

5 (.2, .02, .02) (.14, .01, .02) (.3, .03, .02) (.08, .01, .01) (.25, .02, .02)
(.4, .04, .04) (.25, .02, .02) (.12, .02, .06) (.07, .01, .01) (.25, .02, .02)

(.31, .03, .04) (.39, .04, .04) (.3, .03, .03) (.28, .03, .03)
6 ∞ (.4, .04, .04) (.3, .03, .031) (.22, .02, .02) (.4, .04, .04)

(.23, .02, .02) (.2, .02, .02) (.35, .03, .03) (.3, .03, .03)
7 (.38, .04, .04) (.07, .001, .001) (.31, .03, .03) (.19, .02, .02)

(.2, .02, .02) ∞ (.4, .04, .04) (.33, .03, .03) (.13, .01, .01)
(.43, .04, .04) (.11, .01, .01) (.34, .03, .03) (.25, .02, .02)

8 (.23, .02, .02) (.39, .04, .04) (.2, .02, .02) (.35, .03, .03)
(.15, .01, .01) (.19, .02, .02) ∞ (.52, .05, .05) (.35, .03, .03)
(.04, .01, .01) (.41, .03, .03) (.23, .02, .02) (.39, .04, .04)

9 (.22, .02, .02) (.05, .07, .08) (.3, .03, .03) (.27, .02, .03)
(.31, .03, .03) (.36, .03, .03) (.32, .03, .03) ∞ (.18, .01, .02)
[(.23, .05, .06) (.38, .03, .04) (.11, .01, .01) (.24, .02, .02)

10 (.3, .03, .03) (.35, .03, .03) (.4, .04, .04) (.29, .03, .03)
(.1, .012, .01) (.26, .02,.03) (.41, .04, .04) (.51, .05, .05) ∞
(.33, .02, .01) (.38, .03, .04) (.3, .01, .01) (.3, .03, .03)
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Table 4.33: Results of FRCSTSP (Model 4.3A4)

δ θ Algorithm DM Path(Vehicle) Costs Rmax

MGA PDM 4(3)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-3(1) 148.56 8.5
ODM 4(3)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-3(1) 140.13 8.5

MGA PDM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(1)-7(2) 151.21 8.5
ODM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-113)-7(2) 147.18 8.5

0.9 0.9 MGA PDM 1(2)-10(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) 166.25 6.75
ODM 1(2)-10(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) 151.31 6.75

GA PDM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) 169.21 6.0
ODM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) 162.45 6.0

0.96 0.7 MGA PDM 3(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-4(1)-6(2)-9(3) 155.76 6.75
ODM 4(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-6(2)-9(3) 142.18 6.75

0.79 0.9 MGA PDM 5(3)-7(1)-8(1)-6(2)-1(2)-4(1)-9(2)-2(1)-10(1)-3(1) 161.34 6.5
ODM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) 164.13 6.5

0.85 0.75 MGA PDM 1(2)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-3(3)-7(2) 168.45 6.0
ODM 1(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) 146.93 6.0

STSP. Also we consider three types of conveyances. We set two fold randomness
of the given data in the form of mean and variances. The bi-random cost matrix
for the CSTSP and corresponding bi-random risk/discomfort matrix are given in
Table 4.34. Again, with these input data, we solve the BRCSTSP by MGA and
the near optimum results are presented in Table 4.35.

4.4.4 Discussion

To validate the feasibility and effectiveness of the proposed algorithm, we
have applied the MGA on some standard TSP problem taken from TSPLIB [162].
The proposed algorithm was implemented in C++ with the parameters as 100
chromosomes, 2000 iterations in maximum. Table 4.20 shows the comparisons
between MGA and GA for the some standard TSP problems. It is seen that the
number of iterations is less in MGA than SGA.

Again in Table 4.21, we survey the importance’s of parameter of selection (ps)
in proposed MGA. It indicates that for the optimal solution of the standard TSP
bayg29, ps navigates the sample space better for ps=0.3. In this case, optimum
results are obtained quickly for 66 iterations only. Here also, MGA performs
better than the SGA.

In Table 4.22, we consider 10×10 crisp costs and risk/discomfort matrices
for a CTSP. The optimum results are presented in Table 4.23. It is observed that
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Table 4.34: Input Data: BRCSTSP (Model 4.3A5)
Bi-random Cost Matrix(10 *10) for BRCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
(32,1.1) (19,.9) (21,1.02) (30,1.01) (7,1.23) (16,1.11) (28,1.04) (41,1.12) (21,1.02)

1 ∞ (37,1.21) (39,1.07) (33,1.15) (21,.98) (23,1.02) (36,1.03) (39,1.12) (31,1.13) (31,1.1)
(28,1.02) (30,1.11) (35,1.17) (62,1.2) (8,1.19) (47,.97) (19,1.18) (42,1.03) (43,1.01)

(35,1.12) (41,1.03) (18,1.11) (35,1.07) (40,1.02) (40,1.13) (33,1.03) (19,1.2) (24,1.19)
2 (26,1.18) ∞ (21,1.17) (29,1.12) (26,1.2) (31,1.2) (30,1.15) (42,1.21) (37,1.13) (16,1.12)

(17,1.13) (32,1.32) (10,1.03) (37,1.2) (23,1.31) (59,1.14) (59,1.16) (20,1.3) (18,1.03)
(38,1.29) (17,1.21) (12,1.25) (42,1.23) (35,1.21) (19,1.13) (32,1.1) (30,1.11) (30,1.21)

3 (30,1.13) (58,1.43) ∞ (25,1.21) (25,1.23) (36,1.4) (11,1.1) (33,1.21) (19,1.22) (22,1.16)
(29,1.15) (34,1.32) (14,1.11) (46,1.24) (34,1.12) (8,1.3) (25,1.16) (41,1.41) (33,1.33)
(28,1.14) (10,1.2) (18,1.21) (30,1.13) (25,1.23) (21,1.4) (35,1.3) (12,1.21) (27,1.6)

4 (20,1.1) (22,1.32) (9,1.4) ∞ (19,1.15) (16,1.12) (31,1.4) (36,1.2) (23,1.31) (48,1.2)
(10,1.31) (14,1.2) (29,1.31) (24,1.21) (27,1.13) (33,1.19) (17,1.23) (34,1.2) (39,1.28)
(18,1.31) (42,1.2) (35,1.12) (20,1.31) (30,1.21) (45,1.16) (30,1.24) (19,1.34) (28,1.42)

5 (15,1.2) (23,1.31) (36,1.41) (13,1.31) ∞ (21,1.36) (16,1.02) (31,1.27) (10,1.01) (26,1.47)
(8,1.2) (34,1.21) (38,1.34) (43,1.15) (41,1.5) (27,1.31) (13,1.02) (8,1.04) (27,1.21)

(15,1.31) (29,1.15) (4,1.32) (8,1.41) (28,1.61) (33,1.26) (40,1.53) (32,1.21) (30,1.54)
6 (6,1.65) (21,1.75) (26,1.62) (9,1.7) (29,1.21) ∞ (42,1.31) (31,1.32) (23,1.34) (41,1.52)

(7,1.27) (29,1.15) (28,1.72) (12,1.04) (39,1.37) (24,1.32) (22,1.65) (35,1.21) (32,1.52)
(37,1.6) (25,1.21) (30,1.5) (22,1.61) (37,1.98) (40,1.76) (10,1.31) (33,1.54) (20,1.04)

7 (39,1.43) (53,1.6) (38,1.71) (43,1.31) (58,1.21) (21,1.65) ∞ (43,1.65) (34,1.71) (15,1.2)
(30,1.32) (26,1.54) (26,1.56) (24,1.76) (40,1.21) (45,1.61) (13,1.21) (36,1.37) (26,1.6)
(41,1.27) (26,1.43) (32,1.34) (40,1.21) (35,1.53) (25,1.53) (40,1.27) (22,1.31) (37,1.76)

8 (42,1.43) (6,1.32) (53,1.43) (21,1.21) (36,1.21) (16,1.06) (21,1.03) ∞ (53,1.62) (36,1.78)
(23,1.15) (17,1.23) (45,1.17) (42,1.31) (47,1.32) (5,1.03) (43,1.04) (24,1.02) (40,1.02)
(40,1.72) (41,1.56) (6,1.24) (25,1.71) (21,1.04) (23,1.32) (7,1.01) (32,1.32) (28,1.41)

9 (11,1.21) (39,1.56) (36,1.42) (34,1.57) (32,1.3) (33,1.06) (38,1.02) (33,1.76) (19,1.32)
(32,1.02) (36,1.42) (37,1.76) (29,1.08) (21,1.02) (25,1.03) (39,1.21) (13,1.52) ∞ (26,1.72)
(17,1.51) (30,1.31) (28,1.15) (20,1.72) (11,1.82) (32,1.52) (38,1.02) (41,1.62) (31,1.52)

10 (26,1.01) (21,1.04) (19,1.21) (31,1.02) (33,1.27) (12,1.18) (28,1.13) (42,1.81) (52,1.37) ∞
(29,1.21) (32,1.92) (30,1.72) (22,1.51) (22,1.19) (34,1.17) (39,1.16) (33,1.21) (32,1.15)

Bi-random risk/discomfort Matrix(10 ×10) for BRCSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

(.32,1.1) (.19,.9) (.21,1.02) (.30,1.01) (.07,1.23) (.16,1.11) (.28,1.04) (.41,1.12) (.21,1.02)
1 ∞ (.37,1.21) (.39,1.07) (.33,1.15) (.21,.98) (.23,1.02) (.36,1.03) (39,1.12) (.31,1.13) (.31,1.1)

(.28,1.02) (.30,1.11) (.35,1.17) (.62,1.2) (.08,1.19) (.47,.97) (.19,1.18) (.42,1.03) (43,1.01)
(.35,1.12) (.41,1.03) (.18,1.11) (.35,1.07) (.40,1.02) (.40,1.13) (.33,1.03) (.19,1.2) (.24,1.19)

2 (.26,1.18) ∞ (.21,1.17) (.29,1.12) (.26,1.2) (.31,1.2) (.30,1.15) (.42,1.21) (.37,1.13) (.16,1.12)
(.17,1.13) (.32,1.32) (.10,1.03) (.37,1.2) (.23,1.31) (.59,1.14) (.59,1.16) (.20,1.3) (.18,1.03)
(.38,1.29) (.17,1.21) (.12,1.25) (.42,1.23) (.35,1.21) (.19,1.13) (32,1.1) (.30,1.11) (.30,1.21)

3 (.30,1.13) (.58,1.43) ∞ (.25,1.21) (.25,1.23) (.36,1.4) (.11,1.1) (.33,1.21) (.19,1.22) (.22,1.16)
(.29,1.15) (.34,1.32) (.14,1.11) (.46,1.24) (.34,1.12) (.08,1.3) (.25,1.16) (.41,1.41) (.33,1.33)
(.28,1.14) (.10,1.2) (.18,1.21) (.30,1.13) (.25,1.23) (.21,1.4) (.35,1.3) (.12,1.21) (.27,1.6)

4 (.20,1.1) (.22,1.32) (.09,1.4) ∞ (.19,1.15) (.16,1.12) (.31,1.4) (.36,1.2) (.23,1.31) (.48,1.2)
(.10,1.31) (.14,1.2) (.29,1.31) (.24,1.21) (.27,1.13) (.33,1.19) (.17,1.23) (.34,1.2) (.39,1.28)
(.18,1.31) (.42,1.2) (.35,1.12) (.20,1.31) (.30,1.21) (.45,1.16) (.30,1.24) (.19,1.34) (.28,1.42)

5 (.15,1.2) (.23,1.31) (.36,1.41) (.13,1.31) ∞ (.21,1.36) (.16,1.02) (.31,1.27) (.10,1.01) (.26,1.47)
(.08,1.2) (.34,1.21) (.38,1.34) (.43,1.15) (.41,1.5) (.27,1.31) (.13,1.02) (.08,1.04) (.27,1.21)
(.15,1.31) (.29,1.15) (.04,1.32) (.08,1.41) (.28,1.61) (.33,1.26) (40,1.53) (.32,1.21) (.30,1.54)

6 (.06,1.65) (.21,1.75) (.26,1.62) (.09,1.7) (.29,1.21) ∞ (.42,1.31) (.31,1.32) (.23,1.34) (.41,1.52)
(.07,1.27) (.29,1.15) (.28,1.72) (.12,1.04) (.39,1.37) (.24,1.32) (.22,1.65) (.35,1.21) (.32,1.52)
(.37,1.6) (.25,1.21) (.30,1.5) (.22,1.61) (.37,1.98) (.40,1.76) (.10,1.31) (.33,1.54) (.20,1.04)

7 (.39,1.43) (.53,1.6) (.38,1.71) (.43,1.31) (.58,1.21) (.21,1.65) ∞ (.43,1.65) (.34,1.71) (.15,1.2)
(.30,1.32) (.26,1.54) (.26,1.56) (.24,1.76) (.40,1.21) (.45,1.61) (.13,1.21) (.36,1.37) (.26,1.6)
(.41,1.23) (.26,1.43) (.32,1.34) (.40,1.21) (.35,1.53) (.25,1.53) (.40,1.27) (.22,1.31) (.37,1.76)

8 (.42,1.43) (.06,1.32) (.53,1.43) (.21,1.21) (.36,1.21) (.16,1.06) (.21,1.03) ∞ (.53,1.62) (.36,1.78)
(.23,1.15) (.17,1.02) (.45,1.32) (.42,1.03) (.47,1.05) (.05,1.31) (.43,1.38) (.24,1.73) (.40,1.28)
(.40,1.72) (.41,1.56) (.06,1.24) (.25,1.71) (.21,1.04) (.23,1.32) (.07,1.01) (.32,1.32) (.28,1.41)

9 (.11,1.21) (.39,1.56) (.36,1.42) (.34,1.57) (.32,1.3) (.33,1.06) (.38,1.02) (.33,1.76) (.19,1.32)
(.32,1.02) (.36,1.42) (.37,1.76) (.29,1.08) (.21,1.02) (.25,1.03) (.39,1.21) (.13,1.52) ∞ (.26,1.72)
(.17,1.51) (.30,1.31) (.28,1.15) (.20,1.72) (.11,1.82) (.32,1.52) (.38,1.02) (.41,1.62) (.31,1.52)

10 (.26,1.01) (.21,1.04) (.19,1.21) (.31,1.02) (.33,1.27) (.12,1.18) (.28,1.13) (.42,1.81) (.52,1.37) ∞
(.29,1.21) (.32,1.92) (.30,1.72) (.22,1.51) (.22,1.19) (.34,1.17) (.39,1.16) (.33,1.21) (.32,1.15)
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Table 4.35: Results of BRCSTSP (Model 4.3A5)

α β Algorithm Path(Vehicle) Value Rmax

0.95 0.95 MGA 2(2)-10(3)-3(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) 56.31 9.5
MGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 59.61 9.5

0.8 0.9 MGA 8(1)-6(2)-1(2)-9(1)-3(1)-4(2)-2(2)-10(1)-5(3)-7(3) 58.45 8.75
MGA 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) 71.59 8.75

0.7 0.9 MGA 7(2)-8(1)-6(2)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) 59.48 8.5
MGA 10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) 64.54 8.5

0.75 0.75 MGA 3(2)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-4(1) 63.42 8.0
MGA 1(3)-10(2)-8(1)-6(1)-9(1)-2(1)-7(1)-5(3)-3(1)-4(1) 65.21 8.0

0.95 0.75 MGA 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) 57.79 7.5
GA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) 72.49 7.5

CTSP without any total risk factor as a goal gives the lowest minimum cost and
as the total risk/discomfort decreases, total cost increases. It is realistically true
in our day-to-day life. For a particular value of risk/discomfort, the some near-
optimum results along with the optimum one are given. Due some reasons if
the TS fails to implement the optimum results, he/she may to achieve the most
feasible near-optimum solution.

Again, we form a CSTSP with the three conveyances i.e. (10×10×3) costs
and risk/discomfort matrices are presented in Table 4.24. Along each route, the
corresponding conveyances are in parentheses. The optimum results of CSTSP
are given in Table 4.25. Here also as total risk/discomfort goes down, the corre-
sponding travelling cost increases.

A (10×10×3) FCSTSP is presented in Table 4.26 where both costs and risk/dis-
comfort factors along with the targeted total risk/discomfort are triangular fuzzy
numbers. The optimum results of FCSTSP in both optimistic and pessimistic
senses with different possibility and necessity levels, also other three different
models results with GMIV, Credibility and EVM strategies result are presented
in Table 4.27. As expected, optimistic model fetches less travelling cost than the
pessimistic model.

In Table 4.28, the costs and risk/discomfort factors for the same size CSTSP
are random having normal distribution. Mean and variance for cost and risk/dis-
comfort parameter are presented together in first bracket. The model is a combi-
nation of E- and V- models and the probabilistic constraint is made deterministic
using chance constraint. The optimum results are available in Table 4.29. Here, it
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is observed that when E-model is given more importance i.e. if more weight are
given to E-model, cost increases and on the other hand, importance to V-model
reduces the cost.

For random-fuzzy CSTSP, random-fuzzy input data and optimum results are
presented in Tables 4.30 and 4.31 respectively. Here, costs and risk/discomfort
factors are L-L fuzzy numbers. For a fixed θ=0.94, results in possibility and
necessity approaches are given where as before, optimistic representation gives
better result (less cost) than the pessimistic ones.

Again in the case of fuzzy-random CSTSP, fuzzy-random input data and op-
timum results are presented in Tables 4.32 and 4.33 respectively. Here, costs and
risk/discomfort factors are LR-type fuzzy numbers and the mean values is a nor-
mal N(m,σ) variate. For a fixed δ=η (=0.9), results in possibility and necessity
approaches are given where as before, optimistic representation gives better re-
sult (less cost) than the pessimistic ones.

Similarly for bi-random costs and risk/discomfort factors presented in Table
4.34, optimum results are obtained with different probability levels-α and β for
objective (cost) and constraint (risk/discomfort factor) respectively and presented
in Table 4.35. In all cases, the near-optimum solutions are available. Also MGA
gives better results than the SGA.
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4.5 Model-4.4: A Rough Set based Genetic Algorithm for Con-
strained Solid TSP with Interval Valued Costs and Times

This model presents a Rough Set based Genetic Algorithms (RSGAs) to
solve constrained Solid Travelling Salesman Problems (CSTSPs) with restricted
conveyances (CSTSPwR) having uncertain travel costs and times as interval val-
ues. In the proposed RSGAs, a rough set based age dependent selection technique
and an age oriented min-point crossover are used along with three types of gen-
eration and pm- dependent random mutations. A number of benchmark problems
from standard data set, TSPLIB [162] are tested against the proposed algorithm
and existing simple GA (SGA) and hence the efficiency of the new algorithms
are established. We have modeled CSTSPwRs where some conveyances are not
allowed to run in some particular routes. CSTSPwRs are formulated as con-
strained linear programming problems and solved by both proposed RSGAs and
SGA. These are illustrated numerically by some empirical data and the results
from the above methods are compared. Statistical significance of the proposed
algorithms are demonstrated through statistical analysis using standard deviation
(SD). Moreover, as a non-parametric test, Friedman test is performed with the
proposed algorithms. In addition, a Post hoc paired comparison is done and the
out performances of the RSGAs are established.

4.5.1 Proposed RSGAs

Here RSGA is developed with the rough set based age dependent selection,
min-point crossover and pm- dependent random mutation and used among a set
of potential solutions to get a new set of solutions. As usual, it is continued until
terminating conditions are encountered.

i. Representation:
Here a complete tour on N cities represents a solution. So an N dimensional

integer vector Xi = (xi1, xi2, ..., xiN ) is used to represent a solution (path), where
xi1, xi2, ..., xiN represent N consecutive cities in a tour. Population size number
M, and i-th solution Xi = (xi1, xi2, ..., xiN ), where xi1, xi2, ..., xiN , are randomly
generated by random number generator between 1 to N with maintaining the TSP
conditions such as no repetition of cities (nodes) and also satisfying the neces-
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sary constraints. Fitnesses are evaluated through summing the costs between the
consecutive cities (nodes) of each solution (chromosome). The solution f(Xi)
represent for the ith solution fitness in the solution space. Since the maximum
population size M, so M numbers of solutions (chromosomes) are generated ran-
domly.

ii. Rough Set Based Age Dependent Selection:
In Last et al. [88], for the first time, an attempt was made to improve

the performance of genetic algorithms by providing a new fuzzy-based exten-
sion of the Life Time feature. They used a Fuzzy Logic Controller (FLC) to
adopt the crossover probability as a function of the chromosomes age. Also Fdez
et al. [50], Roy et al. [147] used it in some refinement of the mechanism on
inventory control system. They used the age of the chromosome in fuzzy en-
vironment. Here we model the age in rough environment as rough set is more
uncertain than the fuzzy set in the uncertain paradigms. So rough set based age is
more effective. The general principle is that for both young and old individuals,
the crossover probability is naturally low, while there is a certain age interval,
where this probability is high. The concepts of young, old, and middle-aged are
modeled as linguistic variables. Here, we use these linguistic variables in rough
environment.

In our proposed RSGAs, the age of a chromosome is determined based on
their fitness values and then a ‘ rough set based age dependent selection’ (REA)
technique is applied. Here the age of each chromosome lie in a region of the com-
mon age represented by a rough set. These regions are termed as young, middle
and old for RSGA-I. So for the age of each chromosome, a linguistic value -
young, middle or old is created. Now according to the age distributions of the
members (in pair) of the mating pool, similar linguistic variables such as low,
medium and high are generated for the said chromosomes to fix pc’s. Using the
trust measures of rough set, the probability of crossover, pc for each chromosome
is assigned by the corresponding linguistic variables.

Now, we have M solutions in a generation with fitnesses represented by f(Xi)
for the ith chromosomes. At the time of initialization, each chromosome age is
defined as null. Now in each generation, the age is counted as using the following
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mechanism :

age(xi) =

{
avg(age) + k∗(avgfit−f(Xi))

(avgfit−minfit) , Ifavgfit > f(Xi),
avg(age)

2 + k∗(f(Xi)−avgfit)
(maxfit−avgfit) , otherwise

(4.48)

where avgfit is the average fitness values, maxfit and minfit are maximum and
minimum fitness values of the last generation, k=maxfit+minfit

2 . Also avg(age)
means the average age of the set of chromosomes. Here the maximum and mini-
mum ages depend on the requirement of the problems.

Now since age is calculated as crisp values, we construct the common rough
values form it,

Rough Age=([r1*avg age, r2*avg age], [r3*avg age, r4*avg age]),

r1=Max Age−Avg Age
Avg Age , r2=Max Age+Min Age

2 , r3=Max Age−Min Age
2 , r4=Avg Age−Min Age

Avg Age
According to the age of the chromosome, it belongs to any one of the com-

mon rough age defined as Young, Middle and Old. For common rough age
([a,b],[c,d]), it is described as below

Age =

 Y oung for c ≤ age < a
Middle for a ≤ age ≤ b
Old for b < age ≤ d

(4.49)

-

6

0 c a b d Rough values

Old

Middle

Y oung

Age

F ig.4.5.1 : Rough age distribution of Interval.
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Table 4.36: Rough trust based linguistics
Chromosomes Young Middle Old

Young Low Medium Low
Middle Medium High Medium

Old Low Medium Low

-

6

��
��

��

�
��

��

.�
�
�

0 Low Medium High Age

1

0.6

0.3

Tr

F ig.4.5.2 : Rough age distribution of pc.

Out-comes of different types of ages are given in Eq. 4.49. The above Eq.
4.49, shows that if common rough age region is ([a,b],[c,d]), then the space (c to
a) refers to as young age, (a to b) as middle age and (b to d) as old age. Also
the pictorial representation of this is given in Fig. 4.5.1. Then in the Table 4.36,
according to the linguistic values, rough trust based pc are assigned which is
shown in Fig.4.5.2.

iii. Rough Extended Age Based Selection:
To have more accurate classification, we make five classifications instead of

above three and then, the region of common age is divided into very young,
young, middle, old and very old for RSGA-II. As before, combining the eligible
parents, the very low, low, medium, high and very high linguistic variables are
assigned for pc’s of chromosomes.

Now, we consider the age in a different extended linguistic code i.e. Young,
Middle and Old are replaced by Very Young, Young, Middle, Old and Very Old
scale. So it is more realistic in the sense of classification and acceptable to design
for the real world problems. According to the requirement of the five linguistic
values, the trust measure levels are expanded in five sections which are shown in
Eqs. 3.5.1 and 3.5.1. Determined pc values of the extended linguistics are also
given below in Fig. 4.5.3.

According to the extended age of the chromosome, it belongs to the any one
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Table 4.37: Rough extended trust based linguistic
Chromosomes Very Young Young Middle Old Very Old
Very Young Very Low Low Medium Low Very Low

Young Low Low High Low Very Low
Middle Medium High Very High High Medium

Old Low Low High Low Very Low
Very Old Very Low Very Low Medium Very Low Very Low

of the common rough age intervals like Very Young, Young, Middle, Old and
Very Old. The common rough age ([a,b],[c,d]) is extended to 0 ≤ c ≤ c1 ≤ a ≤
b ≤ c2 ≤ d and is described as below,

Age =


V ery Y oung for c ≤ age < c1

Y oung for c1 ≤ age < a
Middle for a ≤ age ≤ b
Old for b < age ≤ c2

V ery Old for c2 < age ≤ d

(4.50)

-

6

0 c c1 a b c2 d Rough values

Old

V O

Middle

V Y

Y oung

Age

F ig.4.5.3 : Rough extended age distribution of Interval.
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F ig.4.5.4 : Rough extended age distribution of pc.

iv. Min-Point Crossover
In addition to this, an unique crossover technique - ‘min-point crossover’

is introduced here for extracting minimum travelling cost as a TSP demands it.
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Thus the developed crossover depends upon the basic requirement of total min-
imum travel cost. First, randomly selected two paths(say, parents) are modified.
Then new paths (i.e. children) are created from the modified parents comparing
the costs between the nodes(i.e. cities) in form of convex combinations of uncer-
tain interval values. The node with minimum cost is selected for this purpose.

A. Determination of Crossover Probability(pc): Probability of crossover
(pc) for a pair of chromosomes (Xi,Xj) is determined as below:

(a). pc’s for rough set based age selection
(i). At first age levels, (young, middle, old) of Xi and Xj are determined by

making trust measure of rough values with respect to their ages in common rough
age region given in Fig. 4.5.2.

(ii). After determination of age intervals of the chromosomes, their crossover
probabilities are determined as linguistic variables (low, medium, high) as in Fig.
4.5.1 using rough trust measure which is presented in Table 4.36 and trust levels
are given as Eqs. 3.5 and 3.5.

(b). pc’s for extended rough set based age selection
(i). Proceeding as above, pc of each chromosome for the extended rough set

based age selection are determined according to Table 4.37 and given in Fig.
4.5.3 and 4.5.4.

B. Crossover Mechanism:
To select two individuals (parents) from the matting pool, generate the random

number, between [0,1]. If r < pc then select that population for first parent (say
Pr1). Similarly choose the another parents (say Pr2). Let these are Pr1: a1, a2,...,
aN and Pr2: s1, s2,..., sN . Here (a1, a2,..., aN ) and (s1, s2,..., sN ) are nodes within
(1, 2, 3,..., N), and these are numbers of cities. Then choose a city randomly from
1 to N, say ai = sp(i=1, 2, ..., N), p=(1, 2,..., N). Parents are modified by placing
ai or sp in the first place of Pr1 and Pr2 respectively. Now modified parents are
given by Pr1: ai, a1, a2,.., ai−1, ai+1,....aN , Pr2: sp, s1, s2,., sp−1, sp+1,....., sN .
To get the first child (Ch1), placing ai in the first place of Ch1, compare the next
route ai to a1 and ai to s1, minimum cost route be selected in Ch1. As consider the
uncertain interval values, so we determine the values as convex combination of
the upper and lower interval values, such as for any route cost between two nodes
ai to a2 becomes as c (ai, a1) =λ ∗CLi1 + (1− λ) ∗CRi1, λ ∈ rand[0, 1], CL
and CR are, lower and upper values of the corresponding intervals between two
nodes. This crossover mechanism is given in the section 4.3.1(c)(iii).
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Algorithm for Min-point crossover:
input: Matting Pool, pc, Total number of nodes (N).
output: Offspring (child).

1. Start
2. for i=1 to Pop Size
3. Random number generator r∈ [0,1]
3. Choose pair of chromosomes according to pc
4. Randomly generate node between 1 to N (say ar)
5. Replace ar at first place of each parents chromosomes // modified parents
6. Determine min-point value of each corresponding node
7. for j=1 to N
8. Compare min-point value
9. Check the existence of corresponding node in child
10. Concatenated node to the child (offspring)
11. end for
12. Replace ar at end place of each parents chromosomes// modified parents
13. Compare min-point value from end of the each corresponding nodes
14. for j=1 to N
15. Compare min-point value
16. Check the existence of corresponding node in child
17. Concatenated node to the child (offspring)
18. end for
19. Replace the child’s in offspring’s set
20. end for
21. End Algorithm

v. Three Different Forms of pm Dependent Random Mutations:
(a). Selection for mutation: For each solution of P(t), generate a random

number r from the range [0,1]. If r < pm then the solution is taken for mutation
where pm be the probability of mutation.

(b). Mutation Process: At first determine the total number of mutated node
(T). To mutate a solution X = (x1, x2, ..., xN), number of mutated node T= pm*
N, N=total number of nodes.

i. Random location method (Type-I): Generate two different integer ran-
domly between [1, N]. Interchange the nodes xi, xj in order to generate two
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random integers up-to T times to get new solutions which replace the parent so-
lution.

ii. Fixed location method (Type-II): If T becomes even, then selected T con-
secutive numbers of nodes in a solution X = (x1, x2, ...xN) and select any of the
two node xi and xj and interchange their places. So here change is done up-to
T/2 times not generating any random number. On the other hand if T becomes
odd, then interchanges similarly the places of the solutions up to (T/2)+1 times.

iii. Generation Oriented Mutation (Variable Method): Here we model a
new form of mutation mechanism where probability of mutation (pm) are deter-
mined as follows

pm= k
Current generation number , k∈[0,1].

So, here pm decreases smoothly as generation increases. After calculating the
pm, mutation operation is applied in both of the two methods, Type-I and Type-II
methods.
Type-I: Algorithm for generation dependent random mutation

c. Procedure Mutation:
input: Total number of nodes (N), Offspring’s.
output: Mutated offspring (child).

1. Start
2. Set g=current generation number
3. pm=k

g , k∈[0,1]
4. Determine T= pm*N // total number of mutated nodes
5. for i=0 to pop size
5. r=rand(0,1)
6. if( r< pm){
6. Select chromosome depending pm
7. for j=1 to T
8. Randomly select two different nodes between [1,N]
9. Replace the places of the selected two nodes
10. end for
11. eEnd if
11. end for
12. End Algorithm
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Type-II: Algorithm for generation dependent fixed location mutation
1. Start
2. Set g=current generation number
3. pm=k

g , k∈[0,1]
4. Determine T= pm*N // total number of mutated node
5. for i=0 to pop size
5. r=rand(0,1)
6. if( r< pm){
6. Select chromosome depending pm
7. Select T consecutive nodes location in chromosome
8. for j=1 to T

2 or (T2 + 1)// According T even or odd
9. Replace the places of the any two nodes
10. end for
11. end for
12. End Algorithm

With the above selection, crossover and mutation, the proposed RSGA is as fol-
lows:

Algorithm for RSGA
Input: max gen, pop size, Max age, Min age, Input Data (cost, risk ma-

trix).
Output: The optimum and near optimum solutions.
1. Start
2. g← 0 // g: iteration/generation number
3. Initialize P(g) // randomly generate initial population P (g)
4. Evaluate f(P(g)); //Evaluate fitness of each chromosome
5. while (g ≤ max gen)
6. Evaluate the average fitness
7. if average fitness > current fitness
8. age(xi)=avg(age)+k∗(avgfit−f(Xi))

(avgfit−minfit)
9. else
10. age(xi)=

avg(age)
2 + k∗(f(Xi)−avgfit)

(maxfit−avgfit)
11. if (age(xi)> maximum age)
12. age(xi)= maximum age
13. else if (age(xi)< minimum age)
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14. age(xi)= minimum age
15. Determine average age
16. Determine common rough age
17. Switch (Choice)
18. Case I:// RSGA-I

(a). Developed linguistic variables young, middle, old
(b). for each pair of parents do
(c). Trust based pc created
(d). end for

19. Case-II:// RSGA-II
(a). Developed very young, young, middle, old, very old
(b). for each pair of parents do
(c). Extended trust based pc created
(d). end for// end switch

20. for i=1 to Pop Size//min-point crossover
21. Choose pair of chromosomes according to pc
22. Randomly generate node between 1 to N (say ar)
23. Replace ar at first place of each parents chromosomes
24. Determine min-point value of each corresponding node
25. for j=1 to N
26. Compare min-point value
27. Check the existence of corresponding node in child
28. Concatenated node to the child (offspring)
29. end for
30. Replace ar at end place of each parents chromosomes
31. Compare min-point value from end of the each corresponding nodes
32. for j=1 to N
33. Compare min-point value
34. Check the existence of corresponding node in child
35. Concatenated node to the child (offspring)
36. end for
37. Replace the child’s in offspring’s set
38. end for
39. Switch (Choice) // Mutation
40. Case-I(simple):
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(a). for i=0 to pop size
(b). Select chromosome depending pm
(c). Randomly select two different nodes between [1,N]
(d). Replace the places of the selected two nodes
(e). end for

41. Case-II(variable):
(a). pm=k

g , k∈[0,1]
(b). Determine T= pm*N // total number of mutated node
(c). for i=0 to pop size
(d). Select chromosome depending pm
(e). for j=1 to T //Type -I
(f). Randomly select two different nodes between [1,N]
(g). Replace the places of the selected two nodes
(h). end for
(i). end for

42. Case-III(variable):
(a). pm=k

g , k∈[0,1]
(b). Determine T= pm*N
(c). for i=0 to pop size
(d). Select chromosome depending pm
(e). for j=1 to T

2 or (T2 + 1)//According T even or odd(Type-II)
(f). Replace the places of the any two nodes
(g). end for
(h). end for

43. Store the new off springs into offspring set
44. Reproduce a new P(g)
45. Evaluate f(P(g));//evaluate the fitness of reproduce chromosome
46. Store the local optimum and near optimum solutions
47. g← g+1
48. endwhile
49. Store the global optimum and near optimum results
50. End Algorithm.

Flowchart of this algorithm is depicted in Fig. 4.1.
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Figure 4.1: Flow chart of RSGA

Termination Criteria
RSGA-I (Rough set based) and RSGA-II (Rough extended set based) al-

gorithms are terminated when any one of the following conditions is satisfied
(which over is earlier):

(a) the best solution does not improve within some consecutive generations
(b) number of generations reaches user defined iterations.
The same termination criteria are used for SGA, SGA-I, II, III, IV, V and FGA

which are different combinations of the GA operators presented in Table 4.39.
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4.5.2 Mathematical Formulation and Its crisp equivalence

Model 4.4A: STSP with time Constraints (CSTSP):
In a STSP, a salesman has to travel N cities by choosing any one of the avail-

able P different types of conveyances using minimum cost restricting total travel
time within maximum allowable time. Times taken to travel from one city an-
other using different conveyances are different. Let c(i, j, k) be the cost for trav-
elling from i-th city to j-th city using k-th type conveyance and t(i, j, k) be the
time taken for this travel. These values including maximum allowable are crisp
interval numbers. Then the salesman has to determine a complete tour (x1, x2,
...,xN , x1) and corresponding conveyance types (v1, v2, ..., vP ) to be used for the
tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , vi ∈ {1, 2, ..P} for i = 1, 2, ..., N
and all xis are distinct. Then the problem can be mathematically formulated as:

Determine a complete tour (x1, x2, ..., xN , x1) using any one of the avail-
able conveyance in each step from the vehicle types (v1, v2, ..., vP ) so as

to min Z =
N−1∑
i=1

[cLi,i+1
, cRi,i+1

](xi,i+1, vi) + [cLN,1, cRN,1](xN,1, vl),

s.t
N−1∑
i=1

[tLi,i+1
, tRi,i+1

](xi,i+1, vi) + [tLN,1, tRN,1](xN,1, vl)

⊆ [tmaxL, tmaxR],
where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(4.51)

Model 4.4A1: STSP using restricted conveyances with time Constraints (CST-
SPwR):

In real life, it is seen that in all stations, all types of conveyances may not
available due to the geographical position of the station,weather conditions, etc.
So it is more realistic, that restricted conveyances are available in different sta-
tions. Considering the availability of the conveyances, we design the STSP with
restricted condition with time constraints as below:
Let c(i, j, k) be the cost for travelling from i-th city to j-th city using k-th type
conveyance and t(i, j, k) be the time taken in travelling from i-th city to j-th city
using k-th type conveyance. Then the salesman has to determine a complete tour
(x1, x2, ...,xN , x1) and corresponding conveyance types (v1, v2, ..., vS) to be
used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , vi ∈ {1, 2, ..S} for
i = 1, 2, ..., N and all xis are distinct. Also vi ∈ {1, 2, ..S} provides maximum
available S(≤ P) types of conveyances. Then the problem can be mathematically
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formulated as:
Determine a complete tour (x1, x2, ..., xN , x1) using any one available cor-

responding conveyance in each step from the vehicle types (v1, v2, ..., vS) so as

Minimize Z =
N−1∑
i=1

[cLi,i+1
, cRi,i+1

](xi,i+1, vi) + [cLN,1, cRN,1](xN,1, vl),

s.t
N−1∑
i=1

[tLi,i+1
, tRi,i+1

](xi,i+1, vi) + [tLN,1, tRN,1](xN,1, vl)

⊆ [tmaxL, tmaxR],
where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {v1, v2.., vS}


(4.52)

Thus the above model written as

Minimize Z = [CL, CR](x, v),
s.t [TL, TR](x, v) ⊆ [tmaxL, tmaxR]

where xi 6= xj, i, j = 1, 2...N, vi ∈ {v1, v2.., vS}

 (4.53)

and [CL, CR](x, v) =
N−1∑
i=1

[cLi,i+1
, cRi,i+1

](xi,i+1, vi) + [cLN,1, cRN,1](xN,1, vl)

[TL, TR](x, v) =
N−1∑
i=1

[tLi,i+1
, tRi,i+1

](xi,i+1, vi) + [tLN,1, tRN,1](xN,1, vl).

The interval valued objective and constraints are transformed as given in section
3.2 following Karmakar et al. [78]. Thus the crisp version of the above model is:

minimize Z = (CL
m1 ∗ CRm2)

1
m1+m2 , for m1,m2 ∈ (0, 1).

with one of the following constraints.
According Moore’s approaches [79]

subject to tmaxL ≤ TL,
TR ≤ tmaxR.

}
(4.54)

Ishibuchi and Tanaka’s approaches [79]

subject to TL ≤ tmaxL,
(TL+TR)

2 ≤ (tmaxR+tmaxL)
2 .

}
(4.55)

Chanas and Kuchta’s approaches [79] for 0 ≤ s0 < s1 ≤ 1,

s.t (TL + s0 ∗ (TR − TL)) ≤ (tmaxL + s0 ∗ (tmaxR − tmaxL)),
(TL+s0∗(TR−TL)+TL+s1∗(TR−TL))

2 ≤
(tmaxL+s0∗(tmaxR−tmaxL)+tmaxL+s1∗(tmaxR−tmaxL))

2

 (4.56)
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Hu and Wang’s approaches [79]

subject to (TL+TR)
2 ≤ (tmaxR+tmaxL)

2 .
(tmaxR − tmaxL) ≤ (TR − TL)

}
(4.57)

Mahato and Bhunia’s approaches [79]

subject to TL ≤ tmaxL. (optimistic case)

Pessimistic case (TL+TR)
2 ≤ (tmaxR+tmaxL)

2 , T ype− I & Type− II,
(tmaxR − tmaxL) ≤ (TTL), for Type− III intervals.

 (4.58)

4.5.3 Numerical Experiments

(a) Testing with problems from TSPLIB[162]
To validate the feasibility and effectiveness of the proposed algorithms, we ap-

ply the proposed RSGAs on some standard TSP problems taken from TSPLIB[162].
The proposed algorithm was implemented in C++ with following parameters as
100 chromosomes and 2000 iterations (maximum). The best optimal results are
presented.

Comparison of results of test problems by RSGA-II and SGA :
Table 4.38 gives the results of the test problems using RSGA-II and SGA, the

results are compared in terms of optimal cost, iterations and computational time
(CPU time in minutes). It is seen that the number of iterations and computational
times are less in RSGA-II than SGA. In each instance, average result (Avg), best
found results (Cost) and the standard deviations (SD) are presented.

(b) Comparison RSGAs w. r. to different operators:
Moreover, for a particular test problem bayg29, both SGA and proposed RS-

GAs are used with different operators and parameters (pc’s, pm’s, ps’s). The
obtained results are presented in Tables 4.39 and 4.40.

In Table 4.39, we survey the importance’s of different types of selection,
crossover and mutation parameters in the proposed algorithms. It indicates that
for the optimal solution of the standard TSP bayg29, optimal result is found in
the rough extended age based selection mechanism with min point crossover and
fixed mutation. These results are obtained quickly by 64 iterations only. Here
also, RSGAs perform better than SGA. In this testing, ”probabilistic” selection
takes less generations than that required for ”Roulette Wheel” selection. Again
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Table 4.38: Test TSPLIB Problems by RSGA
RSGA-II SGA

Instances BKS Cost Iter. Time Run Cost Iter. Time Run
Avg Avg
SD SD
937 937

fri26 937 935.38 67 0.23 25 928.46 269 3.58 25
1.64 2.71
2020 937

bays29 2020 2017.27 64 1.56 25 2014.53 451 4.42 25
1.87 3.56
1610 1610

bayg29 1610 1609.76 43 1.32 25 1603.31 378 4.56 25
0.78 2.37
699 699

dantzig42 699 697.21 123 1.41 25 695.47 612 5.36 25
1.46 3.95
426 426

eil51 426 425.86 98 1.78 40 422.43 341 4.21 40
0.63 2.49
7542 7542

berlin52 7542 7540.37 145 2.1 40 7537.56 526 4.37 40
1.29 3.01
675 675

st70 675 674.3 165 2.9 40 671.73 813 7.01 40
0.75 1.72
538 538

eil76 538 537.75 124 2.76 40 535.47 457 4.27 40
0.98 1.58

108159 108159
pr76 108159 108156.32 175 3.01 40 108143.9 410 3.49 40

2.42 6.78
1211 1211

rat99 1211 1210.7 149 4.2 40 1207.43 328 6.12 40
1.2 2.17

21282 21282
kroa100 21282 21276.81 249 6.53 50 21267.34 285 12.34 50

2.79 5.98

Table 4.39: Comparison of RSGAs, SGAs with different parameters

Algorithm Selection Crossover Generation pc pm ps Avg SD Result Run
SGA-I Roulette Wheel Cyclic 678 0.3 0.4 - 1603.31 2.37
SGA-II Probabilistic Cyclic 309 0.31 0.4 0.3 1605.8 1.83
SGA-III Probabilistic Comparison 256 0.4 0.4 - 1604.72 3.17
SGA-IV Probabilistic Comparison 176 0.4 0.4 0.3 1607.81 1.54 1610 25
RSGA-I Rough age based Min point 66 - 0.4 - 1609.21 0.94
RSGA-II Rough extended age based Min point 64 - 0.4 - 1609.76 0.78
SGA-V Roulette Wheel Min point 211 0.4 0.4 - 1608.32 2.05
SGA-I Roulette Wheel Cyclic 411 0.5 0.4 - 1605.54 2.39
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Table 4.40: Comparison of RSGAs w. r. to different Mutations
Algorithm Selection Crossover Mutation Generation Pm Avg SD Result Run

753 0.4 1607.34 0.78
Simple 598 0.3 1607.92 1.09

634 0.2 1606.54 0.85
Rough 256 0.4 1608.46 0.75

Random 145 0.3 1608.43 0.91
Age Min 98 0.2 1606.63 1.82 1610 25

Based Point 66 0.4 1608.21 0.77
Fixed 71 0.3 1608.52 0.97

87 0.2 1607.78 1.03
RSGA-I 47 - 1609.16 0.88

Variable 54 - 1609.02 0.93
56 - 1609.09 0.77

664 0.4 1607.53 1.28
Simple 564 0.3 1608.05 0.59

605 0.2 1607.03 0.96
Rough 234 0.4 1608.57 0.67

Random 121 0.3 1608.85 0.94 1610 25
Min 87 0.21 1608.43 1.09

Extended Point 64 0.4 1608.34 1.11
Age Based Fixed 68 0.3 1608.78 0.52

RSGA-II 68 0.2 1608.45 0.99
43 - 1609.76 0.78

Variable 56 - 1609.44 0.97
45 - 1609.55 0.81

keeping every thing same, with RW selection, higher value of pc requires more
number of generations and hence it is undesirable.

In Table 4.40, optimum results for the standard TSP, ”bayg29” are obtained
in different environments using different selection and mutation techniques. It
is observed that though all approaches furnish the same optimum result, the RS-
GAs with Min-point crossover and variable mutation takes minimum number
of generations. In all cases, RSGAs with ”simple” mutation requires maximum
numbers of generations for optimum results, where as ”random” and ”fixed” mu-
tations take the value in between these numbers.

Model 4.4A: Experiments for CTSP with and with out time constraint:
Here we consider a deterministic TSP of 10 × 10 size given by Eq. 4.52,

whose cost and time matrices are given in Table 4.41.
For the input data in Table 4.41, the problem given by Eq. 4.54 is solved by

RSGAs and SGAs and the optimum results are presented below in Table 4.42.
Here we took maximum generation=100, independent run of each algorithms and
deterministic constraint are obtained using only Moore approaches.

From Table 4.42, it is observed that for the cases of CTSP having ”without
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Table 4.41: Input Data: Interval CTSP (Model 4.4A1)
Crisp Cost Matrix(10 ×10)

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ [35, 39] [18, 23] [20, 27] [17, 19] [36, 45] [37, 42] [42, 49] [33, 34] [44, 48]
2 [24, 30] ∞ [20, 26] [28, 32] [35, 39] [40,44] [30, 36] [43, 47] [28, 34] [14,16]
3 [38, 42] [27, 34] ∞ [25,28] [22,26] [35, 36] [9,13] [32,35] [40,42] [30,33]
4 [28, 32] [10,14] [7,12] ∞ [20,22] [25,28] [30,33] [35,39] [22,25] [37,42]
5 [27,32] [22,26] [35,38] [30,33] ∞ [20,24] [25,30] [30,33] [9,13] [28,33]
6 [15,17] [30,33] [25,30] [8,12] [28,30] ∞ [33,36] [40,44] [32,34] [30,36]
7 [38, 44] [25,32] [30,33] [22,24] [37,39] [40,44] ∞ [32,35] [20,22] [25,27]
8 [40,45] [5,9] [32,35] [40,44] [35,38] [25,26] [40,44] ∞ [37,39] [38,42]
9 [40,42] [40,46] [23,26] [25,29] [20,25] [2,5] [37,45] [32,35] ∞ [28,34]

10 [28,33] [30,34] [28,32] [20,25] [11,15] [32,36] [37,39] [40,44] [30,34] ∞
Interval Time Matrix

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ [.5,.53] [.8,.9] [.7,.79] [.82, .9] [.59,.64] [.58,.6] [.59, .62] [.6,64] [.57, .6]
2 [.78,.84] ∞ [.81,.88] [.75,.8] [.5,.56] [.6,.64] [.7,.76] [.58,.62] [.75,.79] [.9,.92]
3 [.59,.63] [.79,.82] ∞ [.85,.87] [.78,.84] [.65,.7] [.81,.86] [.68,.72] [.6,.64] [.7,.76]
4 [.72,.76] [.9,.92] [.94,.95] ∞ [.8,.84] [.75,.8] [.7,.76] [.65,.66] [.78,.8] [.63,.7]
5 [.83,.88] [.79,.86] [.69,.74] [.72,.74] ∞ [.82,.88] [.79,.82] [.71,.73] [.9,.92] [.72,.74]
6 [.88,.9] [.7,.74] [.75,.77] [.91,.92] [.72,.75] ∞ [.67,.69] [.6,.7] [.7,.73] [.77,.8]
7 [.68,.7] [.59,.6] [.8,.84] [.7,.73] [.6,.65] [.61,.65] ∞ [.68,.7] [.8,.83] [.77,.8]
8 [.6,.64] [.94,.95] [.69,.73] [.6,.63] [.59,.62] [.79,.81] [.6,.62] ∞ [.59,.63] [.73,.76]
9 [.6,.63] [.81,.83] [.77,.8] [.75,.78] [.8,.82] [.9,.99] [.63,.65] [.68,.7] ∞ [.72,.74]

10 [.85,.9] [.7,.76] [.73,.75] [.53,.55] [.9,.96] [.69,.73] [.64,.66] [.59,.63] [.7,.74] ∞

Table 4.42: Optimum Results of CTSP in Crisp (Model 4.4A)

Algorithm Selection Mutation Path Gen Value Avg SD Tmax Run
Rough Random 6-4-3-7-10-5-9-8-2-1 87 [130, 166] 146.21 1.21

Proposed Age Fixed 6-4-3-7-10-5-9-8-2-1 71 [130, 166] 147.53 0.92 Without
(RSGA-I) Variable 6-4-3-7-10-5-9-8-2-1 42 [130, 166] 147.97 0.53

RSGA Rough Random 5-7-2-10-3-4-6-9-1-5-8 66 [102,117] 107.74 1.32 Tmax
Extended Fixed 5-7-2-10-3-4-6-9-1-5-8 59 [102,117] 108.75 1.45

(RSGA-II) Variable 8-2-10-5-9-6-1-4-3-7 28 [92,127] 104.32 0.82
Rough Random 8-2-10-5-9-6-1-4-3-7 92 [155,182] 163.45 0.57

Proposed Age Fixed 8-2-10-5-9-6-1-4-3-7 64 [155,182] 164.37 1.78
(RSGA-I) Variable 9-5-6-4-3-7-10-8-2-1 32 [143,165] 153.37 0.66 [7.0, 8.25] 20

RSGA Rough Random 6-8-2-10-4-3-7-9-1-5 76 [149,169] 157.56 0.89
Extended Fixed 6-8-2-10-4-3-7-9-1-5-7 53 [149,169] 157.8 0.56

(RSGA-II) Variable 4-8-2-10-5-9-6-1-3-7 28 [134,152] 142.76 1.16
SGA-I RW Simple 10-8-2-5-9-6-1-4-3-7 188 [192, 259] 223.43 0.77 [7, 7.75]

RSGA-II REA Variable 4-1-2-5-9-6-10-8-3-7 48 [165,189] 174.45 1.22 [6.5, 7.5]
SGA-I RW Simple 1-2-5-10-4-3-7-9-6-4 231 [232,354] 290.7 0.99 [6.5, 7.5]

RSGA-II REA Variable 7-2-6-9-1-4-8-5-10-3 45 [272, 312] 287.17 0.97 [5.5, 6.75]
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Tmax” and with same ”Tmax”, better results are obtained with respect to the costs
as well as number of generations by RSGA-II and variable mutation. Also when
Tmax decreases, corresponding cost increases according to the realistic condi-
tions of the present investigation.

Model 4.4A1: Experiment for CSTSPwR with time Constraint:
Now for a CSTSPwR, we consider maximum available three types of con-

veyances. The cost and time matrices for the CSTSPwR of 10×10 size are pre-
sented in Table 4.43.

Here we took maximum generation as 200 with 20 independent runs, and for
proposed RSGA-II, REA selection with variable mutation is used. Only feasible
constraints which are satisfied in the corresponding interval are considered. The
optimum results are presented in Table 4.44.

Comparing the corresponding results from the given table, we see that Ta-
ble 4.44 supports the usual expectation i.e., as the total travel times decrease,
the corresponding total costs increase for all approaches. Considering all the ap-
proaches, Moore’s approach with RSGA-II furnishes the lowest travel cost. This
cost is much less than the corresponding costs with SGA-I for both values of
Tmax.
Model 4.4A1: CSTSPwR with virtual data set (for large TSP)

For the large scale data set, we randomly generate the costs within a range.
Here, costs cLij and cRij (i6=j) are taken for first, second and third conveyances
respectively as follows:

cLij=10(1+ random integer with [0,8]), cRij=cLij +0.5(1+ random integer with
[0,8])

cLij=9(1+ random integer with [0,8]), cRij=cLij +0.5(1+ random integer with
[0,8])

cLij=11(1+ random integer with [0,8]), cRij=cLij +0.5(1+ random integer with
[0,8])
Similarly randomly generated time matrix for three conveyances as follows

tLij=0.25(1+ random number with [0,1]), tRij=tLij +0.15(1+ random number
with [0,1])

tLij=0.2(1+ random number with [0,1]), tRij=tLij +0.12(1+ random number
with [0,1])

tLij=0.3(1+ random number with [0,1]), tRij=tLij +0.18(1+ random number
on [0,1])
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Table 4.43: Input Data: CSTSPwR (Model 4.4A1)
Cost Matrix(10 *10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 [32,35] [17,19] [17,21] [29,30] [5,7] [15,18] [25,29] [39,42] [20,23]

∞ [36,42] [38,42] [31,33] [20,21] [22,27] [35,37] [37,43] [26,33] [30,34]
[26,28] [26,31] [33,39] [60,65] [6,9] [46,48] [16,20] [41,43] [42,45]

2 [34,38] [40,44] [16,19] [32,37] [39,41] [39,42] [30,34] [17,22] [23,26]
[22,27] ∞ [18,22] [28,32] [25,27] [30,32] [29,32] [41,45] [36,38] [13,17]
[14,19] [27,33] [6,12] [34,38] [21,26] [57,60] [58,62] [17,21] [17,20]

3 [36,39] [16,20] [10,14] [40,45] [33,36] [17,20] [30,33] [28,32] [29,31]
[29,32] [54,60] ∞ [24,26] [23,26] [34,39] [11,13] [30,34] [18,21] [19,23]
[28,32] [31,35] [12,17] [45,48] [33,35] [5,10] [24,27] [40,44] [32,35]

4 [27,30] [9,11] [16,20] [29,33] [23,26] [19,22] [33,36] [10,13] [24,29]
[18,21] [19,23] [7,10] ∞ [17,20] [15,18] [30,32] [32,38] [20,24] [47,49]
[9,12] [12,15] [27,30] [23,24] [25,28] [30,33] [16,18] [32,35] [37,40]

[16,19] [41,44] [34,37] [17,21] [29,34] [42,46] [27,30] [18,22] [26,29]
5 [14,18] [21,24] [35,37] [12,14] ∞ [20,23] [14,18] [30,32] [8,11] [25,27]

[6,9] [32,34] [33,39] [40,44] [40,42] [25,27] [12,16] [7,9] [25,28]
[13,16] [26,30] [4,6] [6,9] [26,29] [31,34] [39,42] [30,33] [28,31]

6 [5,8] [20,23] [25,27] [7,11] [26,30] ∞ [40,44] [30,31] [22,23] [40,42]
[5,8] [27,30] [27,30] [10,13] [38,41] [23,26] [20,23] [35,36] [30,34]

[36,39] [23,26] [27,32] [21,24] [35,38] [38,41] [7,11] [31,34] [19,22]
7 [37,40] [53,55] [37,39] [40,44] [56,60] [20,22] ∞ [40,44] [33,35] [13,16]

[28,32] [25,27] [24,27] [23,25] [37,40] [43,46] [11,14] [34,37] [25,28]
[39,42] [24,28] [30,33] [38,42] [34,37] [23,26] [39,42] [20,23] [35,38]

8 [41,43] [5,7] [52,54] [19,22] [34,37] [15,18] [19,22] ∞ [52,54] [35,38]
[20,24] [16,18] [43,46] [40,43] [46,48] [4,6] [41,44] [23,27] [39,41]
[38,41] [39,42] [4,9] [23,26] [20,23] [22,25] [5,8] [30,33] [27,30]

9 [10,13] [38,40] [34,37] [33,36] [31,33] [31,34] [36,39] [32,34] ∞ [18,20]
[31,33] [34,37] [36,39] [28,30] [20,22] [23,26] [38,41] [11,15] [24,27]
[15,18] [28,31] [26,29] [18,21] [9,12] [30,34] [35,39] [40,43] [29,32]

10 [25,28] [20,22] [18,20] [29,32] [32,34] [10,13] [26,29] [41,43] [51,54] ∞
[25,30] [31,34] [28,32] [21,24] [20,24] [33,35] [38,41] [30,34] [30,33]

Time Matrix(10 *10) With maximum available three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

[.7,.74] [.81,.85] [.68,.71] [.65,.69] [.79,.85] [.68,.78] [.7,.74] [.54,.64] [.71,.75]
1 ∞ [.65,.66] [.54,.57] [.67,.7] [.78,.83] [.72,.74] [.6,.69] [.56,.64] [.6,.65] [.57,.64]

[.7,.75] [.6,.65] [.63,.7] [.3,.39] [.8,.84] [.45,.47] [.67,.73] [.45,.5] [.4,.43]
[.5,.55] [.45,.47] [.71,.77] [.6,.65] [.5,.54] [.5,.65] [.57,.59] [.65,.68] [.6,.64]

2 [.57,.66] ∞ [.66,.71] [.56,.62] [.67,.68] [.58,.64] [.56,.63] [.45,.49] [.56,.57] [.68,.76]
[.68,.75] [.58,.61] [.79,.85] [.56,.58] [.57,.65] [.21,.26] [.32,.34] [.57,.69] [.71,.76]
[.5,.56] [.67,.69] [.71,.76] [.45,.48] [.5,.55] [.68,.75] [.56,.6] [.5,.54] [.6,.68]

3 [.56,.59] [.3,.36] ∞ [.67,.71] [.63,.66] [.56,.59] [.79,.86] [.56,.6] [.68,.76] [.7,.76]
[.51,.58] [.62,.68] [.68,.76] [.4,.44] [.56,.57] [.68,.7] [.6,.68] [.45,.5] [.54,.6]
[.6,.66] [.78,.81] [.7,.75] [.6,.63] [.6,.66] [.7,.74] [.52,.56] [.8,.88] [.6,.69]

4 [.7,.75] [.66,.76] [.8,.85] ∞ [.7,.77] [.71,.75] [.6,.65] [.51,.58] [.71,.74] [.41,.47]
[.78,.83] [.71,.78] [.57,.64] [.67,.71] [.56,.67] [.56,.59] [.69,.76] [.61,.69] [.51,.54]
[.68,.76] [.45,.52] [.46,.58] [.7,.75] [.56,.58] [.41,.45] [.56,.62] [.68,.74] [.6,.66]

5 [.71,.79] [.7,.74] [.5,.55] [.6,.66] ∞ [.68,.75] [.73,.78] [.56,.61] [.73,.81] [.67,.78]
[.68,.79] [.56,.58] [.59,.65] [.5,.54] [.45,.51] [.57,.68] [.72,.79] [.69,.78] [.79,.87]
[.68,.75] [.56,.63] [.78,.82] [.76,.84] [.57,.67] [.54,.6] [.45,.52] [.58,.61] [.56,.61]

6 [.74,.79] [.67,.72] [.57,.68] [.77,.84] [.56,.59] ∞ [.45,.51] [.54,.63] [.73,.77] [.45,.52]
[.78,.85] [.56,.61] [.56,.62] [.78,.81] [.48,.54] [.67,.78] [.67,.74] [.52,.58] [.56,.62]
[.45,.54] [.56,.63] [.54,.6] [.67,.73] [.5,.54] [.45,.51] [.78,.81] [.56,.61] [.67,.74]

7 [.46,.52] [.34,.38] [.56,.58] [.45,.51] [.28,.32] [.67,.71] ∞ [.45,.54] [.5,.54] [.67,.74]
[.56,.62] [.61,.65] [.6,.64] [.57,.68] [.45,.53] [.42,.47] [.65,.76] [.54,.61] [.51,.62]
[.45,.52] [.67,.69] [.54,.6] [.5,.55] [.52,.58] [.45,.52] [.44,.54] [.68,.76] [.48,.56]

8 [.5,.55] [.79,.88] [.31,.38] [.7,.77] [.56,.64] [.68,.77] [.64,.72] ∞ [.35,.4] [.5,.55]
[.45,.53] [.58,.68] [.41,.45] [.5,.59] [.42,.48] [.78,.83] [.45,.53] [.63,.7] [.5,.59]
[.56,.58] [.5,.55] [.79,.85] [.6,.68] [.67,.75] [.67,.7] [.75,.81] [.52,.6] [.6,.65]

9 [.8,.85] [.5,.57] [.6,.65] [.7,.77] [.56,.65] [.6,.65] [.56,.6] [.5,.61] ∞ [.7,.77]
[.6,.65] [.5,.55] [.46,.54] [.56,.58] [.64,.7] [.56,.64] [.45,.54] [.69,.75] [.62,.7]

[.57,.71] [.66,.71] [.59,.65] [.64,.7] [.73,.78] [.45,.61] [.49,.54] [.45,.52] [.54,.59]
10 [.57,.67] [.7,.74] [.68,.76] [.55,.6] [.56,.66] [.7,.83] [.56,.64] [.42,.54] [.35,.41] ∞

[.59,.64] [.68,.76] [.58,.65] [.6,.71] [.55,.71] [.58,.64] [.49,.55] [.54,.6] [.51,.59]
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Table 4.44: Results of CSTSPwR(Model 4.4A1)

Algorithm Optimum Path(Vehicle) Cost Avg SD Approaches Tmax Run
1(1)-10(1)-5(2)-4(1)-2(1)-9(1)-3(2)-7(1)-8(3)-6(2) [98,112] 104.37 1.26 Moore
9(1)-7(1)-8(1)-6(2)-1(1)-3(1)-4(1)-2(1)-10(1)-5(3) [120,136] 127.68 1.17 Ishibuchi & Tanka

RSGA-II 8(3)-2(2)-10(1)-9(1)-6(2)-4(2)-3(3)-7(2)-5(2)-1(3) [116,128] 121.32 0.95 Chanas and Kuchta’s [7.75,8.75]
7(1)-8(1)-6(2)-1(1)-10(3)-5(2)-4(3)-2(3)-9(1)-3(2) [128,156] 141.23 1.67 Hu and Wang’s
10(3)-2(1)-9(1)-6(2)-4(2)-3(3)-7(2)-5(2)-1(3)-8(1) [136,152] 143.752 0.89 Mahato and Bhunia’s

SGA-I 2(2)-9(1)-3(3)-7(3)-8(1)-6(2)-1(3)-10(2)-5(2)-4(1) [183,215] 197.6 2.41 Moore 20
6(1)-4(3)-2(1)-9(3)-8(1)-5(2)-1(1)-3(2)-7(1)-10(1) [124,136] 127.54 1.73 Moore
8(3)-10(3)-9(1)-3(1)-7(1)-2(1)-6(2)-1(1)-5(2)-4(1) [133,156] 143.2 1.18 Ishabuchi & Tanka

RSGA-II 6(1)-9(1)-10(2)-3(1)-7(1)-8(1)-2(2)-1(1)-5(2)-4(1) [125,142] 132.7 1.52 Chanas and Kuchata’s
4(1)-7(2)-9(1)-3(3)-10(1)-8(1)-6(2)-1(1)-5(2)-2(2) [164,177] 169.32 1.19 Hu and Wang’s [6.5,7.5]
4(2)-10(3)-9(1)-3(1)-7(1)-8(1)-5(2)-1(1)-6(2)-2(1) [145,158] 150.7 1.02 Mahato and Bhunia’s

SGA-I 2(3)-6(3)-9(2)-3(2)-7(1)-1(2)-8(2)-10(1)-5(2)-4(1) [217,246] 230.5 1.09 Moore

Data sets are randomly generated using rand() function of C programming lan-
guage. For the CSTSPwR, cost and time matrices for different size problems
(N=20, 40,60, 80,100, 150 and 200) are generated randomly. To derive the re-
sults, we considered the CSTSPwR formulations in Eqs. 4.54 - 4.58 and solved
using RSGA-II. For comparison, SGA-I with Moore’s approach (Eq. 4.54) only
is taken. The optimum results of this randomly generated CSTSPwRs are pre-
sented in Table 4.45. From Table 4.45, it is evident that for all sizes of CST-
SPwR, Moore’s approach gives the best results i.e. minimum costs are less than
the other four approaches. For comparison, here SGA-I with Moore’s approach
is used and it is seen that RSGA-II fetches much better results than SGA-I for all
sizes of cost matrix. SGA-I gives the worst result than all other approaches for a
particular size of cost matrix.

4.5.4 Statistical test for RSGAs

i. Against different test problems only:
Performance of the proposed method is statistically tested against 25 sepa-

rate runs and calculating the average value, standard deviation and percentage
relative error according to optimal solution against some standard test problems.
The results obtained by proposed method are given in Table 4.46. Examining
the Table 4.46, it is concluded that the proposed method, RSGA-II has generated
the closer results to the optimal solutions with minimal standard deviations for
the problems fri26, bays29, bayg29, dantzig42, eil51, berlin52, st70, pr76, rat99,
Lin105 and Eil101. It can be seen that except one problem kroa200, for all other
fourteen problems, best results by RSGA-II are the same as the corresponding
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Table 4.45: For Virtual Data (Model 4.4A1)
Instances (Cities) Algorithm Approaches Costs Tmax Run

Moore [232, 278]
Ishibuchi [254, 289]

20×20 RSGA-II Chanas and Kuchta’s [267, 308] [14.4, 21.8]
Hu and Wang’s [282, 320]

Mahato and Bhunia’s [280, 316.5]
SGA-I Moore [328, 360] [21.25, 34.7]

Moore [466, 513]
Ishibuchi [490, 567]

40×40 RSGA-II Chanas and Kuchta’s [546, 587] [19.7, 28.4]
Hu and Wang’s [544, 593.5]

Mahato and Bhunia’s [576, 632.5]
SGA-I Moore [598, 648] [23.7, 27.3]

Moore [690, 810]
Ishibuchi [719, 842]

60×60 RSGA-II Chanas and Kuchta’s [765, 896] [23.5, 33.6] 20
Hu and Wang’s [784, 867]

Mahato and Bhunia’s [793, 923]
SGA-I Moore [839, 978] [24.25, 34.5]

Moore [1042, 1224]
Ishibuchi [1196, 1376]

80×80 RSGA-II Chanas and Kuchta’s [1264, 1433] [26.5, 64.7]
Hu and Wang’s [1335, 1479]

Mahato and Bhunia’s [1273, 1452]
SGA-I Moore [1598, 1864] [41.25, 62.7]

Moore [1425, 1663]
Ishibuchi [1562, 1678]

100×100 RSGA-II Chanas and Kuchta’s [1647, 1783] [46.5, 77.8]
Hu and Wang’s [1724, 1890]

Mahato and Bhunia’s [1738, 1975]
SGA-I Moore [1983, 2251] [64.2, 76.4]

Moore [2042, 2490]
Ishibuchi [2368,2789]

150×150 RSGA-II Chanas and Kuchta’s [2945, 3272] [70.6, 121.7]
Hu and Wang’s [3243, 3364]

Mahato and Bhunia’s [2173, 2505]
SGA-I Moore [3581, 3743] [91.25, 135.2]

Moore [2724, 3602]
Ishibuchi [3192, 3945]

200×200 RSGA-II Chanas and Kuchta’s [3347, 4178] [104.3, 176.2]
Hu and Wang’s [3441, 4732]

Mahato and Bhunia’s [3703, 4926]
SGA-I Moore [4398, 5231] [141.5, 188.9]
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Table 4.46: Dispersion Results of RSGA-II
Instances BKS Best Worst Average SDb Error(%)

fri26 937 937 939 937.32 1.31 0.19
bays29 2020 2020 2034 2020.25 2.37 1.21
bayg29 1610 1610 1616 1610.42 0.46 0.24

dantzig42 699 699 704 700.71 1.52 1.49
eil51 426 426 429 427.15 0.98 0.17

berlin52 7542 7542 7567 7544.45 0.76 1.37
st70 675 675 686 679.4 1.43 0.23
eil76 538 538 557 543.3 23.57 0.53
pr76 108159 108159 108343 108211.73 2.12 2.70
rat99 1211 1211 1220 1217.5 0.74 0.29

Kroa100 21282 21282 21604 21432.30 56.17 1.07
Lin105 14379 14379 14431 14387.25 1.35 0.94
Eil101 629 629 646 629.7 1.23 0.07
Ch105 6528 6528 6636 6543.7 31.62 3.46

Kroa200 29368 29468 29874 297036.15 103.28 2.87

best results available in the literature.
ii. Against different test problems and different algorithms:
In Table 4.47, average values of SDs and the corresponding errors have been

calculated for eleven problems using seven methods. In all cases, the average
results given by RSGA-I and RSGA-II are less than the corresponding average
results by SGA-I, II, III, IV and V. Moreover, as the SD’s in RSGA-I and -II are
quite small except three cases, it indicates that these methods are stable, results
in different runs do not differ much from the mean. We also obtain the least
percentage relative error in different cases. These errors are also very small indi-
cating that derived average solutions are nearer to the best known solution in the
literature. Thus the proposed methods have produced closer results to optimum.

iii. The Friedman Test:
To compare the performance of the algorithms SGA-I, II, III, IV, V, RSGA-I

and RSGA-II, we perform the Friedman test (cf Derrac et al. [40]). Since it is a
non parametric statistical procedure whose main aim is to detect significant dif-
ference between the behavior of two or more algorithms.

The assumptions of Friedman test are:

• The results over instances (problems from TSPLIB) are mutually indepen-
dent (i.e. the results within one instances does not influence the results
within other instances)
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Table 4.47: Results of RSGA and Other Methods

Algorithm Problem fri26 bays29 bayg29 dantzig42 eil51 berlin52 st70 eil76 pr76 rat99 kroa100
BKS⇒ 937 2020 1610 699 426 7542 675 538 108159 1211 21282

Avg 989.23 2076.9 1639.5 731.4 452.3 7667.4 722.84 584.5 108354.5 1246.7 21757.67
SGA-I SD 5.93 1.73 20.48 5.78 7.65 7.32 5.90 5.5 31.58 24.7 34.9

Error(%) 1.75 0.78 1.82 1.80 0.68 0.84 2.89. 0.97 4.3 2.57 3.85
Avg 984.3 2075.2 1637.8 732.6 452.7 7666.8 721.7 580.63 108360.5 1244.65 21731.3

SGA-II SD 2.37 1.80 1.48 2.70 26.58 10.32 4.64 6.56 52.8 24.7 87.98
Error(%) 1.52 0.92 0.74 1.79 0.81 0.59 3.45 2.7 3.65 0.86 2.97

Avg 979.73 2074.4 1637.71 728.47 450.8 7655.41 718.58 578.3 108725.42 1243.6 21702.3
SGA-III SD 2.23 1.71 2.48 1.23 11.56 1.32 2.19 01.35 2.15 1.7 32.5

Error(%) 0.74 2.72 1.95 0.56 1.79 1.02 0.86 1.75 3.22 1.63 2.7
Avg 966.37 2056.21 1633.8 721.4 445.92 7617.46 712.72 562.2 108674.61 1233.7 21678.7

SGA-IV SD 4.13 1.98 2.54 3.01 2.51 1.33 2.32 1.56 2.58 2.37 84.89
Error(%) 2.7 3.01 1.72 2.8 1.81 0.93 1.06 2.45 0.87 1.36 2.11

Avg 958.52 2050.3 1627.43 717.42 442.7 7612.9 701.25 558.2 108521.75 1231.53 21502.26
SGA-V SD 2.63 2.81 1.48 2.17 1.65 0.82 1.9 0.76 2.08 4.7 78.91

Error(%) 1.12 1.78 0.95 2.36 1.02 1.9 0.93 1.78 4.45 2.31 3.27
Avg 953.2 2036.17 1621.43 710.12 432.8 7589.6 686.2 544.3 108344.8 1223.49 21457.2

RSGA-I SD 2.76 2.75 0.54 1.78 1.15 1.02 2.31 0.61 2.58 1.03 67.8
Error(%) 0.78 1.39 0.3 1.51 0.67 1.59 0.76 0.25 2.72 0.35 1.23

Avg 937.32 2020.25 1610.42 700.7 427.15 7544.45 679.4 543.3 108211.5 1217.5 21432.3
RSGA-II SD 1.31 2.37 0.46 1.52 0.98 0.76 1.43 23.57 2.12 0.71 56.17

Error(%) 0.19 1.21 0.24 1.49 0.17 1.37 0.23 0.53 2.7 0.29 1.07

• Within each instance, the observations (average objective values) can be
ranked.

Hypothesis:
H0: Each ranking of the algorithms within each problem is equally likely, (i.e.,
there is no difference between them)
H1: At least one of the algorithms tends to yield larger average objective values
than at least one of the other algorithms

Here number of algorithms (k)=7, number of instances (b)=11. The Friedman
ranking table is given in Table 4.48 which is prepared according to the average
results of Table 4.47.
Now A2=

∑b
i=1

∑k
j=1[R(Xij)]

2, Rj=
∑b

1R(Xij) for j=1, 2,..,k, and B2=1
b

∑k
j=1R

2
j .

The test statistic is given by: T2= (b−1)[B2−bk(k+1)2/4]
A2−B2

Hence from the Table 4.48, we calculate
A2=473+402+299+196+115+44+11=1540,
B2= 1

11 [712 + 662 + 572 + 462 + 352 + 222 + 112] = 1508.36
With the values of A2 and B2, calculate the test statistic,

T2= (11−1)[1508.36−11×7(7+1)2/4]
1540−1508.36 =87.34

Using a table for the F distribution with a significance level α= 0.01, we find that
F(1−α),(k−1),(b−1)(k−1)= F0.99,6,60 = 3.12
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Table 4.48: Ranking of the Friedman Test
Algorithms(k) SGA-I SGA-II SGA-III SGA-IV SGA-V RSGA-I RSGA-II
Instances(b) R(Xb1) R(Xb2) R(Xb3) R(Xb4) R(Xb5) R(Xb6) R(Xb7)

fri26 7 6 5 4 3 2 1
bays29 7 6 5 4 3 2 1
bayg29 7 6 5 4 3 2 1

dantzig42 6 7 5 4 3 2 1
eil51 6 7 5 4 3 2 1

berlin52 7 6 5 4 3 2 1
st70 7 6 5 4 3 2 1
eil76 7 6 5 4 3 2 1
pr76 3 4 7 6 5 2 1
rat99 7 6 5 4 3 2 1

kroa100 7 6 5 4 3 2 1
Average Rank 6.45 6 5.18 4.18 3.18 2 1

Summation 71 66 57 46 35 22 11

Since T2 > F0.99,6,60, we reject the null hypothesis. Hence there exist some
algorithms whose performances are significantly different from the others.
iv. (Post Hoc) Paired Comparisons:

Here if the algorithms a and b are considered different after the rejection of
the null hypothesis from the Friedman test, following the Post Hoc paired com-
parison technique (cf. Derrac et al. [39]), calculate the absolute differences of
the summation of the ranks of algorithms a and b and declare a and b different if
:

|Ra −Rb| > t1−α2 [ 2b(A2−B2)
(b−1)(k−1)]

1
2

where t1−α2 is the 1-α2 quantile of the t-distribution with (b-1)(k-1) degrees of
freedom. Here t1−α2 for α=0.01 and 60 degrees of freedom is 2.660 and the criti-
cal value for the difference is: 2.66[2∗11(1540−1508.36)

(11−1)(7−1) ]= 9.06.
The Table 4.49 summarizes the paired comparisons, underline values indicated
that the algorithms are different. From the Table 4.49, we conclude that, RSGA-I
and RSGA-II have outperformed than all other algorithms and RSGA-II is the
best out performer amongst the other algorithms.

4.5.5 Discussion

Here, a GA (RSGAs) has been proposed with rough set based selection,
min-point crossover and generation dependent mutation processes. Here rough
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Table 4.49: Paired Comparison of the Friedman Test
|Ri −Rj| SGA-II SGA-III SGA-IV SGA-V RSGA-I RSGA-II

SGA-I 5 14 25 36 49 60
SGA-II - 9 20 31 44 55
SGA-III - - 11 22 35 46
SGA-IV - - - 11 24 35
SGA-V - - - - 13 24
RSGA-I - - - - - 11

set based age dependent selection with 3 and 5 (extended) classifications, min-
point crossover and three different pm dependent mutations are developed. For
STSPs, pm oriented random mutation accelerates to get wide variety of node
combinations. If pm is high, then the mutation rate is also much high. So it
is in fine tuning to the optimization problem, particularly this type of node ori-
ented problems such as TSP, vehicle routing problem, network optimization etc.
Again in accounting the complexity in mutation mechanism, type-I is much high
against the type-II because in type-I, randomly exchange occurs with searching
the node in each step of the mutation where as type-II does no search in location
exchange. But type-I is more affective to find the global optimum. For type-III,
its complexity is better against other two and efficiency is much high. With these
new features, RSGAs are used for test problems from TSPLIB and its efficiency
is proved. The supremacy of RSGA is established through the Friedman test and
Post hoc paired comparison. Later, two TSP problems-constrained TSP and con-
strained Solid TSP are solved and the optimum results along with near optimum
results are presented. The developed RSGAs are quite general, these can be used
for the decision making problems in other areas such inventory control system,
supply-chain, portfolio management, etc. Moreover, RSGAs will be very useful
for the large problems with large scale data. The proposed RSGAs can be ex-
tended/modified to be applied for the optimization of multi-objective problems.
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4.6 Model-4.5: A Rough extended Genetic Algorithm to solve
Constrained Solid Travelling Salesman Problem with Bi-
Fuzzy Costs4

In this model, a Rough extended Genetic Algorithm (ReGA) is proposed
to solve constrained solid travelling salesman problems (CSTSPs) with crisp and
bi-fuzzy costs. In the proposed ReGA, a ‘rough set based selection’ (7-point
scale) technique and comparison crossover with generation dependent mutation
are developed. In CSTSP, the costs and risk/discomfort factors are in the form
of crisp and bi-fuzzy in nature. In this investigation, CSTSPs are illustrated nu-
merically by some standard test data from TSPLIB [162] using ReGA. In each
environment, some statistical significance studies through ANOVA due to differ-
ent risk/discomfort factors and other system parameters are presented.

4.6.1 Proposed ReGA

The proposed algorithm ReGA consists of the rough set based selection (7-
point), comparison crossover and generation dependent random mutation. The
proposed ReGA and its procedures are presented below:

i. Representation:
Here a complete tour of N cities represents a solution. So an N dimensional

integer vector Xi = (xi1, xi2, ..., xiN ) and Yi = (vi1, vi2, ..., viP ) are used to repre-
sent a solution, where xi1, xi2, ..., xiN represent N consecutive cities in a tour and
Yi = (vi1, vi2, ..., viP ) represents the corresponding conveyances. Populations of
such solutions Xi = (xi1, xi2, ..., xiN ), and Yi = (vi1, vi2, ..., viP ) i = 1, 2, ..., N,
are randomly generated by random number generator. Let the population size be
M.

ii. Rough set based selection:
The above M such solutions have fitnesses represented by f(xi) of the ith chro-

mosomes. At the time of initialization, each chromosome age is defined as null.
Now in every generation the age is counted as using the Equ. 4.48. Here the
maximum and minimum ages depend on the requirement of the problems.

4This portion is published in Proceedings of the 4th International Conference on Frontiers in Intelligent
Computing: Theory and Applications (FICTA) 2015, Springer, Advances in Intelligent Systems and Computing
404, DOI 10.1007/978-81-322-2695-6 36, with title Constrained Solid Travelling Salesman Problem Solving by
Rough GA Under Bi-Fuzzy Coefficients.
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Table 4.50: Rough extended trust based linguistic
Gene VVY VY Y M O VO VVO
VVY VVL VL VL L VL VL VVL
VY VL VL L M L VL VL
Y VL L L H L L VL
M L M H VH H M L
O VL L L H L L VL

VO VL VL L M L VL VL
VVO VVL VL VL VL VL VL VVL

Now since the ages are calculated as crisp values, we construct the common
rough values form it,
Rough Age=([r1*avg age, r2*avg age], [r3*avg age, r4*avg age]), where
r1=Max Age−Avg Age

Avg Age , r2=Max Age+Min Age
2 , r3=Max Age−Min Age

2 , r4=Avg Age−Min Age
Avg Age

According to the extended age of the chromosome in Equ. 3.24, (mathemat-
ical expression are given in section 3.5.1), it belongs to any one of the com-
mon rough age and corresponding pcs are created of each chromosome as VVL,
VL, L, M, H, VH, VVH. The common rough age ([a,b],[c,d]) is extended to
0 ≤ c ≤ e ≤ f ≤ a ≤ b ≤ g ≤ h ≤ d and is described as below,

Age =



V eryV eryY oung(V V Y ) for c ≤ age < e
V eryY oung(V Y ) for e ≤ age < f
Y oung(Y ) for f ≤ age < a
Middle(M) for a ≤ age ≤ b
Old(O) for b < age ≤ g
V eryOld(V O) for g < age ≤ h
V eryV eryOld(V V O) for h < age ≤ d

(4.59)

iii. Comparison Crossover:
(a). Determination Probability of Crossover (pc): Probability of crossover
(pc), for a pair of chromosomes (Xi,Xj) is determined as below:
A. pcs for rough set based age selection

(i) At first age levels, (VVY, VY, M, O, VO, VVO ) of Xi and Xj are de-
termined by making trust measure of rough values w.r.to their ages in common
rough age region given in Equ. 4.59.
(ii) After determination of age intervals of the chromosomes, their crossover
probabilities are determined as linguistic variables (VVL, Vl, L, M, H, VH,
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VVH) as in Fig 3.5.1 using rough trust measure which is presented in Table 4.50
and trust levels are given as Equ. 4.59.
(b). Crossover Mechanism: Here we used comparison crossover method. We
choose two individuals(parents) to produce new individuals(child’s). To get op-
timal result of a TSP, we take a tour from one node(city)to next node(city) with
minimum cost/value. we construct the crossover mechanism according to the
section 4.3.1(c) (iii).
iv. Generation Dependent Random Mutation

(a) Selection for mutation: For each solution of P(t), generate a random num-
ber r from the range [0,1]. If r < pm then the solution is taken for mutation where
pm be the probability of mutation.

(b) Generation Oriented Mutation(Variable Method): Here we model a
new form of mutation mechanism where probability of mutation (pm) are deter-
mined as follows

pm= k√
Current generation number

, k∈[0,1].
Here pm decreases smoothly as generation increases. After calculating the pm,
then mutation operation is performed as the conventional random mutation.
Here we randomly choose two nodes from each chromosome and exchange their
place and replace the chromosome in the new offspring set.
v. Algorithm of ReGA

Input: max gen, pop size, Max age, Min age, Problem Data (cost matrix,
risk matrix).

Output: The optimum and near optimum solutions.
1. Start
2. g← 0 // g: generation number
3. Initialize P(g)
4. Evaluate f(P(g));
5. while (g ≤ max gen)
6. Evaluate the average fitness
7. if average fitness > current fitness
8. age(xi)=avg(age)+k∗(avgfit−f(Xi))

(avgfit−minfit)
9. else
10. age(xi)=

avg(age)
2 + k∗(f(Xi)−avgfit)

(maxfit−avgfit)
11. if (age(xi)> maximum age)
12. age(xi)= maximum age
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13. else if (age(xi)< minimum age)
14. age(xi)= minimum age
15. Determine average age
16. Determine common rough age
17. Developed VVY, VY, M, O, VO, VVO
18. for each pair of parents do
19. Trust based pc created
20. end for
21. for i=1 to Pop Size//Comparison crossover
22. Choose pair of chromosomes according to pc
23. Randomly generate node between 1 to N (say ar)
24. Replace ar at first place of each parents
25. Determine value at each corresponding node
26. for j=1 to N
27. Compare minimum value
28. Check the node existence in child
29. Concatenated node to the child (offspring)
30. end for
31. Replace ar at end place of each parents
32. Compare minimum value from end of the parents
33. Repeat step 26 to step 30
34. Replace the children in offspring’s set
35. end for
36. pm=k

g , k∈[0,1]
37. for i=0 to pop size
38. Select chromosome depending on pm
39. Randomly select two different nodes in [1,N]
40. Swap the places of the selected two nodes
41. end for
42. Store the new off springs into offspring set
43. Reproduce a new P(g)
44. Evaluate f(P(g))
45. Store the local optimum and near optimum solutions
46. g← g+1
47. endwhile
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48. Store the global optimum and near optimum results
49. End Algorithm.

vi. Complexity of the ReGA:

(a). Time Complexity:
The time complexities of selection operator, crossover operator and mutation

operator in genetic algorithm are O(MN), O(MpcN2), O(MpmN2) respectively,
where M is the size of the population. Normally pc > pm, so O(MpcN2) >
O(MpmN2)>O(MN). If s0 is the number of generations (outer iterations), so the
time complexity of the outer loop is O(s0MN2). The time complexity of initial
population generation and fitness function calculation are O(MN) <O(s0MN2).
As O(MN) < O(s0MN2), the time complexity of the GA is O(s0MN2).

(b). Space Complexity:
Genetic algorithm needs to save the populations, so it needs MN of the space.

Normally M>N, so GA space complexity is O(MN).

4.6.2 Mathematical Formulation and Its crisp equivalence

Model 4.5A: STSP with risk/discomfort Constraints (CSTSP):
Let c(i, j, k) be the cost for travelling from i-th city to j-th city using k-th type
conveyance and r(i, j, k) be the risk/discomfort factor in travelling from i-th city
to j-th using k-th type conveyance. Then the salesman has to determine a com-
plete tour (x1, x2, ...,xN , x1) and corresponding conveyance types (v1, v2, ..., vP )
to be used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , vi ∈ {1, 2, ..P}
for i = 1, 2, ..., N and all xi are distinct. Then the problem can be mathematically
formulated as:

to minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

subject to
N−1∑
i=1

r(xi, xi+1, vi) + r(xN , x1, vl) ≤ rmax,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (4.60)
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Model 4.5A1: CSTSP in bi-fuzzy Environment (BFCSTSP):
In the above problem Equ. 4.60, if costs and risk/discomfort factors are bi-fuzzy
variables, i.e, ˜̃c(i, j, k) and ˜̃r(i, j, k) respectively, risk/discomfort limit rmax is
also bi-fuzzy number ˜̃rmax, then the above problem reduces to (according Theo-
rem 3.2).

to minimize Z =
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl),

subject to
N−1∑
i=1

˜̃r(xi, xi+1, vi) + ˜̃r(xN , x1, vl) ≤ ˜̃rmax,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}

 (4.61)

The problem in Equ. 4.61 under Pos-Pos measures are equivalently written as
below:

minimize f
Pos{θ|Pos{| ˜̃C(θ)Tx ≤ f} ≥ δ} ≥ γ

Pos{θ|Pos{| ˜̃R(θ)Tx ≤ ˜̃rmax(θ)
T} ≥ θ} ≥ η

 (4.62)

The problem in Equ. 4.61 under Nes-Nes are equivalently written as below:

minimize f
Nes{θ|Nes{| ˜̃C(θ)Tx ≤ f} ≥ δ} ≥ γ

Nes{θ|Nes{| ˜̃R(θ)Tx ≤ ˜̃rmax(θ)
T} ≥ θ} ≥ η

 (4.63)

The Equ. 4.62 is transformed as

minimize cT − L−1(δ)αcT1 − L−1(γ)αcT2
s.t. rmax −RT +R−1(θ)βrmax1 + L−1(θ)αrmaxT1

+L−1(η)(αRT2 + βrmax2 ≥ 0

 (4.64)

The Equ. 4.63 are equivalently written as below:

minimize cT +R−1(1− δ)βcT1 +R−1(1− γ)βcT2

s.t. rmax −RT − L−1(1− η)(αrmax2 + βRT2 )
−L−1(1− θ)αrmax1 −R−1(θ)βRT1 ≥ 0

 (4.65)

where αc1, α
c
2, α

R
1 , α

R
2 , α

rmax
1 , αrmax2 , βc1, β

c
2, β

R
1 , β

R
2 , β

rmax
1 , βrmax2 are corresponding

left and right spreads of the reference function of LR fuzzy numbers and θ, η, δ, γ
are predetermined confidence levels.
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Table 4.51: Test TSPLIB Problems by ReGA
Instances Result ReGA RGA RGA SGA SGA SGA

Cost Iteration SD Cost Iteration SD
Avg Error(%) Avg Error(%)

fri26 937 937 43 0.73 937 269 2.65
938.74 0.87 940.71 3.46

bays29 2020 2020 53 1.48 2020 451 2.81
2023.4 1.65 2027.79 3.21

bayg29 1610 1610 62 0.45 1610 378 3.57
1611.52 0.98 1615.71 2.63

dantzig42 699 699 140 1.72 699 612 3.27
700.35 0.07 704.75 2.87

eil51 426 426 79 0.68 426 341 2.01
427.38 1.17 429.38 2.78

berlin52 7542 7542 120 1.62 7542 526 4.31
7548.75 0.63 7562.29 2.57

st70 675 675 154 1.38 675 813 2.4
676.25 1.01 679.45 4.25

eil76 538 538 113 0.97 538 457 2.47
540.73 0.69 543.27 1.64

pr76 108159 108159 151 1.05 108159 410 2.13
108180.34 0.74 108243.39 4.06

rat99 1211 1211 135 1.34 1211 328 3.63
1213.76 0.57 1217.43 3.36

kroa100 21282 21282 262 1.78 21282 285 4.73
21284.75 1.05 21289.9 3.65

4.6.3 Numerical Experiments

Testing for ReGA:
We select some standard TSP problems from TSPLIB [162]. Table 4.51 gives

the results of the test problems using both ReGA and SGA and a comparison is
made in terms of total cost and iterations. Here SGA is the combinations of RW
selection, cyclic crossover with well known random mutation. We have taken
the results under 25 independent runs. The best optimal solution with standard
deviation (SD) and error are presented.
Model 4.5A: CSTSP with Risks/Discomforts Constraint in Crisp values

Now for a CSTSP, we consider the TSP formulation with three types of con-
veyances as Equ. 4.9. The cost matrix for the CSTSP and corresponding risk/dis-
comfort matrix are presented in Table 4.52. With these input data, we solve the
CSTSP using ReGA and SGA. The optimum results are given in Table 4.53.
Here we have taken maximum generation=1000, and we see that as risk factor
decreases the corresponding cost increases as per real life expectation.
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Table 4.52: Input Data: Crisp CSTSP (Model 4.5A)
Crisp Cost Matrix(5 *5) With Three Conveyances

i/j 1 2 3 4 5
1 ∞ (35,36,27) (18,39,30) (20,33,34) (30,21,62)
2 (35,26,17) ∞ (40,21,32) (18,29,10) (35,26,37)
3 (38,30,29) (17,58,34) ∞ (12,25,14) (42,25,46)
4 (28,20,11) (10,22,14) (17,8,29) ∞ (30,19,24)
5 (17,15,9) (42,23,34) (35,36,37) (20,31,43) ∞

Crisp Risks/Discomforts Matrix(5*5) With Three Conveyances
i/j 1 2 3 4 5
1 ∞ (.69,.68,.75) (.84,.63,.7) (.82,.7,.71) (.72,.8,.42)
2 (.67,.76,.84) ∞ (.61,.8,.7) (.83,.73,.92) (.67,.76,.65)
3 (.63,.71,.73) (.83,.44,.67) ∞ (.89,.76,.86) (.59,.76,.75)
4 (.73,.81,.9) (.9,.78,.86) (.84,.93,.72) ∞ (.71,.82,.77)
5 (.84,.86,.92) (.59,.78,.67) (.66,.65,.64) (.82,.71,.59) ∞

Table 4.53: Results of crisp CSTSP (Model 4.5A)
Algorithm Path(Vehicle) Cost Risk Rmax

3(1)-4(1)-2(2)-5(3)-1(1) 70 4.50
2(3)-1(1)-3(1)-4(2)-5(2) 89 4.52
1(1)-3(1)-2(2)-5(1)-4(3) 92 4.3

ReGA 1(2)-5(1)-4(1)-2(1)-3(3) 93 4.54 4.75
4(1)-5(2)-1(2)-2(2)-3(2) 127 4.16

SGA 2(3)-3(3)-1(3)-5(1)-4(2) 142 4.7 4.75
4(2)-5(3)-2(1)-1(1)-3(2) 138 4.25 4.25

ReGA 1(2)-3(2)-2(2)-5(1)-4(3) 154 3.68 4.00
4(3)-5(1)-2(3)-3(3)-1(2) 160 3.71

Model 4.5A1: CSTSP in bi-fuzzy Environments (BFCSTSP):
Here we take the costs and risk/discomfort factors as bi-fuzzy for the CSTSP

as Equ. 4.64 and Equ. 4.65. Also we consider three types of conveyances. Here
we use triangular LR Fu-Fu variables where (ξ, α, β) is LR fuzzy variable with
known left and right spreads. Here ξ is also a triangular fuzzy variable whose
values are the corresponding values given in in Table 4.52.

Here predetermined confidence levels δ= γ=0.9, θ=η=0.95 and reference
function L(x)=R(x)=1-x are taken. Left and right spreads of the LR fuzzy num-
bers are given in the Table 4.54. With these input data, the BFCSTSP under
possibility (optimistic) and necessity (pessimistic) measures are solved by ReGA
and the optimum results are presented in Table 4.55 as a DM may be a optimistic
(ODM) or pessimistic (PDM).
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Table 4.54: Input Data: (BFCSTSP) (Model 4.5A1)
i/j 1 2 3 4 5
1 (ξ, 2, 2) (ξ, 3, 3) (ξ,4, 4) (ξ, 5, 5)

∞ (ξ, 4, 4) (ξ, 5, 5) (ξ, 6, 6) (ξ, 3, 3)
(ξ, 1, 1) (ξ, 2, 2) (ξ, 7, 7) (ξ, 4, 4)

2 (ξ, 3, 3) (ξ, 5, 5) (ξ, 1, 1) (ξ, 2, 2)
(ξ, 4, 4) ∞ (ξ, 7, 7) (ξ, 3, 3) (ξ, 4, 4)
(ξ, , 2) (ξ, 6, 6) (ξ, 8, 8) (ξ, 3, 3)

3 (ξ, 6, 6) (ξ, 1, 1) (ξ, 5, 5) (ξ, 1, 1)
(ξ, 8, 8) (ξ, 4, 4) ∞ (ξ, 4, 4) (ξ, 2, 2)
(ξ, 7, 7) (ξ, 3, 3) (ξ, 6, 6) (ξ, 9, 9)

4 (ξ, 6, 6) (ξ, 3, 3) (ξ,5, 5) (ξ, 6, 6)
(ξ, 4, 4) (ξ, 7, 7) (ξ, 3, 3) ∞ (ξ, 4, 4)
(ξ,5, 5) (ξ, 3, 3) (ξ, 6, 6) (ξ, 7, 7)
(ξ, 4, 4) (ξ, 2, 2) (ξ, 8, 8) (ξ, 9, 9)

5 (ξ, 3, 3) (ξ, 7, 7) (ξ, 7, 7) (ξ, 5, 5) ∞
(ξ, 6, 6) (ξ, 6, 6) (ξ, 6, 6) (ξ, 6, 6)

Bi-fuzzy Risks/Discomforts Matrix(5 *5) With Three Conveyances
i/j 1 2 3 4 5
1 (ξ, .12, .12) (ξ, .13, .13) (ξ, .14, .14) (ξ, .15, .15)

∞ (ξ, .02, .02) (ξ, .03, .03) (ξ, .04, .04) (ξ, .05, .05)
(ξ, .07, .07) (ξ, .04, .04) (ξ, .06, .06) (ξ, .08, .08)

2 (ξ, .16, .16) (ξ, .17, .17) (ξ, .01, .01) (ξ, .11, .11)
(ξ, .24, .24) ∞ (ξ, .16, .16) (ξ, .17, .17) (ξ, .21, .21)
(ξ, .14, .14) (ξ, .06, .06) (ξ, .1, .1) (ξ, .2, .2)

3 (ξ, .06, .06) (ξ, .18, .18) (ξ, .03, .03) (ξ, .04, .04)
(ξ, .13, .13) (ξ, .11, .11) ∞ (ξ, .16, ,16) (ξ, .05, .05)
(ξ, .16, .16) (ξ, .22, .22) (ξ, .25, .25) (ξ, .01, .01)

4 (ξ, .07, .07) (ξ, .13, .13) (ξ, .15, .15) (ξ, .26, .26)
(ξ, .04, .04) (ξ, .07, .07) (ξ, .13, .13) ∞ (ξ, .14, .14)
(ξ, .05, .05) (ξ, .06, .06) (ξ, .14, .14) (ξ, .2, .)
(ξ, .11, .11) (ξ, .2, .2) (ξ, .19, .19) (ξ, .18, .18)

5 (ξ, .03, .03) (ξ, .1, .1) (ξ, .13, .13) (ξ, .12, .12) ∞
(ξ, .05, .05) (ξ, .06, .06) (ξ, .17, .17) (ξ, .16, .16)

Table 4.55: Optimum Results of BFCSTSP (Model 4.5A1)
DM Path(Vehicle) Obj Value Risk Rmax

ODM 3(2)-1(1)-4(2)-5(3)-2(3) 63.5 4.37 4.5
PDM 5(1)-1(2)-4(2)-3(3)-2(3) 68.9 4.48 4.5
ODM 3(1)-4(3)-2(1)-5(3)-1(1) 72.5 4.2 4.5
PDM 4(3)-1(2)-5(1)-3(2)-2(1) 79.4 4.32 4.5
ODM 1(1)-4(1)-2(2)-5(3)-3(3) 81.5 4.03 4.5
PDM 1(3)-5(3)-3(3)-2(2)-4(3) 96.5 4.23 4.5
ODM 2(3)-1(1)-5(3)-3(3)-4(2) 93.5 3.78 4.25
PDM 5(3)-2(1)-4(2)-3(3)-1(2) 118.2 3.81 4.25
ODM 4(3)-1(2)-5(3)-3(2)-2(2) 102.2 3.6 4
PDM 2(1)-4(3)-1(2)-5(3)-3(3) 129.5 3.91 4
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Table 4.56: Results for virtual data (Model 4.5A1)
Instances (Cities) Costs Rmax

15×15 142 5.5
20×20 196 6.5
25×25 244 7.5
30×30 273 9.5
35×35 398 11.25
40×40 446 13.0
45×45 518 15.5
50×50 692 18.0
80×50 1145 23.7

100×100 1468 32.5
150×150 2354 41.4
200×200 3623 73.9

Table 4.57: Number of win for different algorithms
Problem fri26 bays29 bayg29 dantzig42 eil51 berlin52 st70 eil76 pr76 rat99 kroa100

RGA 84 91 78 90 71 79 87 75 97 77 81
FGA 67 76 63 82 57 68 63 59 71 69 64
SGA 59 43 56 41 51 57 49 37 56 52 55

Model 4.5A: CSTSP for virtual data:
Here CSTSP are solved by ReGA with large scale data of different sizes, which

are randomly generated for different cities and the results are presented in Table
4.56.

4.6.4 Statistical test for ReGA

ANOVA Test:
To test the statistical significance of the proposed algorithm, ReGA, we per-

form the ANOVA and parametric F-tests. To compare the efficiency of the de-
veloped algorithm, another two established heuristic techniques Fuzzy age based
GA (FGA developed by Last et al. [88] and used by Roy et al. [147]) and SGA
are used. Here 100 independent runs for individual algorithm are considered.
Different steps of this ANOVA are as follows:

For calculation of different steps of ANOVA, we subtract 50 (with out lose of
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Table 4.58: ANOVA :Subtracted table from Table 4.57

Problem fri26 bays29 bayg29 dantzig42 eil51 berlin52 st70 eil76 pr76 rat99 kroa100 Mean
X1 34 41 28 40 21 29 37 25 47 27 31 X1=32.74
X2 17 26 13 32 7 18 13 9 21 19 14 X2=17.18
X3 9 -7 6 -9 1 7 -1 -13 6 2 5 X3=0.55

Table 4.59: ANOVA summary table

Source of variation Sum of square df Mean of square F
Between groups SSB=5701.19 J-1=2 MSB=SSB

J−1
=2850.6

Within groups SSW=1640 J(I-1)=20 MSW= SSW

J(I−1)
=91.11 MSB

MSW
=31.28

Total SST=7341.19 IJ-1=32

generality) from each numbers and the Table 4.57 is reduced to Table 4.58 where
X1, X2 and X3 represents ReGA, FGA and SGA respectively.

Here, total sample size of each algorithm is equal and say, I=11 (TSPLIB
problems) and number of algorithm is, J=3. Mean of the sample means,X=16.82.
Different values of ANOVA are calculated and presented in Table 4.58.

Here, critical F values, F0.05(2,20) ≈ 3.57. As the computed F (cf. Table 10) is
higher than the standard critical F values (=3.57) for 0.05 level of significance, it
may be inferred that there is a significant differences between the groups. When
F ratio is found to be significant in an ANOVA with more than two groups, it
should be followed by a multiple comparison test to find which group means dif-
fer significantly from each other. Scheffe’s multiple comparison F- test is done
for this purpose to find out whether ReGA & SGA and/or ReGA & FGA are sig-
nificant. For the first pair i.e., for ReGA & SGA, we calculate F value given by
F= (X1−X3)2

MSW ( 1
I+ 1

J )
=26.80. Similarly, for the second pair i.e., for ReGA and FGA, cal-

culated F= 6.26. As both calculated F values are greater than the standard value
(3.57), there is a significant difference between ReGA & SGA and also ReGA
& FGA. From Table 4.59, it is observed that the mean (X1) of X1 is higher than
the other two means (X2 and X3). Thus significant differences between the al-
gorithms are observed and therefore, it can be concluded that ReGA is better
compared to the other two algorithms

197



CHAPTER 4. SINGLE OBJECTIVE OPTIMIZATION USING SINGLE HEURISTIC
METHODS

4.6.5 Discussion
In this investigation, a proposed algorithm for GA, called ReGA is pro-

posed and illustrated in CSTSP formulated in different environments. In ReGA,
a new rough 7 -point age based selection and comparison crossover are used
along with generation dependent random mutation. Such CSTSPs are here for-
mulated with crisp and bi-fuzzy costs and risk/discomfort levels and solved by
the proposed ReGA. Here, development of ReGA is in general form and it can be
applied in other discrete problems of optimization such as network optimization,
graph theory, solid transportation problems, vehicle routing, VLSI chip design,
etc. In spite of the better results by ReGA, there is a lot of scope for development
in ReGA, specially for the CSTSPs.

4.7 Conclusion

In this chapter, GAs have been developed with five selection operations
namely probabilistic selection, probabilistic selection with ps parameter, rough
selection with 3-point, 5-point and 7-point scale, three crossover accordingly
adaptive crossover, comparison crossover and min-point crossover and three types
of mutation operators such as nodes oriented, generation dependent and location
based mutation. Each of the algorithms such as IGA, AGA, MGA, RSGA-I,
RSGA-II and ReGA is established solving the standard NP- hard problems from
TSPLIB[162].

This chapter contains some constrained STSPs under different environments
such as crisp, fuzzy, random, fuzzy-random, random-fuzzy, bi-fuzzy, bi-random,
rough and fuzzy-rough. The models are solved by the proposed algorithms
in crisp, fuzzy(possibility, necessity, GMIV, credibility and EVM approach),
rough(Expectation, trust), random(chance constraint), bi-random, bi-fuzzy, random-
fuzzy, fuzzy-random environments. Some virtual data are generated for TSPs and
the large size CSTSPs are solved by these algorithms in crisp environment.

Some major statistical tests are done to establish the efficiency of the algo-
rithms, these are Friedman test, Post Hoc analysis, standard deviation, mean, per-
centage error and ANOVA. Except some cases, proposed algorithms performed
much better.
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Chapter 5

Single Objective Optimization Using
Hybrid Heuristics

5.1 Introduction

Evolutionary algorithms can be combined with more traditional optimiza-
tion techniques. This is as simple as the use of a conjugate-gradient minimiza-
tion after primary search with an evolutionary algorithm. It may also involve
simultaneous application of algorithms like the use of evolutionary search for the
structure of a model coupled with gradient search for parameter values. Further,
evolutionary computation can be used to optimize the performance of neural net-
works, fuzzy systems, production systems, wireless systems and other program
structures. It can also be used to perform heuristic initialization of the popu-
lation, so that search begins with some reasonably good points, rather than a
random set. Goldberg [61] described techniques for adding knowledge-directed
crossover and mutation. He also discussed the hybridization of GAs with other
search techniques. Pure genetic algorithms use only the encoding and objec-
tive function. This may help to use in problem specific information. In hybrid
schemes GAs are used to get close to optimum value, then conventional opti-
mization schemes like greedy search, gradient search or stochastic hill climbing,
etc.

The hybrid algorithm in this section is designed to use heuristics for initial-
ization of population and improvement of offspring produced by crossover and
mutations for a Traveling Salesman Problem (TSP). The initialization heuristic
algorithm is used to initialize a part of the hybridization, remaining part of the
algorithm will be done by another heuristics one case GA and other case PSO

199



CHAPTER 5. SINGLE OBJECTIVE OPTIMIZATION USING HYBRID HEURISTICS

and GA. The offspring is obtained by crossover between two parents selected
randomly. The tour improvement heuristics: swap operator and swap sequence
are used to bring the offspring to a global minimum.

This chapter contains two models, first model is the hybridization of heuristic
ACO and GA and second model combinations of ACO, swap sequence based
PSO with GA. For the first time, pheromones are classified by rough set and ac-
cording their pheromone pcs are created. Present investigation develops 4DTSP
and r-4DTSP that are given in section 1.7.3. The efficiency of the proposed in-
telligent hybrid algorithms are established through some statistical tests such as
standard deviation, mean, error, ANOVA etc., and the standard test problems
from TSPLIB [162] was solved. Again by proposed algorithms, 4DTSP and r-
4DTSP under bi-fuzzy and bi-rough environments are solved.

5.2 Model-5.1: An Intelligent Hybrid Algorithm for 4- Di-
mensional TSP1

In this chapter, the first model presented is the development and applica-
tion of a hybridized algorithmic approach to solve a 4- dimensional Travelling
Salesman Problem (4DTSP) where different paths with various number of con-
veyances are available to travel between two cities. The algorithm is a hybridiza-
tion of rough set based ant colony optimization (rACO) with developed genetic
algorithm (GA). The initial solutions are produced by ACO which acts as a se-
lection operation of GA and then GA is developed with an extended rough set
based selection (7-point scale), comparison crossover and generation dependent
mutation. The said hybrid algorithm rough set based Ant Colony Optimization
(rACO) with Genetic Algorithm (rACO-GA) is tested against some test func-
tions and supremacy of the proposed algorithm is established. The 4DTSPs are
formulated with crisp and bi-fuzzy costs. In each environment, some statisti-
cal significant studies due to different time constraint values and other system
parameters are presented. The models are illustrated with some numerical data.

1communicated to Journal of Industrial Information Integration. (Elsevier)
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5.2.1 Proposed Intelligent Hybrid rACO-GA

Here an intelligent hybrid algorithm rACO-GA using the rough set based
pheromone selection (7-point), comparison crossover and generation dependent
random mutation for GA are proposed. The proposed rACO-GA and its proce-
dures are presented below:
(i) Representation:

Here a complete tour of N cities represents a solution of ants. So an N dimen-
sional integer vector Xi = (xi1, xi2, ..., xiN ), Yi = (ri1, ri2, ..., ris) and Zi = (vi1, vi2,
..., viP ) are used as cities, routes and vehicles to represent a solution, where xi1,
xi2, ..., xiN represent N consecutive cities in a tour. In the algorithm, initially an
ant colony system is used to produce a set of paths (tours) for a salesman, which
is a set of potential solutions for the GA.
(ii) Rough set based ACO (rACO):

In the present algorithm, τij represents amount of pheromone which lies on
the path between nodes i and j, iter1 and iter2 represent iteration counters,
maxiter and maxgen represent maximum iteration and generation numbers of
the hybrid algorithm. n represents number of ants, N is the population size and
number of nodes/cities, r and k stands for different routes and vehicles in the
problem, where r∈ {1, 2, .., s} and v∈ {1, 2, .., p}.
(a) Pheromone Initialization:

As the aim of a TSP is to minimize the cost and time for a tour, it is assumed
that initial value of pheromone τijrk= 1√

cijrk
, where cijrk is the cost for travelling

from i to j-th city along r-th route using k-th vehicle.
(b) Path Construction:

To construct a path Xm for mth ant, following steps are followed:

a. Let S={1, 2, ..., N} and l = 1

b. xml= a random element from the set S.

c. Let S=NS − {xml}

d. Let node i be the present position of an ant i.e., xml = i. Then next node
j ∈ S is selected through the rth route using kth vehicle by the ant with a
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probability pijrk given by the formula

pijrk =
τ δ1ijrk∑

j∈S
τ δ1ijrk

where δ1 is a user defined parameter which controls the relative importance
of pheromone concentration.

e. l = l + 1, xml = j.

f. if l < N , goto step (c).

n-such paths are constructed for different n ants.
(c) Pheromone Evaporation:

For evaporation of pheromone, the following formula is used

τijrk = (1− ρ)τijrk

where ρ is in [0, 1]. The constant ρ, specifies the rate at which pheromone evap-
orates, causing ants to forget previous decisions.
(d) Pheromone Updating:

After the completion of a tour by all ants, pheromone is increased on the paths
through which the ants have travelled. Depending upon the nature of the present
problem, pheromone is updated using the following rules.

τijrk = (1 − ρ)τijrk + ρ
n

n∑
i=1

τ bestijrk , where ρ refers to the rate of evaporation and n

be the ants, τijrk is highest value of pheromone.
(iii) Rough set based pheromone classification:

After updating of the pheromone quantity, we classify the pheromones de-
pending on the minimum , average and maximum pheromone information. Since
pheromone are represented by crisp values, we construct the common rough val-
ues from it,
Rough Pheromone =([r1*avg ph , r2*avg ph ], [r3*avg ph , r4*avg ph ]),
where r1=Max −Avg

Avg , r2=Max +Min
2 , r3=Max −Min

2 , r4=Avg −Min
Avg , avg ph means

average pheromone.
This pheromone of the chromosome, belongs to any one of the common rough

pheromone values and corresponding pc’s are created for each chromosome as
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Table 5.1: Rough Extended Trust Based Linguistic
Gene VVS VS S M H VH VVH
VVS VVL VL VL L VL VL VVL
VS VL VL L M L VL VL
S VL L L H L L VL
M L M H VH H M L
H VL L L H L L VL

VH VL VL L M L VL VL
VVH VVL VL VL L VL VL VVL

VVL, VL, L, M, H, VH, VVH. For this purpose, a mathematical equation Equ.
3.24 is developed in section 3.5.1. The common rough variables ([a,b],[c,d]) is
extended to 0 ≤ c ≤ e ≤ f ≤ a ≤ b ≤ g ≤ h ≤ d and is described as below,

Pheromone =



V eryV erySmall(V V S) for c ≤ pheromone < e
V erySmall(V jS) for e ≤ pheromone < f
Small(S) for f ≤ pheromone < a
Medium(M) for a ≤ pheromone ≤ b
High(H) for b < pheromone ≤ g
V eryHigh(V H) for g < pheromone ≤ h
V eryV eryHigh(V V H) for h < pheromone ≤ d

(5.1)

(iv) Comparison Crossover:
(a) Determination of Probability of Crossover (pc): For a pair of chromo-
somes (Xi, Xj), we construct the following rough set. At first the states of Xi and
Xj i.e, (VVS, VS, S, M, H, VH, VVH ) are determined by making trust measures
of rough values w.r.to their pheromones in common rough pheromone region
given in the proposed method. After the determination of states of pheromone
intervals of the chromosomes, their crossover probabilities are determined as lin-
guistic variables (VVL, VL, L, M, H, VH, VVH) using rough trust measures
which are presented in Table 5.1 following Equ. 5.1.
(b) Crossover Mechanism: For crossover, we choose two individuals (parents)

to produce new individuals (children). To get optimal result of a TSP, we take
a tour from one node (city)to next node (city) with minimum cost/value using
following algorithm (cf. section 4.3.1)(c)(iii).
(v) Generation Dependent Random Mutation:

(a) Generation Dependent Mutation(Variable Method): Here we model a
new form of mutation mechanism where probability of mutation (pm) are deter-
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mined by
pm= k√

Current generation number
, k∈[0,1].

(b) Selection for mutation: For each solution of P(t), generate a random
number r from the range [0,1]. If r < pm, then the solution is taken for mu-
tation. Here pm decreases gradually as generation increases. After calculating
the pm, mutation operation follows the conventional random mutation. Here we
randomly choose two nodes from each chromosome and exchange their positions
and replace the chromosome in the new offspring set.

(vi) Termination Criteria:
Hybrid algorithm is terminated if any one of the following conditions is satis-

fied (which ever is earlier):
(a) the best solution does not improve within 20 consecutive generations
(b) number of generations reaches user defined iterations (generations).

Hybrid Algorithm :
Input: Set iterACO(= 0), iterGA(= 0), maxiter and Maxgen (S0), Popula-

tion Size (pop−size), Number of ants (n), Probability of Mutation (pm), Problem
Data (cost and risk matrices).

Output: The optimum and near optimum paths/tour.
1. Start
2. Set initial generation iterACO = 0, iterGA = 0 and Maxgen(S0).
3. Initialize pheromone τijrk for i = 1, 2, ..., N and j = 1, 2, ..., N

using rth route and kth vehicle.
4. For (iterACO ≤ maxiter)
5. Construct path of n ants, i.e., n tours Xi = (xi1rk, xi2rk, .., xiNrk, xi1rk),

i = 1, 2, .., n using τijrk.
6. Made pheromone evaporation.
7. Update pheromone for all the paths.
8. iterACO = iterACO+1
9. End for
10. Set initial solution obtained from ACO.
11. For (iterGA ≤ S0)
12. Sum the pheromone of all individual chromosomes.
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13. Cluster the pheromone.
14. Develop the linguistic as VVLP, VLP, LP, etc.
15. Trust based pc created.
16. Crossover operation performed.
17. Mutation operation performed.
18. Update the chromosome.
19. Update the pheromone.
20. Find best optimum and near optimum solutions.
21. iterGA = iterGA+1
22. End for
23. Store global and near optimum solutions.
24. End

5.2.2 Mathematical Formulation and Its crisp equivalence

Model 5.1A: STSP (3DTSP) with Time Constraints:
Let c(i, j, k) and t(i, j, k) be the cost and time respectively for travelling from

i-th city to j-th city using k-th type conveyance. Then the salesman has to de-
termine a complete tour (x1, x2, ...,xN , x1) and corresponding conveyance types
(v1, v2, ..., vP ) to be used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N ,
vi ∈ {1, 2, ..P} for i = 1, 2, ..., N and all xi’s are distinct. Then the problem can
be mathematically formulated as:

minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

subject to
N−1∑
i=1

t(xi, xi+1, vi) + t(xN , x1, vl) ≤ tmax,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., or p}

 (5.2)

along with sub tour elimination criteria

N∑
i∈S

N∑
j∈S

xij ≤ |S| − 1,∀S ⊂ Q

where xij ∈ {0, 1}, i, j = 1, 2.., N..

 (5.3)

.
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Model 5.1B: 4DTSP with time Constraints (4DTSP):
Let c(i, j, r, k) and t(i, j, r, k) be the cost and time respectively for travelling

from i-th city to j-th city by the r-th route using k-th type conveyance. Then the
salesman has to determine a complete tour (x1, x2, ...,xN , x1) and corresponding
available route types (r1, r2, ..., rs) with conveyance types (v1, v2, ..., vp) to be
used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , ri ∈ {1, 2, ..s} and
vi ∈ {1, 2, ..p} for i = 1, 2, ..., N and all xi’s are distinct. Then the problem can
be mathematically formulated as:

minimize Z =
N−1∑
i=1

c(xi, xi+1, ri, vi) + c(xN , x1, rl, vl),

subject to
N−1∑
i=1

t(xi, xi+1, ri, vi) + t(xN , x1, rl, vl) ≤ tmax,

where xi 6= xj, i, j = 1, 2...N, ri, rl ∈ {1, 2.., or s}, vi, vl ∈ {1, 2.., or p}

(5.4)

Model 5.1C: 4DTSP in bi-fuzzy Environment (BF4DTSP):
In the above Equ. 5.4, if costs and times are bi-fuzzy variables, i.e, ˜̃c(i, j, r, k)

and ˜̃t(i, j, r, k) respectively, time limit tmax is also bi-fuzzy number ˜̃tmax, then
following the Theorem 3.1 [171], the above problem reduces to

minimize Z =
N−1∑
i=1

˜̃c(xi, xi+1, ri, vi) + ˜̃c(xN , x1, vlvl),

subject to
N−1∑
i=1

˜̃t(xi, xi+1, ri, vi) + ˜̃t(xN , x1, rl, vl) ≤ ˜̃tmax,

where xi 6= xj, i, j = 1, 2...N, ri, rl ∈ {1, 2.., ors}, vi, vl ∈ {1, 2.., or p}

(5.5)

Equ. 5.5 can be reformulated as
N−1∑
i=1

˜̃c(xi, xi+1, ri, vi) + ˜̃c(xN , x1, ri, vl) ≤ f , where f be a given crisp

value. Using Bifuzzy-Chance Constraint Multi objective Programing (CCMOP)
3.13.3 [103], and Theorems 3.1 and 3.2, we have

minimize f
Pos{θ|Pos{| ˜̃C(θ)Tx ≤ f} ≥ δ} ≥ γ

Pos{θ|Pos{| ˜̃T (θ)Tx ≤ ˜̃Tmax(θ)
T} ≥ θ} ≥ η

 (5.6)
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The objective function for Nes-Nes [171] is equivalently written as:

minimize f
Nes{θ|Nes{| ˜̃C(θ)Tx ≤ f} ≥ δ} ≥ γ

Nes{θ|Nes{| ˜̃T (θ)Tx ≤ ˜̃Tmax(θ)
T} ≥ θ} ≥ η

 (5.7)

where ˜̃C =
N−1∑
i=1

˜̃c(xi, xi+1, vi)+˜̃c(xN , x1, vl), ˜̃T =
N−1∑
i=1

˜̃t(xi, xi+1, vi)+
˜̃t1(xN , x1, vl),

˜̃Tmax = ˜̃tmax.
The Equs. 5.6 and 5.7 are transformed following possibility necessity measures
as .

minimize cT − L−1(δ)αcT1 − L−1(γ)αcT2
s.t. Tmax −RT +R−1(θ)βTmax1 + L−1(θ)αTmaxT1

+L−1(η)(αRT2 + βTmax2 ≥ 0

 (5.8)

and

minimize cT +R−1(1− δ)βcT1 +R−1(1− γ)βcT2

s.t. Tmax −RT − L−1(1− η)(αTmax2 + βRT2 )

−L−1(1− θ)αTmax1 −R−1(θ)βRT1 ≥ 0

 (5.9)

where αc1, α
c
2, α

R
1 , α

R
2 , α

Tmax
1 , αTmax2 , βc1, β

c
2, β

R
1 , β

R
2 , β

rmax
1 , βrmax2 are corresponding

left and right spreads of the reference function of LR fuzzy numbers and θ, η, δ, γ
are predetermined confidence levels.

5.2.3 Numerical Experiments

Testing for rACO-GA:
The performance of the proposed hybrid algorithm (HA) rACO-GA was found

for 15 standard benchmark problems using TSPLIB [162]. Table 5.2 gives the
results of rACO-GA along with the standard GA and ACO. The results are com-
pared in terms of total cost. Under 20 independent runs, the average result, best
found solution with standard deviation (SD) and relative error are presented in
Table 5.2.
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Table 5.2: Test TSPLIB Problems by rACO-GA

Instances Average Result Best Found Result Error & SD
HA ACO GA HA ACO GA HA ACO GA

fri26 938.51 939.63 941.64 937 937 937 0, 0.45 0.02, 0.76 0.16, 0.56
bays29 2021.23 2022.78 2022.56 2020 2020 2020 0, 0.43 0.16,.78 0.61, 1.04
bayg29 1610.34 1611.02 1610.97 1610 1610 1610 0, 0.12 0.11, 0.37 0.04, 0.76

dantzig42 699.27 703.51 700.07 699 703 699 0, 0.67 1.23, 0.98 0.45, 0.68
eil51 427.8 432.98 429.31 426 430 426 0, 0.98 3.65, 1.53 1.78, 0.93

berlin52 7548.9 7936.35 7654.87 7542 7883 7623 0.06, 1.76 18.54, 2.49 2.43, 1.07
st70 677.34 699.51 682.17 675 687 675 0.03, 1.02 5.87, 3.78 2.67, 1.45
eil76 539.65 567.27 545.86 538 547 547 0.78, 0.67 2.76, 1.93 3.87, 3.65
pr76 108265.76 108634.71 108572.32 108159 108346 108258 0.45, 0.99 12.67, 8.75 7.65, 3.95
rat99 1212.52 1236.46 1218.71 1211 1223 1211 0.34, 0.67 1.72, 1.98 1.23, 0.87

kroa100 21321.78 21567.82 21431.75 21282 21427 21378 0.56, 1.85 4.72, 2.95 2.12, 3.17
kroc100 20834.87 20956.23 20971.75 20750 20802 20831 0.58, 2.73 5.71, 0.98 2.45, 1.79
kroa150 26600.76 26952.34 26743.89 26524 26871 26701 0.87, 2.56 3.61, 4.12 2.91, 0.93
krob200 29450.7 30887.34 29965.27 29413 29944 29789 2.31, 3.02 15.47, 6.82 10.72, 6.14

pr299 49765.6 52945.78 50831.43 48743 49765 49391 4.97, 5.92 23.81, 10.21 10.89, 8.37

Table 5.3: Parameters for HA, ACO and SGA

Size (N) Maxgen IterACO IterGA Maxiter Ant number(n) popsize pc pm δ1

N≤ 50 200 80 120 100 30 50 0.35 0.1 0.2
50< N ≤ 100 300 120 180 200 50 100 0.3 0.15 0.2

100< N ≤ 150 400 200 300 300 80 100 0.35 0.2 0.3
150< N ≤ 200 500 200 400 400 100 130 0.4 0.2 0.3
200< N ≤ 250 600 250 450 400 100 150 0.45 0.2 0.3
250< N ≤ 300 900 400 500 500 100 150 0.45 0.25 0.3

The parameters of the HA are set as in Table 5.3 for different nodes of the TSP.
As the size of the TSP increases, pop-size, Maxgen, ant numbers for convergence
of the optimal solution also increases.

Model 5.1B: 4DTSP with time Constraint in Crisp Environment:
Now for a 4DTSP, where we consider three types of conveyances and maximum
three types of route as in Equ. 5.4. The cost and time matrices for the 4DTSP are
presented in Table 5.4.
Here we consider a deterministic 2DTSP from Equ. 5.2 using a single vehicle.

The problem is solved by rACO-GA and the results are presented in Table 5.5.
To determine these results, we have taken maximum generation=1000, and we

see that as time decreases, the corresponding tour cost increases as in real life
situation. Again, we consider a deterministic 3DTSP given by Equ. 5.2. The
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Table 5.4: Input Data: Crisp 4DTSP (Model 5.1B)

Crisp Cost Matrix(10*10) With Three Route and Conveyances
i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ (35,36,27) (18,39,30) (20,33,34) (30,21,62) (23,24,27) (41,37,21) (17,15,9) (35,36,37) (23,45,18)

(24,34,25) (19,24,26) (23,27,22) (32,14,18) (28,36,29) (31,45,62) (67,38,29) (45,38,29) (47,39,20)
(17,23,26) (30,24,31) (23,22,28) (31,43,32) (57,28,39) (24,11,28) (11,34,13) (19,28,17) (17,29,10)

2 (35,26,17) ∞ (40,21,32) (18,29,10) (35,26,37) (17,27,15) (18,23,16) (21,24,15) (18,28,19) (35,36,37)
(33,34,28) (57,28,39) (18,39,20) (27,36,30) (45,25,16) (23,26,22) (41,39,20) (17,28,19) (27,26,29)
(22,27,29) (13,27,19) (15,21,32) (31,54,23) (43,25,28) (19,28,38) (23,25,27) (32,37,33) (23,27,28)

3 (38,30,29) (17,58,34) ∞ (12,25,14) (42,25,46) (19,27,35) (29,19,24) (17,17,19) (17,16,19) (15,18,19)
(23,45,18) (23,24,27) (44,38,37) (29,30,46) (34,27,18) (27,28,17) (18,27,16) (24,22,29) (17,18,19)
(17,28,35) (37,27,19) (39,23,43) (43,33,54) (21,26,16) (15,17,19) (21,27,28) (21,26,28) (17,22,28)

4 (28,20,11) (10,22,14) (17,8,29) ∞ (30,19,24) (31,32,18) (17,43,23) (23,27,29) (35,36,37) (21,28,29)
(18,19,16) (18,28,32) (37,11,44) (30,17,11) (17,27,15) 11,34,13) (35,26,17) (28,36,29) (33,21,38)
(56,23,19) (333,46,28) (48,29,10) (41,37,21) (32,37,33) (30,21,62) (36,28,22) (17,10,19) (67,26,38)

5 (17,15,9) (42,23,34) (35,36,37) (20,31,43) ∞ (32,37,33) (28,36,29) (17,19,10) (21,22,29) (28,28,19)
(34,29,11) (45,19,20) (29,10,28) (36,29,13) (28,36,29) (32,15,33) (17,18,14) (22,29,30) (34,33,37)
(17,29,10) (15,29,30) (37,25,18) (52,19,38) (35,26,17) (17,34,23) (29,27,27) (35,36,37) (43,36,23)
(22,25,17) (17,15,9) (32,37,33) (43,25,28) (23,24,27) (22,26,17) (17,16,19) (22,17,16) (31,28,29)

6 (17,27,15) 11,34,13) (45,48,10) (54,38,20) (55,38,43) ∞ (28,36,29) (17,54,29) (28,39,10) (39,40,29)
(23,24,27) (43,25,28) (23,24,27) (28,29,17) (45,56,57) (47,46,35) (35,28,47) (24,34,25) (48,29,10)
(21,24,2) (35,26,17) (32,37,33) (17,27,15) (23,24,27) (48,29,10) (30,38,40) (56,53,61) (17,28,19)

7 (30,21,62) (43,25,28) (24,34,25) (53,67,18) (18,15,13) (33,27,26) ∞ (23,24,27) (28,39,28) (18,15,13)
(30,21,62) (43,25,28) (48,29,10) (18,15,13) (18,28,29) (28,25,29) (35,28,19) (53,67,18) (18,28,29)
(43,25,28) (53,67,18) (18,15,13) (34,56,15) (23,24,27) (17,27,15) (17,15,9) (17,27,15) (45,56,27)

8 (11,34,13) (18,15,13) (18,28,29) (45,56,27) (28,25,26) (17,27,15) (17,10,11) ∞ (23,24,27) (32,18,19)
(43,25,28) (30,21,62) (45,56,27) (35,26,17) (17,27,15) (45,56,27) (17,12,11) (23,17,19) (24,27,20)
(18,15,13) (17,15,9) (45,56,27) (54,37,29) (23,24,27) (48,29,10) (19,18,17) 12,34,13) (11,34,13) (37,45,28)

9 (18,15,13) 11,34,13) (35,26,17) (24,34,25) (18,28,29) (17,27,15) (20,26,19) (17,19,10) ∞ (54,37,29)
(19,18,17) (17,27,15) (23,24,27) (18,15,13) (45,56,27) (19,18,17) (28,36,29) (53,67,18) (22,32,16)
(21,34,13) (43,25,28) 12,33,13) (11,34,23) (17,27,15) (48,29,10) (17,27,15) (54,37,29) (54,37,29)

10 (30,21,62) (11,34,13) (16,34,13) (23,24,27) (24,34,25) (53,67,18) (18,28,29) (45,56,27) (19,18,17) ∞
(43,25,28) (23,24,27) (23,24,27) (18,15,13) (17,27,15) (35,36,37) (18,28,29) (28,36,29) (17,27,15)

Crisp time Matrix(10×10) With Three route and Conveyances respectively
i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ (.69,.68,.75) (.84,.63,.7) (.82,.7,.71) (.72,.8,.42) (.45,.34,.28) (.33,.42,.45) (.22,.32,.42) (.42,.62,.45) (.43,.53,.52)

(.26,.22,.25) (.32,.45,.71) (.24,.62,.44) (.36,.64,.72) (.32,.42,.26) (.45,.56,.73) (.23,.45,.36) (.21,.52,.33) (.24,.26,.27) (.32,.28,.35)
(.11,.16,.17) (.16,.18,.19) (.18,.19,.31) (.25,.28,.29) (.27,.28,.29) (.23,.25,.32) (.31,.33,.34) (.41,.43,.45) (.32,.34,.36) (.43,.46,.47)

2 .7,.66,.61 ∞ .76,.71,.69 .67,.62,.6 .75,.68,.65 .68,.64,.61 .69,.63,.6 .51,.45,.4 .6,.57,.53 .8,.76,.71
.8,.75,.71 .68,.61,.59 .9,.85,.82 .6,.58,.5 .7,.65,.62 .31,.26,.2 .32,.34,.19 .7,.69,.62 .81,.76,.7

.55,.51,.48 .72,.69,.62 .81,.76,.7 .51,.46,.4 .59,.55,.52 .8,.75,.71 .65,.6,.59 .58,.55,.51 .67,.61,.58
3 .6,.56,.53 .38,.31,.26 ∞ .71,.68,.66 .7,.64,.61 .61,.58,.56 .9,.86,.81 .64,.6,.58 .8,.76,.71 .76,.71,.68

.61,.58,.56 .6,.58,.51 .8,.76,.71 .48,.44,.4 .62,.6,.57 .89,.86,.81 .68,.65,.61 .55,.5,.48 .64,.6,.57

.69,.64,.62 .86,.81,.79 .79,.75,.72 .65,.63,.6 .69,.65,.62 .78,.74,.71 .6,.56,.52 .85,.82,.8 .68,.63,.59
4 .78,.75,.71 .76,.71,.69 .9,.85,.82 ∞ .76,.72,.7 .78,.75,.71 .68,.65,.61 .59,.58,.56 .78,.74,.71 .5,.45,.41

.85,.83,.8 .81,.78,.74 .7,.64,.6 .78,.71,.69 .68,.67,.65 .6,.54,.5 .79,.76,.72 .71,.69,.64 .6,.54,.5

.8,.76,.71 .55,.52,.49 .6,.58,.4 .78,.75,.71 .62,.58,.55 .51,.45,.41 .67,.62,.59 .8,.76,.7 .69,.66,.62
5 .81,.79,.75 .75,.74,.72 .58,.55,.5 .65,.62,.61 ∞ .81,.75,.72 .81,.78,.75 .66,.61,.58 .88,.81,.78 .7,.68,.65

.88,.81,.79 .61,.58,.54 .59,.58,.54 .55,.51,.48 .55,.51,.45 .71,.68,.66 .82,.79,.75 .9,.87,.81 .9,.87,.83
.8,.75,.71 .65,.63,.6 .85,.82,.78 .88,.84,.79 .7,.67,.63 .64,.6,.58 .55,.52,.48 .68,.61,.58 .65,.61,.58

6 .81,.79,.76 .75,.72,.7 .7,.68,.62 .87,.84,.8 .6,.58,.55 ∞ .55,.51,.46 .65,.63,.6 .73,.7,.68 .55,.52,.48
.88,.85,.81 .66,.61,.59 .65,.62,.6 .85,.81,.78 .58,.54,.49 .7,.68,.65 .76,.71,.68 .62,.58,.55 .65,.62,.6
.58,.54,.49 .65,.63,.6 .64,.6,.58 .7,.68,.65 .56,.54,.51 .55,.51,.46 .85,.81,.78 .65,.61,.59 .78,.74,.69

7 .56,.52,.48 .44,.38,.33 .6,.58,.55 .55,.51,.45 .38,.32,.28 .75,.71,.68 ∞ .55,.54,.51 .58,.54,.5 .71,.68,.64
.65,.62,.58 .71,.65,.6 .67,.64,.6 .71,.68,.64 .55,.53,.51 .52,.47,.4 .75,.76,.72 .65,.61,.58 .65,.62,.58
.56,.52,.49 .7,.68,.65 .64,.6,.58 .56,.52,.5 .62,.58,.53 .55,.52,.48 .55,.54,.51 .78,.76,.73 .58,.56,.51

8 .54,.52,.51 .9,.88,.84 .41,.38,.37 .76,.74,.7 .62,.57,.55 .8,.77,.7 .78,.72,.7 ∞ .43,.4,.36 .6,.54,.5
.5,.43,.4 .8,.81,.78 .51,.45,.4 .56,.52,.49 .52,.48,.45 .88,.83,.8 .54,.53,.5 .73,.7,.68 .58,.54,.49

.56,.51,.48 .58,.52,.5 .9,.85,.82 .7,.68,.64 .78,.75,.71 .74,.7,.68 .85,.81,.8 .62,.6,.58 .69,.65,.63
9 .88,.85,.81 .59,.57,.56 .62,.61,.58 .74,.7,.67 .65,.61,.58 .64,.61,.59 .62,.6,.57 .65,.61,.6 ∞ .78,.73,.7

.68,.65,.51 .58,.55,.53 .6,.54,.5 .68,.52,.58 .74,.7,.68 .67,.64,.6 .58,.54,.49 .79,.75,.72 .72,.7,.68

.78,.71,.69 .66,.61,.58 .69,.65,.62 .74,.7,.68 .83,.78,.75 .65,.61,.58 .59,.54,.5 .55,.52,.47 .64,.59,.58
10 .7,.67,.64 .77,.74,.7 .8,.76,.74 .65,.6,.57 .62,.58,.56 .87,.83,.78 .68,.64,.61 .52,.48,.54 .45,.41,.37 ∞

.69,.64,.6 .78,.76,.71 .68,.65,.63 .76,.71,.68 .75,.71,.66 .68,.64,.59 .59,.55,.51 .64,.6,.58 .61,.59,.58

209



CHAPTER 5. SINGLE OBJECTIVE OPTIMIZATION USING HYBRID HEURISTICS

Table 5.5: Results of 2DTSP in Crisp (Model 5.1A)
Algorithm Path Value Tmax

2-6-1-9-5-10-8-4-3-7 147 Without Tmax
2-6-1-9-5-10-8-4-3-7 147 8.51
7-2-6-4-3-5-10-8-9-1 154 8.57

rACO-GA 7-1-4-3-10-9-6-8-5-2 173 8.25
5-2-8-10-9-6-1-3-4-7 189 8.1

ACO 6-3-9-7-5-2-1-10-8-4 193 8.7
GA 2-8-5-7-6-10-4-3-9-1 197 8.7

rACO-GA 4-8-9-1-3-7-2-10-5-6 204 8.00
ACO 3-8-5-7-6-10-4-2-9-1 227 8.0
GA 8-2-1-3-4-10-7-9-6-5 221 8.00

rACO-GA 8-2-7-9-1-3-5-6-10-4 356 7.5
ACO 5-6-2-7-8-10-3-9-4-1 392 7.5
GA 10-6-2-7-8-5-3-9-4-1 398 7.5

problem is solved by rACO-GA and the results are presented in Table 5.6.
Next we take a deterministic 4DTSP given by Equ. 5.4 where three types of

routes and vehicles are considered. The problem is solved by rACO-GA and the
results are presented in Table 5.7.

Model 5.1C: 4DTSP with time constraint in bi-fuzzy Environments (BF-4DTSP)

Here we take the cost and time constraint as bi-fuzzy values for the 4DTSP as
in Equs. 5.8 and 5.9. Also we consider three types of routes and conveyances.
We use triangular LR Fu-Fu variables where (ξ, α, β) is LR fuzzy variable with
known left and right spreads. Also ξ is a triangular fuzzy variable connecting
with the corresponding components in Table 5.4.

Here predetermined confidence levels δ= γ=0.9, θ=η=0.95 and reference func-
tion L(x)=R(x)=1-x are taken. Left and right spreads of the LR fuzzy numbers
are given in the Table 5.8.
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5.2. MODEL-5.1: AN INTELLIGENT HYBRID ALGORITHM FOR 4DTSP UNDER
BI-FUZZY ENVIRONMENT

Table 5.6: Results of 3DTSP in Crisp (Model 5.1A)

Algorithm Path(Vehicle) Cost Time Tmax
9(1)-7(2)-8(3)-4(1)-3(1)-2(2)-5(1)-1(1)-10(2)-6(2) 170 8.75

2(2)-1(3)-10(1)-3(1)-6(2)-7(1)-4(2)-5(2)-10(1)-9(2) 193 8.62
6(1)-9(2)-10(1)-7(2)-3(1)-8(2)-5(1)-4(1)-2(1)-1(3) 205 8.59

rACO-GA 6(1)-10(2)-5(1)-7(1)-4(2)-3(3)-1(2)-10(3)-9(1)-2(1) 213 8.54 8.75
6(1)-7(2)-9(2)-8(1)-4(1)-5(2)-1(2)-2(2)-3(2)-10(1) 228 8.46

ACO 3(2)-10(1)-8(1)-2(3)-3(3)-1(3)-5(1)-4(2)-6(2)-8(1) 242 8.7 8.75
GA 4(1)-5(1)-8(1)-3(3)-2(1)-10(3)-5(1)-4(2)-6(2)-7(2) 247 8.7 8.75

3(2)-7(1)-4(1)-3(1)-1(1)-5(2)-10(2)-8(1)-6(1)-2(3) 282 7.95 8.00
rACO-GA 7(2)-9(1)-8(1)-10(2)-1(2)-3(2)-6(2)-5(1)-4(3)-2(1) 315 7.71 7.75

10(1)-7(2)-6(1)-5(3)-4(2)-2(3)-3(1)-1(2)-8(2)-9(1) 376 7.58

Table 5.7: Results of 4DTSP in Crisp (Model 5.1B)

Algorithm Path(Route, Vehicle) Cost Time Tmax
10(2,1)-7(3,2)-8(1,3)-4(2,1)-3(1,1)-2(1,2)-5(2,1)-1(3,1)-9(1,2)-6(2,2) 183 8.75

2(1,2)-10(2,3)-1(1,1)-4(1,2)-6(1,2)-7(3,1)-3(2,2)-5(1,2)-10(2,1)-9(2,2) 187 8.67
6(1,3)-9(2,1)-10(1,1)-7(1,2)-3(1,3)-8(2,2)-5(3,1)-4(2,1)-2(1,1)-1(2,3) 216 8.53

rACO-GA 6(2,1)-10(2,2)-5(1,1)-7(2,1)-4(2,3)-3(3,1)-1(2,1)-10(3,1)-9(2,1)-2(3,1) 219 8.42 8.75
6(1,3)-7(2,1)-9(2,1)-8(1,1)-4(2,1)-5(2,2)-1(1,2)-2(3,2)-3(1,2)-10(3,3) 245 8.34

ACO 3(1,2)-10(2,1)-8(3,1)-2(2,3)-3(3,1)-1(1,1)-5(2,1)-4(1,2)-6(2,2)-8(1,2) 253 8.73 8.75
GA 4(3,3)-5(1,2)-8(3,1)-3(2,3)-2(1,1)-10(2,3)-5(2,1)-4(1,2)-6(1,2)-7(2,2) 262 8.7 8.75

3(2,3)-7(1,2)-4(3,1)-3(2,1)-1(1,1)-5(2,1)-10(2,2)-8(1,3)-6(1,1)-2(3,2) 303 7.91 8.00
rACO-GA 8(3,2)-7(2,1)-9(3,1)-10(2,3)-1(2,2)-3(2,1)-6(2,1)-5(1,2)-4(3,3)-2(1,2) 338 7.66 7.75

10(1,2)-7(,12)-6(3,1)-5(3,2)-4(2,2)-2(1,3)-3(2,1)-1(3,2)-8(2,2)-9(2,1) 381 7.48

Table 5.8: Input Data: BF-4DTSP (Model 5.1C)
Fuzzy Cost Matrix (10 *10) with three route and conveyances respectively

i/j 1 2 3 4 5 6 7 8 9 10
1 (ξ, 2, 2) (ξ, 3, 3) (ξ,4, 4) (ξ, 5, 5) (ξ, 9, 9) (ξ, 5, 5) (ξ, 6, 6) (ξ, 2, 2) (ξ, 5, 5)

∞ (ξ, 4, 4) (ξ, 5, 5) (ξ, 6, 6) (ξ, 3, 3) (ξ, 10, 10) (ξ, 8, 8) (ξ, 8, 8) (ξ, 4, 4) (ξ, 5, 5)
(ξ, 1, 1) (ξ, 2, 2) (ξ, 7, 7) (ξ, 4, 4) (ξ, 6, 6) (ξ, 7, 7) (ξ, 5, 5) (ξ, 3, 3) (ξ, 1, 1)

2 (ξ, 3, 3) (ξ, 5, 5) (ξ, 1, 1) (ξ, 2, 2) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5)
(ξ, 4, 4) ∞ (ξ, 7, 7) (ξ, 3, 3) (ξ, 4, 4) (ξ, 5, 5) (ξ, 5, 5) (ξ, 7, 7) (ξ, 5, 5) (ξ, 6, 6)
(ξ, 2, 2) (ξ, 6, 6) (ξ, 8, 8) (ξ, 3, 3) (ξ, 2, 2) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5)

3 (ξ, 6, 6) (ξ, 1, 1) (ξ, 5, 5) (ξ, 1, 1) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5)
(ξ, 8, 8) (ξ, 4, 4) ∞ (ξ, 4, 4) (ξ, 2, 2) (ξ, 5, 5) (ξ, 1, 1) (ξ, 2, 2) (ξ, 3, 3) (ξ, 4, 4)
(ξ, 7, 7) (ξ, 3, 3) (ξ, 6, 6) (ξ, 9, 9) (ξ, 3, 3) (ξ, 6, 6) (ξ, 3, 3) (ξ, 5, 5) (ξ, 1, 1)

4 (ξ, 6, 6) (ξ, 3, 3) (ξ,5, 5) (ξ, 6, 6) (ξ, 6, 6) (ξ, 4, 4) (ξ, 7, 7) (ξ, 8, 8) (ξ, 9, 9)
(ξ, 4, 4) (ξ, 7, 7) (ξ, 3, 3) ∞ (ξ, 4, 4) (ξ, 1, 1) (ξ, 5, 5) (ξ, 2, 2) (ξ, 3, 3) (ξ, 5, 5)
(ξ,5, 5) (ξ, 3, 3) (ξ, 6, 6) (ξ, 7, 7) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5) (ξ, 5, 5)
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(ξ, 4, 4) (ξ, 2, 2) (ξ, 8, 8) (ξ, 9, 9) (ξ, 8, 8) (ξ, 5, 5) (ξ, 1, 1) (ξ, 5, 5) (ξ, 8, 8)
5 (ξ, 3, 3) (ξ, 7, 7) (ξ, 7, 7) (ξ, 5, 5) ∞ (ξ, 2,2) (ξ, 5, 5) (ξ, 7, 7) (ξ, 5, 5) (ξ, 6, 6)

(ξ, 6, 6) (ξ, 6, 6) (ξ, 6, 6) (ξ, 6, 6) (ξ, 7, 7) (ξ, 3, 3) (ξ, 2, 2) (ξ, 11, 11 (ξ, 3, 3)
(ξ, 9, 9) (ξ, 11, 11) (ξ, 7, 7) (ξ, 12, 12) (ξ, 5, 5) (ξ, 10, 10) (ξ, 17, 17) (ξ, 13, 13) (ξ, 14, 14)

6 (ξ, 11, 11) (ξ, 10, 10) (ξ, 5, 5) (ξ, 9, 9) (ξ, 1, 1) ∞ (ξ, 11, 11) (ξ, 12, 12) (ξ, 13, 13) (ξ, 14, 14)
(ξ, 10, 10) (ξ, 5, 5) (ξ, 3, 3) (ξ, 7, 7) (ξ, 9, 9) (ξ, 2, 2) (ξ, 12, 12) (ξ, 17, 17) (ξ, 15, 15)

(ξ, 5, 5) (ξ, 3, 3) (ξ, 4, 4) (ξ, 1, 1) (ξ, 2, 2) (ξ, 8, 8) (ξ, 2, 2) (ξ, 12, 12) (ξ, 16, 16)
7 (ξ, 9, 9) (ξ, 5, 5) (ξ, 1, 1) (ξ, 8, 8) (ξ, 8, 8) (ξ, 4, 4) ∞ (ξ, 17, 17) (ξ, 6, 6) (ξ, 7, 7)

(ξ, 11, 11) (ξ, 3, 3) (ξ, 4, 4) (ξ, 8, 8) (ξ, 7, 7) (ξ, 2, 2) (ξ, 10, 10) (ξ, 6, 6) (ξ, 1, 1)
(ξ, 10, 10) (ξ, 5, 5) (ξ, 2, 2) (ξ, 11, 11 (ξ, 3, 3) (ξ, 2, 2) (ξ, 12, 12) (ξ, 6, 6) (ξ, 6, 6)

8 (ξ, 5, 5) (ξ, 3, 3) (ξ, 1, 1) (ξ, 8, 8) (ξ, 9, 9) (ξ, 4, 4) (ξ, 7, 7) ∞ (ξ, 2, 2) (ξ, 1, 1)
(ξ, 11, 11) (ξ, 9, 9) (ξ, 2, 2) (ξ, 8, 8) (ξ, 3, 3) (ξ, 17, 17) (ξ, 11, 11) (ξ, 12, 12) (ξ, 6, 6)
(ξ, 10, 10) (ξ, 4, 4) (ξ, 2, 2) (ξ, 13, 13) (ξ, 8, 8) (ξ, 10, 10) (ξ,15, 15) (ξ, 1, 1) (ξ, 10, 10)

9 (ξ, 11, 11) (ξ, 5, 5) (ξ, 18, 18) (ξ, 10, 10) (ξ, 8, 8) (ξ, 3, 3) (ξ, 5, 5) (ξ, 1, 1) ∞ (ξ, 12, 12)
(ξ, 10, 10) (ξ, 2, 2) (ξ, 8, 8) (ξ, 9, 9) (ξ, 6, 6) (ξ, 6, 6) (ξ, 5, 5) (ξ, 11, 11) (ξ, 4, 4)

(ξ, 5, 5) (ξ, 10, 10) (ξ, 4, 4) (ξ, 12, 12) (ξ, 5, 5) (ξ, 12, 12) (ξ, 5, 5) (ξ, 1, 1) (ξ, 1, 1)
10 (ξ, 8, 8) (ξ, 7, 7) (ξ, 5, 5) (ξ, 1, 1) (ξ, 8, 8) (ξ, 2, 2) (ξ, 6, 6) (ξ, 16, 16) (ξ, 6, 6) ∞

(ξ, 11, 11) (ξ, 4, 4) (ξ, 10, 10) (ξ, 2, 2) (ξ, 9, 9) (ξ, 4, 4) (ξ, 17, 17) (ξ, 6, 6) (ξ, 11, 11)
Bi-fuzzy Time Matrix(10×10) With three routes and conveyances respectively

i/j 1 2 3 4 5 6 7 8 9 10
1 (ξ, .12, .12) (ξ, .13, .13) (ξ, .14, .14) (ξ, .15, .15) (ξ, .07, .07) (ξ, .11, .11) (ξ, .03, .03) (ξ, .1, .1) (ξ, .14, .14)

∞ (ξ, .02, .02) (ξ, .03, .03) (ξ, .04, .04) (ξ, .05, .05) (ξ, .13, .13) (ξ, .06, .06) (ξ, .01, .01) (ξ, .11, .11) (ξ, .13, .13)
(ξ, .07, .07) (ξ, .04, .04) (ξ, .06, .06) (ξ, .08, .08) (ξ, .03, .03) (ξ, .12, .12) (ξ, .12, .12) (ξ, .13, .13) (ξ, .14, .14)

2 (ξ, .1, .1) (ξ, .17, .17) (ξ, .01, .01) (ξ, .11, .11) (ξ, .07, .07) (ξ, .16, .16) (ξ, .01, .01) (ξ, .06, .06) (ξ, .02, .02)
(ξ, .24, .24) ∞ (ξ, .16, .16) (ξ, .17, .17) (ξ, .2, .2) (ξ, .06, .06) (ξ, .03, .03) (ξ, .07, .07) (ξ, .1, .1) (ξ, .15, .15)
(ξ, .14, .14) (ξ, .06, .06) (ξ, .1, .1) (ξ, .2, .2) (ξ, .1, .1) (ξ, .11, .11) (ξ, .03, .03) (ξ, .04, .04) (ξ, .05, .05)

3 (ξ, .06, .06) (ξ, .18, .18) (ξ, .03, .03) (ξ, .04, .04) (ξ, .1, .1) (ξ, .04, .04) (ξ, .1, .1) (ξ, .2, .2) (ξ, .15, .15)
(ξ, .13, .13) (ξ, .11, .11) ∞ (ξ, .16, ,16) (ξ, .05, .05) (ξ, .11, .11) (ξ, .15, .15) (ξ, .05, .05) (ξ, .1, .1) (ξ, .1, .1)
(ξ, .16, .16) (ξ, .22, .22) (ξ, .25, .25) (ξ, .01, .01) (ξ, .11, .11) (ξ, .03, .03) (ξ, .15, .15) (ξ, .07, .07) (ξ, .12, .12)

4 (ξ, .07, .07) (ξ, .13, .13) (ξ, .15, .15) (ξ, .26, .26) (ξ, .04, .04) (ξ, .05, .05) (ξ, .05, .05) (ξ, .25, .25) (ξ, .03, .03)
(ξ, .04, .04) (ξ, .07, .07) (ξ, .13, .13) ∞ (ξ, .14, .14) (ξ, .2, .2) (ξ, .15, .15) (ξ, .03, .03) (ξ, .05, .05) (ξ, .04, .04)
(ξ, .05, .05) (ξ, .06, .06) (ξ, .14, .14) (ξ, .2, .2) (ξ, .07, .07) (ξ, .05, .05) (ξ, .15, .15) (ξ, .13, .13) (ξ, .05, .05)
(ξ, .11, .11) (ξ, .2, .2) (ξ, .19, .19) (ξ, .18, .18) (ξ, .03, .03) (ξ, .04, .04) (ξ, .15, .15) (ξ, .03, .03) (ξ, .07, .07)

5 (ξ, .03, .03) (ξ, .1, .1) (ξ, .13, .13) (ξ, .12, .12) ∞ (ξ, .1, .1) (ξ, .07, .07) (ξ, .16, .16) (ξ, .03, .03) (ξ, .07, .07)
(ξ, .05, .05) (ξ, .06, .06) (ξ, .17, .17) (ξ, .16, .16) (ξ, .11, .11) (ξ, .04, .04) (ξ, .17, .17) (ξ, .08, .08) (ξ, .04, .04)
(ξ, .04, .04) (ξ, .02, .02) (ξ, .1, .1) (ξ, .2, .2) (ξ, .16, .16) (ξ, .15, .15) (ξ, .2, .2) (ξ, .04, .04) (ξ, .16, .16)

6 (ξ, .04, .04) (ξ, .2, .2) (ξ, .02, 0.2) (ξ, .12, .12) (ξ, .21, .21) ∞ (ξ, .2, .2) (ξ, .04, .04) (ξ, .1, .1) (ξ, .12, .12)
(ξ, .16, .16) (ξ, .12, .12) (ξ, .22, .22) (ξ, .1, .1) (ξ, .08, .08) (ξ, .2, .2) (ξ, .15, .15) (ξ, .12, .12) (ξ, .13, .13)

(ξ, .2, .2) (ξ, .06, .06) (ξ, .16, .16) (ξ, .09, .09) (ξ, .07, .07) (ξ, .16, .16) (ξ, .1, .1) (ξ, .15, .15) (ξ, .02, .02)
7 (ξ, .26, .26) (ξ, .2, .2) (ξ, .02, .02) (ξ, .21, .21) (ξ, .06, .06) (ξ, .16, .16) ∞ (ξ, .1, .1) (ξ, .13, .13) (ξ, .06, .06)

(ξ, .1, .1) (ξ, .26, .26) (ξ, .21, .21) (ξ, .22, .22) (ξ, .1, .1) (ξ, .23, .23) (ξ, .06, .06) (ξ, .25, .25) (ξ, .27, .27)
(ξ, .23, .23) (ξ, .16, .16) (ξ, .1, .1) (ξ, .07, .07) (ξ, .02, .02) (ξ, .12, .12) (ξ, .04, .04) (ξ, .05, .05) (ξ, .06, .06)

8 (ξ, .03 .03) (ξ, .01, .01) (ξ, .1, .1) (ξ, .08, .08) (ξ, .11, .11) (ξ, .1, .1) (ξ, .02, .02) ∞ (ξ, .07, .07) (ξ, .09, .09)
(ξ, .01, .01) (ξ, .21, .21) (ξ, .11, .11) (ξ, .16, .16) (ξ, .02, .02) (ξ, .04, .04) (ξ, .01, .01) (ξ, .05, .05) (ξ, .08, .08)
(ξ, .07, .07) (ξ, .21, .21) (ξ, .08, .08) (ξ, .1, .1) (ξ, .11, .11) (ξ, .24, .24) (ξ, .15, .15) (ξ, .11, .11) (ξ, .17, .17)

9 (ξ, .2, .2) (ξ, .08, .08) (ξ, .19, .19) (ξ, .16, .16) (ξ, .24, .24) (ξ, .15, .15) (ξ, .17, .17) (ξ, .16, .16) ∞ (ξ, .03, .03)
(ξ, .03, .03) (ξ, .07, .07) (ξ, .1, .1) (ξ, .21, .21) (ξ, .08, .08) (ξ, .24, .24) (ξ, .17, .17) (ξ, .03, .03) (ξ, .05, .05)

(ξ, .2, .2) (ξ, .21, .21) (ξ, .18, .18) (ξ, .24, .24) (ξ, .03, .03) (ξ, .1, .1) (ξ, .03, .03) (ξ, .15, .15) (ξ, .16, .16)
10 (ξ, .07, .07) (ξ, .21, .21) (ξ, .08, .08) (ξ, .17, .17) (ξ, .03, .03) (ξ, .16, .16) (ξ, .15, .15) (ξ, .11, .11) (ξ, .06, .06) ∞

(ξ, .16, .16) (ξ, .03, .03) (ξ, .06, .06) (ξ, .1, .1) (ξ, .16, .16) (ξ, .17, .17) (ξ, .11, .11) (ξ, .21, .21) (ξ, .07, .07)

Table 5.9: Optimum Results of BF-4DTSP (Model 5.1C)

DM Path(Route,Vehicle) Obj Value Time Tmax
ODM 9(1,2)-8(1,3)-3(2,2)-6(2,3)-1(1,2)-4(2,1)-5(3,2)-2(3,3)-7(2,2)-10(1,3) 152.5 8.52 8.75
PDM 5(1,2)-1(2,3)-9(1,2)-4(3,2)-10(3,3)-3(1,3)-6(2,3)-7(1,3)-2(2,3)-8(1,3) 176.5 8.74 8.75
ODM 10(1,2)-8(2,1)-6(1,2)-3(2,1)-7(1,2)-9(1,3)-4(2,3)-2(2,1)-5(2,3)-1(1,1) 182.5 8.34 8.75
PDM 9(1,2)-7(1,3)-6(2,3)-4(3,2)-1(1,2)-8(1,1)-10(3,1)-5(2,1)-3(3,2)-2(1,1) 204.5 8.67 8.75
ODM 10(1,2)-9(2,3)-1(1,2)-7(2,1)-8(1,2)-4(3,1)-2(1,2)-5(3,3)-3(2,3)-6(1,2) 294.5 8.1 8.5
PDM 7(2,1)-1(3,2)-8(1,3)-5(2,3)-8(2,2)-3(2,3)-2(3,2)-9(1,3)-4(1,3)-10(1,1) 324.5 8.43 8.5
ODM 2(1,3)-1(2,1)-7(1,3)-8(2,3)-5(1,3)-9(1,3)-10(2,3)-6(2,3)-3(2,3)-4(1,2) 256.5 7.58 8.25
PDM 5(3,3)-10(1,2)-8(2,3)-6(1,3)-2(2,1)-9(1,3)-7(1,3)-4(2,2)-3(1,3)-1(2,1) 294.5 8.17 8.25
ODM 9(1,2)-10(2,3)-4(3,2)-8(2,3)-1(2,1)-7(1,2)-6(2,1)-5(3,2)-3(2,2)-2(3,2) 267.5 7.76 8.00
PDM 10(2,3)-7(3,2)-2(1,2)-6(1,2)-8(1,3)-9(1,3)-4(3,1)-1(2,1)-5(3,5)-3(3,3) 345.5 7.97 8.00
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Table 5.10: Dispersion Results of rACO-GA
Instances BKS Best Worst Average SDb Error(%)

fri26 937 937 939 937.21 0.97 0.01
bays29 2020 2020 2030 2020.17 1.72 0.86
bayg29 1610 1610 1616 1610.28 0.56 1.27

dantzig42 699 699 704 700.03 0.58 1.09
eil51 426 426 429 426.75 1.03 1.61

berlin52 7542 7542 7559 7544.02 1.02 2.53
st70 675 675 682 678.14 .93 1.51
eil76 538 538 552 541.23 3.43 1.34
pr76 108159 108159 108276 108203.9 1.92 1.49
rat99 1211 1211 1218 1216.32 1.25 2.91

kroa100 21282 21282 21578 21419.2 6.23 2.69
lin105 14379 14379 14413 14384.13 2.57 1.49
eil101 629 629 637 629.56 0.71 1.87
ch105 6528 6528 6621 6539.12 11.71 2.63
pr136 96772 97832 99496 98324.7 5.79 4.21

5.2.4 Statistical Test

Dispersion Tests for rACO-GA:
Performance of the proposed method is statistically tested running it 25 times

and calculating the average value, standard deviation and percentage relative er-
ror according to optimal solution against some standard test problems. The re-
sults obtained by proposed method are given in Table 5.10.

Examining the Table 5.10, it is concluded that the proposed method, rACO-
GA has generated the closer results to the optimal solutions with minimal stan-
dard deviations for the problems fri26, bays29, dantzig42, st70 and eil101 . It
can be seen that except one problem pr136, for all other fourteen problems, best
results by rACO-GA are the same as the corresponding best results in literature.

5.2.5 Discussion
In this investigation, an intelligent hybrid algorithm rACO-GA is proposed

and illustrated in 4DTSP formulated in different environments. In rACO-GA,
a rough (7 -point) set based selection and comparison crossover are used along
with generation dependent random mutation. 4DTSP introduced for in the area
of TSPs and regarded as highly NP-hard combinatorial optimization problems.
Such 4DTSPs are here formulated crisp and bi-fuzzy costs and time boundary
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and solved by the proposed intelligent hybrid algorithm. Here, development of
rACO-GA is in general form and it can be applied in other discrete problems
such as network optimization, graph theory, solid transportation problems, vehi-
cle routing, covering salesman problem, VLSI chip design, etc. In spite of the
better results by rACO-GA, there is a lot of scope for development in rACO-GA,
specially for the 4DTSPs. In the 4DTSP with routes and conveyances, we have
assigned a route and conveyance arbitrarily during each crossover and mutation
for the optimum selection of the routes. This is a limitation of the present 4DT-
SPs.
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5.3 Model-5.2: A new Evolutionary Hybrid Algorithm for re-
stricted 4- Dimensional TSP (r-4DTSP) in Uncertain En-
vironment 2

In this model, a hybridized soft computing technique is proposed to solve
a restricted 4- dimensional TSP (r-4DTSP) where different paths with various
number of conveyances are available to travel between two cities. Here some
restrictions on paths and conveyances are imposed. The algorithm is a hybridiza-
tion of ant colony optimization (ACO) and swap operator based particle swarm
optimization (PSO) with genetic algorithm (GA). The initial solutions are pro-
duced by ACO which are used as swarm in PSO and then a modified GA with
selection, comparison crossover and generation dependent mutation is used. The
said hybrid algorithm (ACO-PSO-GA) is tested against some test functions and
efficiency of the proposed algorithm is established. The r-4DTSPs are considered
with crisp and bi-rough costs. In each environment, some statistical significant
studies due to different time constraint values and other system parameters are
presented. The models are illustrated with some numerical data.

5.3.1 Proposed hybrid ACO-PSO-GA

The proposed evolutionary hybrid algorithm, ACO-PSO-GA using com-
mon ACO for initial solution, the swap sequence based PSO and GA with rough
set based pheromone update selection (7-point), comparison crossover and gen-
eration dependent random mutation. The proposed ACO-PSO-GA and its proce-
dures are presented below:
(i) Representation:

Here a complete tour of N cities represents a solution of ants. So an N dimen-
sional integer vector Xi = (xi1, xi2, ..., xiN ), Yi = (ri1, ri2, ..., ris) and Zi = (vi1,
vi2, ..., viP ) are used as cities with route, and vehicles to represent a solution,
where xi1, xi2, ..., xiN represent N consecutive cities in a tour. In the algorithm,
initially ACO is used to produce a set of paths (tours) for the salesman, which is
a set of potential solutions for the PSO and after updating of the path, then the
GA part of the algorithm is used.

2This portion is communicated in Swarm And Evolutionary Computing, with title A new Evolutionary Hybrid
Algorithm for restricted 4- Dimensional TSP (r-4DTSP) in Uncertain Environment.
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(ii) Ant Colony Optimization (ACO):
Here in the proposed algorithm, τij represents amount of pheromone which

lies on the path between nodes i and j, iter1, iter2 and iter3 represent iteration
counter, maxiter1, maxiter2 and maxgen represent maximum iteration number
of the ACO, PSO algorithm and maximum generation number in GA part, n and
N represent number of ants or population size and number of nodes/cities respec-
tively, r and k stand respectively for different routes and vehicles in the problem.
where r∈ {1, 2, .., s} and v∈ {1, 2, .., p}. The remaining part of ACO algorithm
are same as given in last model in section 5.2.1.(ii).
(iii) Particle Swarm Optimization:

After finding the paths by above ACO, we use the swap sequence for updat-
ing the paths. A PSO normally starts with a set of potential solution ( called
swarm) of the decision making problem. Individual solutions (swarm) are called
particles and food is analogous to optimal solution. Here each particle i has a po-
sition vector xi(t), a velocity Vi(t), the position at which the best fitness Xpbest(t)
encountered by the particle, best position of the all particles Xgbest(t) in current
generation t. In the next generation (t+1), the position and velocity of the particle
are changed to Xi(t+1) and Vi(t+1) following the equations:{

Vi(t+ 1) = wVi(t) + c1r1(Xpbest(t)−Xi(t)) + c2r2(Xgbest(t)−Xi(t)),
Xi(t+ 1) = Xi(t) + Vi(t+ 1)

}
(5.10)

where c1, c2 are acceleration constants, w is the inertia weight and r1, r2 are two
random distinct values in [0,1]. For the TSP where swap sequence and swap
operations are used to find velocity of a particle and its updating Equ. 5.10. For
swap sequence based PSO, different nodes /cities are used to update a solution. A
sequence of swap operators known as swap sequence are used which to transform
a solution to updated solution.
(a) Swap Operator:

Let us consider a solution sequence of TSP with N nodes, X = (x1, x2, x3,..,xN ,
x1), where x1 ∈ {1, 2, 3, .., N} and each xi is distinct. Swap operator, SO(i,j) is
defined as exchange of nodes xi and xj in solution sequence X. Now X́= X+
SO(i,j) as a new sequence of operator SO(i,j) on X. Here ”+” is an operator but
not as algebraic sum. For an example, consider TSP with seven nodes and X=(x1,
x2, x3, x4,x5,x6,x7)= (2,3,1,4,6,5,7). If the swap operator is SO(3,5), then X́= X+
SO(i,j)= (2,3,1,4,6,5,7) + SO(3,5) = (2,3,6,4,1,5,7). Here 3rd and 5th positions
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are exchanged.
(b) Swap Sequence:

The swap sequence SS is made up with one or more swap operators. Consider
SS= (SO1, SO2,..., SOn), where SO1, SO2,..., SOn are swap operators, here the
order of the swap operator in SS is important. All the swap operators of the swap
sequence act on the solution in order. This can be formulated as below:

X́= X+ SS = X+(SO1, SO2,..., SOn) = (((X+SO1)+SO2)...+SOn)
Different swap sequences are used on the same solution may produce a same

new solution. Then for a Basic Swap Sequence (BSS) is form which has the least
swap operator. Several swap sequence are merged into a new swap sequence.
Here we use the operator ⊕ for merging two swap sequences.
(c) Basic Swap Sequence:

Let us consider two solutions, A and B, to construct BSS namely SS which act
on B to get A, SS= A	B, We can swap the nodes in B according to A from left
to right to get SS. Consider A:(1, 2, 3, 4, 5), B:(2, 3, 1, 5, 4), now A(1)=B(3)=1,
so first swap operator is SO(1,3), B́=B ⊕ SO(1,3), similarly found SO(2,3) and
SO(4,5). Thus Basic swap sequence SS= A 	 B = (SO(1,3), SO(2,3), SO(4,5)).
(d) Discrete PSO Updating:

Now the original PSO updated for TSP is as follows:{
Vi(t+ 1) = wVi(t)⊕ c1r1(Xpbest(t)	Xi(t))⊕ c2r2(Xgbest(t)	Xi(t)),
Xi(t+ 1) = Xi(t)⊕ Vi(t+ 1)

}
(5.11)

The given parameters r1, r2, c1, c2 and w are now defined as follows, c1r1(Xpbest(t)	
Xi(t)) gives all swap operators in BSS. Similarly for the c2r2(Xgbest(t)	Xi(t))
also.
(e) Pseudo Code of PSO:

for i = 1 to n do
X i(0) = Xi(t-1)
Xpbesti(0) = Xi(0)
Vk(0) = SO(i,j), i,j∈ {1, 2, .., N}, i6=j.

end for
t = 1
Xgbest= Minimum cost solution from solution set {X1(0), X2(0), ..., Xni(0)}
end do
for i = 1 to ni do
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Determine Vi(t) and Xi(t) using Equ. 5.11.
If f(Xpbesti(t-1)) > f(Xi(t))
Xpbesti(t) = Xi(t)

else
Xpbesti(t) = Xpbesti(t-1)

end if
If f(Xgbest) > f(Xi(t))
Xgbest (t)= Xi(t)

end if
end for

(iv) Genetic Algorithm:
(a) Rough set based pheromone classification:

After finding the solution from discrete PSO, we again collect pheromone
quantity, then classify the pheromones depending on the minimum, average and
maximum pheromone information. Since pheromones are represented by crisp
values, we construct the common rough values from it,
Rough Pheromone =([r1*avg ph , r2*avg ph ], [r3*avg ph , r4*avg ph ]),
where r1=Max −Avg

Avg , r2=Max +Min
2 , r3=Max −Min

2 , r4=Avg −Min
Avg

According to the pheromone of the chromosome, it belongs to any one of
the common rough pheromone values and corresponding pc’s are created of each
chromosome as VVL, VL, L, M, H, VH, VVH. The common rough variables
([a,b],[c,d]) is extended to 0 ≤ c ≤ e ≤ f ≤ a ≤ b ≤ g ≤ h ≤ d and is
described as below,

Pheromone =



V eryV erySmall(V V S) for c ≤ pheromone < e
V erySmall(V jS) for e ≤ pheromone < f
Small(S) for f ≤ pheromone < a
Medium(M) for a ≤ pheromone ≤ b
High(H) for b < pheromone ≤ g
V eryHigh(V H) for g < pheromone ≤ h
V eryV eryHigh(V V H) for h < pheromone ≤ d

(5.12)
(b) Comparison Crossover:
(i) Determination of Probability of Crossover (pc):

For a pair of chromosomes (Xi, Xj), we construct the following rough set. At
first, the states of Xi and Xj i.e, (VVS, VS, S, M, H, VH, VVH) are determined
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by making trust measures of rough values w.r.t their pheromones in common
rough pheromone region given in Equ. 5.12 . After the determination of states
of pheromone intervals of the chromosomes, their crossover probabilities are de-
termined as linguistic variables (VVL, Vl, L, M, H, VH, VVH) using rough trust
measures which are presented in Table 5.1 following Equ. 5.12.
(ii) Crossover Mechanism:
The procedure are given in section 4.3.1(iii).
(c) Generation Dependent Random Mutation:

(i) Generation Dependent Mutation(Variable Method): Here we model for-
mulate a modified form of mutation mechanism where probability of mutation
(pm) are determined by

pm= k√
1+Current generation number

, k∈[0,1].
(ii) Selection for mutation: For each solution of P(t), generate a random num-

ber r from the range [0,1]. If r < pm, then the solution is taken for mutation.
Here pm decreases gradually as generation increases. After calculating the pm,
mutation operation follows the conventional random mutation. Here we ran-
domly choose two nodes from each chromosome and exchange their positions
and replace the chromosome in the new offspring set.
(v) Hybrid Algorithm (ACO-PSO-GA):

Input: Set iterACO = 0, iterGA = 0, maxiter and Maxgen (S0), Population
Size (pop−size), Number of ants (n), Probability of Mutation (pm), Problem Data
(cost matrix, time matrix, route and vehicle set).

Output: The optimum and near optimum solutions.
1. Start
2. Set iterACO = 0, iterPSO = 0, iterGA = 0 and Maxgen(S0).
3. Initialize pheromone τijrk for i = 1, 2, ..., N and j = 1, 2, ..., N using

rth route and kth vehicle.
4. For (iterACO ≤ maxiter)
5. Construct path of n ants, i.e., n tours Xi = (xi1rk, xi2rk, .., xiNrk, xi1rk),

i = 1, 2, .., n using τijrk.
6. Make pheromone evaporation.
7. Update pheromone for all the paths by equation in section 3.2.4.
8. iterACO = iterACO+1
9. End for
10. Set initial solution obtained from ACO.
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11. For (iterPSO ≤ maxiter1)
12. Initialize the Xi(t), Yi(t), Zi(t)
13. Determine Xpbest, Xgbest
14. Update by Equ. 5.11
15. end for
16. Store the best solutions
17. For (iterGA ≤ S0)
18. Sum the pheromone of all individual chromosomes.
19. Clustere the pheromone.
20. Develop the linguistic VVP, VLP, LP, MP, HP, VHP, VVHP
21. Trust based pc created.
22. Crossover operation.
23. Mutation operation.
24. Update the chromosome.
25. Update the pheromone.
26. Find best optimum and near optimum solutions.
27. iterGA = iterGA+1
28. End for
29. Store global and near optimum solutions.
30. End

5.3.2 Mathematical Formulation and Its crisp equivalence

Model 5.2A: 4DTSP in restricted routes with time Constraints (r-4DTSP):
In real life, it is seen that in all stations, all types routes may not be available

due to the geographical position of the station,weather conditions, etc. So it is
more realistic, that restricted routes be considered to travel different stations. Let
c(i, j, r, k) and t(i, j, r, k) be the cost and time respectively for travelling from i-
th city to j-th city by the r-th route using k-th type conveyance. Then the salesman
has to determine a complete tour (x1, x2, ...,xN , x1) and corresponding available
route types (rm1, rm2, ..., rms) with conveyance types (vq1, vq2, ..., vqp) providing
maximum available s1(≤ S) and p1(≤ P ) types of routes and conveyances to be
used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , rmi ∈ {1, 2, ..s1} and
vqi ∈ {1, 2, ..p1} for i = 1, 2, ..., N and all xi’s are distinct. Then the problem
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can be mathematically formulated as:

minimize Z =
N−1∑
i=1

c(xi, xi+1, rmi, vqi) + c(xN , x1, rml, vql),

subject to
N−1∑
i=1

t(xi, xi+1, rmi, vqi) + t(xN , x1, rml, vql) ≤ tmax,

where xi 6= xj, i, j = 1, 2...N,m = 1, 2, ...s1 , q = 1, 2, .., p1,
rmi, rml ∈ {1, 2.., or s1}, vqi, vql ∈ {1, 2.., or p1},


(5.13)

Model 5.2B: r-4DTSP in bi-rough Environment (BR-r-4DTSP):
In the above problem Equ. 5.13, if costs and times are bi-rough variables, i.e,

ˆ̂c(i, j, r, k) and ˆ̂t(i, j, r, k) respectively, time limit tmax is also bi-rough number
ˆ̂tmax, then following the section 3.13.7, the above problem reduces to

to minimize Z =
N−1∑
i=1

ˆ̂c(xi, xi+1, rmi, vqi) + ˆ̂c(xN , x1, rm1vql),

subject to
N−1∑
i=1

ˆ̂t(xi, xi+1, rmi, vqi) + ˆ̂t(xN , x1, rml, vql) ≤ ˆ̂tmax,

where xi 6= xj, i, j = 1, 2...N,m = 1, 2, ...s1 , q = 1, 2, .., p1,
rmi, rml ∈ {1, 2.., or s1}, vqi, vql ∈ {1, 2.., or p1}.


(5.14)

Equ. 5.14 can be reformulated as
N−1∑
i=1

ˆ̂c(xi, xi+1, rmi, vqi) + ˆ̂c(xN , x1, rmi, vql) ≤ f , where f be a given

crisp value. Using Bi-rough CCMOP in section 3.13.7, we have

minimize f

Ch{θ|{| ˆ̂C(θ)Tx ≤ f} ≥ δ} ≥ γ

Ch{θ|{| ˆ̂T (θ)Tx ≤ ˆ̂
Tmax(θ)

T} ≥ θ} ≥ η

 (5.15)

The objective function for Ex-Tr are equivalently written as in section 3.13.8
below:

minimize f

Ex{λ|Tr{| ˆ̂C(λ)Tx ≤ f} ≥ β}
Ex{λ|Tr{| ˆ̂T (λ)Tx− ˆ̂tmax(λ)T ≤ w} ≥ η}

 (5.16)
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where ˆ̂
C =

N−1∑
i=1

ˆ̂c(xi, xi+1, vi) + ˆ̂c(xN , x1, vl),

ˆ̂
T =

N−1∑
i=1

ˆ̂t(xi, xi+1, vi) + ˆ̂t1(xN , x1, vl),

ˆ̂
Tmax = ˆ̂tmax.

The objective function for Ex-Tr are equivalently written as below:

minimize f =


u− r + 2α(s+ r), if u− r ≤ f ≤ u− p
u(p+q+r+s)−r(q+p)−p(s+r)+2α(s+r)(q+p)

p+q+r+s if u− p ≤ f ≤ u+ q

u− r + (2α− 1)(s+ r) if u+ q ≤ f ≤ u+ s
(5.17)

s.t. w ≥


u1 − r1 + 2η(s1 + r1), if u1 − r1 ≤ w ≤ u1 − p1
u1(p1+q1+r1+s1)−r1(q1+p1)−p1(s1+r1)+2η(s1+r1)(q1+p1)

p1+q1+r1+s1
, u1 − p1 ≤ w ≤ u1 + q1

u1 − r1 + (2η − 1)(s1 + r1) if u1 + q1 ≤ w ≤ u1 + s1

(5.18)
where f, w are crisp values and u and u1 are expectation of rough variables, α, η
which are predetermined confidence levels.

5.3.3 Numerical Experiments

Testing for hybrid ACO-PSO-GA:
The proposed ACO-PSO-GA algorithm was proposed on 15 standard bench-

marked problems from TSPLIB [162]. Table 5.11 gives the results of hybrid
ACO-PSO-GA along with the results by SGA, ACO and their hybridization
ACO-GA. We compare the results in terms of total cost. The the average re-
sults and best found solution are obtained under 20 independent runs.

The parameters for the hybrid ACO-PSO-GA are set as those in Table 5.12
for different nodes of the TSP. As the size of the TSP increases , the pop-size,
Maxgen, ant numbers for convergence for the optimal solution also increases.
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Table 5.11: Test TSPLIB Problems by ACO-PSO-GA
Instances Average Result Best Found Result

ACO-PSO-GA ACO-GA ACO GA ACO-PSO-GA ACO-GA ACO GA
fri26 937.73 938.51 939.63 939.64 937 937 937 937

bays29 2020.45 2021.23 2022.78 2022.56 2020 2020 2020 2020
bayg29 1610.01 1610.34 1611.02 1610.97 1610 1610 1610 1610

dantzig42 699.12 699.27 703.51 700.07 699 699 703 699
eil51 427.26 427.8 432.98 429.31 426 426 430 426

berlin52 7544.81 7548.9 7936.35 7654.87 7542 7542 7883 7623
st70 678.11 677.34 699.51 682.17 675 675 687 675
eil76 538.31 539.65 567.27 545.86 538 538 547 547
pr76 108194.65 108265.76 108634.71 108572.32 108159 108159 108346 108258
rat99 1211.21 1212.52 1236.46 1218.71 1211 1211 1223 1211

kroa100 21298.06 21321.78 21567.82 21431.75 21282 21282 21427 21378
kroc100 20802.35 20834.87 20956.23 20971.75 20750 20750 20802 20831
kroa150 26616.38 26600.76 26952.34 26743.89 26524 26524 26871 26701
krob200 29367.65 29450.7 30887.34 29965.27 29413 29413 29944 29789
pr299 48906.14 49765.6 52945.78 50831.43 48743 48743 49765 49391

Table 5.12: Parameters for Hybrid Algorithm
Size (N) Maxgen IterPSO IterACO IterGA Maxiter Ant number(n) popsize pc pm δ1

N≤ 50 200 30 80 120 100 30 50 0.35 0.1 0.2
50< N ≤ 100 300 40 120 180 200 50 100 0.3 0.15 0.2

100< N ≤ 150 400 40 200 300 300 80 100 0.35 0.2 0.3
150< N ≤ 200 500 50 200 400 400 100 130 0.4 0.2 0.3
200< N ≤ 250 600 60 250 450 400 100 150 0.45 0.2 0.3
250< N ≤ 300 900 80 400 500 500 100 150 0.45 0.25 0.3

Model 5.2A: r-4DTSP with time Constraint in Crisp Environment

For r-4DTSP, here we consider three types of conveyances and maximum
three types of route as in Equ. 5.13. The cost and time matrices for the r-4DTSP
are presented in Table 5.13.
From the Equ. 5.13, the equations for 3DTSP and 2DTSP are obtained taking

only one route and one route along with one conveyance respectively. Taking
the data from Table 5.13 for 1st route only, results of 3DTSP are obtained by
the proposed algorithm. Similarly for 2DTSP, data for the first route and first
conveyance are used.

Here we consider a deterministic 4DTSP given by Equ. 5.13 removing the
route restrictions. The problem is solved by ACO-PSO-GA and the results are
presented in Table 5.16.
Again we consider a deterministic restricted 4DTSP given by Equ. 5.13. The

problem is solved by ACO-PSO-GA and the results are presented in Table 5.17.

223



CHAPTER 5. SINGLE OBJECTIVE OPTIMIZATION USING HYBRID HEURISTICS

Table 5.13: Input Data: Crisp r-4DTSP (Model 5.2A)
Crisp Cost Matrix(10×10) With Three Route and Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ (35,36,27) (18,39,30) (20,33,34) (30,21,62) (23,24,27) (41,37,21) (17,15,9) (35,36,37) (23,45,18)

(24,34,25) (19,24,26) (23,27,22) (32,14,18) (28,36,29) (31,45,62) (67,38,29) (45,38,29) (47,39,20)
(17,23,26) (30,24,31) (23,22,28) (31,43,32) (57,28,39) (24,11,28) (11,34,13) (19,28,17) (17,29,10)

2 (35,26,17) ∞ (40,21,32) (18,29,10) (35,26,37) (17,27,15) (18,23,16) (21,24,15) (18,28,19) (35,36,37)
(33,34,28) (57,28,39) (18,39,20) (27,36,30) (45,25,16) (23,26,22) (41,39,20) (17,28,19) (27,26,29)
(22,27,29) (13,27,19) (15,21,32) (31,54,23) (43,25,28) (19,28,38) (23,25,27) (32,37,33) (23,27,28)

3 (38,30,29) (17,58,34) ∞ (12,25,14) (42,25,46) (19,27,35) (29,19,24) (17,17,19) (17,16,19) (15,18,19)
(23,45,18) (23,24,27) (44,38,37) (29,30,46) (34,27,18) (27,28,17) (18,27,16) (24,22,29) (17,18,19)
(17,28,35) (37,27,19) (39,23,43) (43,33,54) (21,26,16) (15,17,19) (21,27,28) (21,26,28) (17,22,28)

4 (28,20,11) (10,22,14) (17,8,29) ∞ (30,19,24) (31,32,18) (17,43,23) (23,27,29) (35,36,37) (21,28,29)
(18,19,16) (18,28,32) (37,11,44) (30,17,11) (17,27,15) 11,34,13) (35,26,17) (28,36,29) (33,21,38)
(56,23,19) (333,46,28) (48,29,10) (41,37,21) (32,37,33) (30,21,62) (36,28,22) (17,10,19) (67,26,38)

5 (17,15,9) (42,23,34) (35,36,37) (20,31,43) ∞ (32,37,33) (28,36,29) (17,19,10) (21,22,29) (28,28,19)
(34,29,11) (45,19,20) (29,10,28) (36,29,13) (28,36,29) (32,15,33) (17,18,14) (22,29,30) (34,33,37)
(17,29,10) (15,29,30) (37,25,18) (52,19,38) (35,26,17) (17,34,23) (29,27,27) (35,36,37) (43,36,23)
(22,25,17) (17,15,9) (32,37,33) (43,25,28) (23,24,27) (22,26,17) (17,16,19) (22,17,16) (31,28,29)

6 (17,27,15) 11,34,13) (45,48,10) (54,38,20) (55,38,43) ∞ (28,36,29) (17,54,29) (28,39,10) (39,40,29)
(23,24,27) (43,25,28) (23,24,27) (28,29,17) (45,56,57) (47,46,35) (35,28,47) (24,34,25) (48,29,10)

(35,26,17) (32,37,33) (17,27,15) (23,24,27) (48,29,10) (30,38,40) (56,53,61) (17,28,19)
7 (30,21,62) (43,25,28) (24,34,25) (53,67,18) (18,15,13) (33,27,26) ∞ (23,24,27) (28,39,28) (18,15,13)

(30,21,62) (43,25,28) (48,29,10) (18,15,13) (18,28,29) (28,25,29) (35,28,19) (53,67,18) (18,28,29)
(43,25,28) (53,67,18) (18,15,13) (34,56,15) (23,24,27) (17,27,15) (17,15,9) (17,27,15) (45,56,27)

8 (11,34,13) (18,15,13) (18,28,29) (45,56,27) (28,25,26) (17,27,15) (17,10,11) ∞ (23,24,27) (32,18,19)
(43,25,28) (30,21,62) (45,56,27) (35,26,17) (17,27,15) (45,56,27) (17,12,11) (23,17,19) (24,27,20)
(18,15,13) (17,15,9) (45,56,27) (54,37,29) (23,24,27) (48,29,10) (19,18,17) 12,34,13) (37,45,28)

9 (18,15,13) 11,34,13) (35,26,17) (24,34,25) (18,28,29) (17,27,15) (20,26,19) (17,19,10) ∞ (54,37,29)
(19,18,17) (17,27,15) (23,24,27) (18,15,13) (45,56,27) (19,18,17) (28,36,29) (22,32,16)
(21,34,13) (43,25,28) 12,33,13) (11,34,23) (17,27,15) (48,29,10) (17,27,15) (54,37,29) (54,37,29)

10 (30,21,62) (11,34,13) (16,34,13) (23,24,27) (24,34,25) (53,67,18) (18,28,29) (45,56,27) (19,18,17) ∞
(43,25,28) (23,24,27) (23,24,27) (18,15,13) (17,27,15) (35,36,37) (18,28,29) (28,36,29) (17,27,15)

Crisp time Matrix(10times10) With Three route and Conveyances respectively
-i/j 1 -2 3 4 5 6 7 8 9 10
1 (.69,.68,.75) (.84,.63,.7) (.82,.7,.71) (.72,.8,.42) (.45,.34,.28) (.33,.42,.45) (.22,.32,.42) (.42,.62,.45) (.43,.53,.52)

∞ (.32,.45,.71) (.24,.62,.44) (.36,.64,.72) (.32,.42,.26) (.45,.56,.73) (.23,.45,.36) (.21,.52,.33) (.24,.26,.27) (.32,.28,.35)
(.16,.18,.19) (.18,.19,.31) (.25,.28,.29) (.27,.28,.29) (.23,.25,.32) (.31,.33,.34) (.41,.43,.45) (.32,.34,.36) (.43,.46,.47)

2 .7,.66,.61 ∞ .76,.71,.69 .67,.62,.6 .75,.68,.65 .68,.64,.61 .69,.63,.6 .51,.45,.4 .6,.57,.53 .8,.76,.71
.8,.75,.71 .68,.61,.59 .9,.85,.82 .6,.58,.5 .7,.65,.62 .31,.26,.2 .32,.34,.19 .7,.69,.62 .81,.76,.7
.68,.7,.61 .6,.61,.4 .29,.65,.32 .56,.48,.35 .17,.35,.52 .41,.56,.22 .42,.44,.12 .37,.29,.52 .61,.46,.73

.55,.51,.48 .72,.69,.62 .81,.76,.7 .51,.46,.4 .59,.55,.52 .8,.75,.71 .65,.6,.59 .58,.55,.51 .67,.61,.58
3 .6,.56,.53 .38,.31,.26 ∞ .71,.68,.66 .7,.64,.61 .61,.58,.56 .9,.86,.81 .64,.6,.58 .8,.76,.71 .76,.71,.68

.61,.58,.56 .6,.58,.51 .8,.76,.71 .48,.44,.4 .62,.6,.57 .89,.86,.81 .68,.65,.61 .55,.5,.48 .64,.6,.57

.69,.64,.62 .86,.81,.79 .79,.75,.72 .65,.63,.6 .69,.65,.62 .78,.74,.71 .6,.56,.52 .85,.82,.8 .68,.63,.59
4 .78,.75,.71 .76,.71,.69 .9,.85,.82 ∞ .76,.72,.7 .78,.75,.71 .68,.65,.61 .59,.58,.56 .78,.74,.71 .5,.45,.41

.85,.83,.8 .81,.78,.74 .7,.64,.6 .78,.71,.69 .68,.67,.65 .6,.54,.5 .79,.76,.72 .71,.69,.64 .6,.54,.5

.8,.76,.71 .55,.52,.49 .6,.58,.4 .78,.75,.71 .62,.58,.55 .51,.45,.41 .67,.62,.59 .8,.76,.7 .69,.66,.62
5 .81,.79,.75 .75,.74,.72 .58,.55,.5 .65,.62,.61 ∞ .81,.75,.72 .81,.78,.75 .66,.61,.58 .88,.81,.78 .7,.68,.65

.88,.81,.79 .61,.58,.54 .59,.58,.54 .55,.51,.48 .55,.51,.45 .71,.68,.66 .82,.79,.75 .9,.87,.81 .9,.87,.83
.8,.75,.71 .65,.63,.6 .85,.82,.78 .88,.84,.79 .7,.67,.63 .64,.6,.58 .55,.52,.48 .68,.61,.58 .65,.61,.58

6 .81,.79,.76 .75,.72,.7 .7,.68,.62 .87,.84,.8 .6,.58,.55 ∞ .55,.51,.46 .65,.63,.6 .73,.7,.68 .55,.52,.48
.88,.85,.81 .66,.61,.59 .65,.62,.6 .85,.81,.78 .58,.54,.49 .7,.68,.65 .76,.71,.68 .62,.58,.55 .65,.62,.6
.58,.54,.49 .65,.63,.6 .64,.6,.58 .7,.68,.65 .56,.54,.51 .55,.51,.46 .85,.81,.78 .65,.61,.59 .78,.74,.69

7 .56,.52,.48 .44,.38,.33 .6,.58,.55 .55,.51,.45 .38,.32,.28 .75,.71,.68 ∞ .55,.54,.51 .58,.54,.5 .71,.68,.64
.65,.62,.58 .71,.65,.6 .67,.64,.6 .71,.68,.64 .55,.53,.51 .52,.47,.4 .75,.76,.72 .65,.61,.58 .65,.62,.58
.56,.52,.49 .7,.68,.65 .64,.6,.58 .56,.52,.5 .62,.58,.53 .55,.52,.48 .55,.54,.51 .78,.76,.73 .58,.56,.51

8 .54,.52,.51 .9,.88,.84 .41,.38,.37 .76,.74,.7 .62,.57,.55 .8,.77,.7 .78,.72,.7 ∞ .43,.4,.36 .6,.54,.5
.5,.43,.4 .8,.81,.78 .51,.45,.4 .56,.52,.49 .52,.48,.45 .88,.83,.8 .54,.53,.5 .73,.7,.68 .58,.54,.49

.56,.51,.48 .58,.52,.5 .9,.85,.82 .7,.68,.64 .78,.75,.71 .74,.7,.68 .85,.81,.8 .62,.6,.58 .69,.65,.63
9 .88,.85,.81 .59,.57,.56 .62,.61,.58 .74,.7,.67 .65,.61,.58 .64,.61,.59 .62,.6,.57 .65,.61,.6 ∞ .78,.73,.7

.68,.65,.51 .58,.55,.53 .6,.54,.5 .68,.52,.58 .74,.7,.68 .67,.64,.6 .58,.54,.49 .79,.75,.72 .72,.7,.68

.78,.71,.69 .66,.61,.58 .69,.65,.62 .74,.7,.68 .83,.78,.75 .65,.61,.58 .59,.54,.5 .55,.52,.47 .64,.59,.58
10 .7,.67,.64 .77,.74,.7 .8,.76,.74 .65,.6,.57 .62,.58,.56 .87,.83,.78 .68,.64,.61 .52,.48,.54 .45,.41,.37 ∞

.69,.64,.6 .78,.76,.71 .68,.65,.63 .76,.71,.68 .75,.71,.66 .68,.64,.59 .59,.55,.51 .64,.6,.58 .61,.59,.58
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Table 5.14: Results of 2DTSP in Crisp (Model 5.2A)
Algorithm Path Value Tmax

3-7-2-1-5-9-10-4-6-8 137 Without Tmax
3-7-2-1-5-9-10-4-6-8 139 8.54
4-7-8-1-5-9-10-3-6-2 145 8.51

ACO-PSO-GA 2-6-3-1-9-5-4-7-8-10 153 8.42
4-6-2-8-5-9-10-7-3-1 156 8.25
5-8-2-1-5-9-10-3-6-7 167 8.02
2-6-1-9-5-10-8-4-3-7 147 Without Tmax
2-6-1-9-5-10-8-4-3-7 147 8.51
7-2-6-4-3-5-10-8-9-1 154 8.57

ACO-GA 7-1-4-3-10-9-6-8-5-2 173 8.25
5-2-8-10-9-6-1-3-4-7 189 8.1

ACO 6-3-9-7-5-2-1-10-8-4 193 8.7
GA 2-8-5-7-6-10-4-3-9-1 197 8.7

ACO-GA 4-8-9-1-3-7-2-10-5-6 204
5-7-3-2-4-6-8-10-9-1 193

ACO-PSO-GA 8-7-3-2-4-6-5-10-9-1 206 8.00
ACO-GA 4-8-9-1-3-7-2-10-5-6 204

ACO 3-8-5-7-6-10-4-2-9-1 227
GA 8-2-1-3-4-10-7-9-6-5 221

ACO-PSO-GA 8-2-7-9-4-3-5-6-10-1 216
ACO-PSO-GA 4-8-9-1-3-7-2-10-5-6 204

ACO-GA 4-8-9-1-3-7-2-10-5-6 204 7.5
ACO 5-6-2-7-8-10-3-9-4-1 392
GA 10-6-2-7-8-5-3-9-4-1 398

Table 5.15: Results of 3DTSP in Crisp (Model 5.2A)
Algorithm Path(Vehicle) Cost Time Tmax

9(1)-7(2)-8(3)-4(1)-3(1)-2(2)-5(1)-1(1)-10(2)-6(2) 170 8.75
2(2)-1(3)-10(1)-3(1)-6(2)-7(1)-4(2)-5(2)-10(1)-9(2) 193 8.62
6(1)-9(2)-10(1)-7(2)-3(1)-8(2)-5(1)-4(1)-2(1)-1(3) 205 8.59

ACO-PSO-GA 6(1)-10(2)-5(1)-7(1)-4(2)-3(3)-1(2)-10(3)-9(1)-2(1) 213 8.54 8.75
6(1)-7(2)-9(2)-8(1)-4(1)-5(2)-1(2)-2(2)-3(2)-10(1) 228 8.46

ACO-GA 4(1)-5(1)-8(1)-3(3)-2(1)-10(3)-5(1)-4(2)-6(2)-7(2) 247 8.7
ACO 3(2)-10(1)-8(1)-2(3)-3(3)-1(3)-5(1)-4(2)-6(2)-8(1) 242 8.7
GA 3(2)-5(1)-8(2)-4(1)-2(1)-10(3)-5(1)-4(2)-6(2)-7(1) 247 8.7

3(2)-7(1)-4(1)-3(1)-1(1)-5(2)-10(2)-8(1)-6(1)-2(3) 282 7.95 8.00
ACO-PSO-GA 7(2)-9(1)-8(1)-10(2)-1(2)-3(2)-6(2)-5(1)-4(3)-2(1) 315 7.71 7.75

10(1)-7(2)-6(1)-5(3)-4(2)-2(3)-3(1)-1(2)-8(2)-9(1) 376 7.58
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Table 5.16: Results of 4DTSP in Crisp (Model 5.2A)
Algorithm Path(Route, Vehicle) Cost Time Tmax

10(2,1)-7(3,2)-8(1,3)-4(2,1)-3(1,1)-2(1,2)-5(2,1)-1(3,1)-9(1,2)-6(2,2) 183 8.75
2(1,2)-10(2,3)-1(1,1)-4(1,2)-6(1,2)-7(3,1)-3(2,2)-5(1,2)-10(2,1)-9(2,2) 187 8.67
6(1,3)-9(2,1)-10(1,1)-7(1,2)-3(1,3)-8(2,2)-5(3,1)-4(2,1)-2(1,1)-1(2,3) 216 8.53

ACO-PSO-GA 6(2,1)-10(2,2)-5(1,1)-7(2,1)-4(2,3)-3(3,1)-1(2,1)-10(3,1)-9(2,1)-2(3,1) 219 8.42 8.75
6(1,3)-7(2,1)-9(2,1)-8(1,1)-4(2,1)-5(2,2)-1(1,2)-2(3,2)-3(1,2)-10(3,3) 245 8.34

ACO-GA 4(3,3)-5(1,2)-8(3,1)-3(2,3)-2(1,1)-10(2,3)-5(2,1)-4(1,2)-6(1,2)-7(2,2) 262 8.7
ACO 3(1,2)-10(2,1)-8(3,1)-2(2,3)-3(3,1)-1(1,1)-5(2,1)-4(1,2)-6(2,2)-8(1,2) 253 8.73
GA 4(3,3)-5(1,2)-8(3,1)-3(2,3)-2(1,1)-10(2,3)-5(2,1)-4(1,2)-6(1,2)-7(2,2) 262 8.7

3(2,3)-7(1,2)-4(3,1)-3(2,1)-1(1,1)-5(2,1)-10(2,2)-8(1,3)-6(1,1)-2(3,2) 303 7.91 8.00
ACO-PSO-GA 8(3,2)-7(2,1)-9(3,1)-10(2,3)-1(2,2)-3(2,1)-6(2,1)-5(1,2)-4(3,3)-2(1,2) 338 7.66 7.75

10(1,2)-7(,12)-6(3,1)-5(3,2)-4(2,2)-2(1,3)-3(2,1)-1(3,2)-8(2,2)-9(2,1) 381 7.48

Table 5.17: Results of r-4DTSP in Crisp (Model 5.2A)
Algorithm Path(Route, Vehicle) Cost Time Tmax

10(1,1)-7(3,1)-8(1,3)-4(2,1)-3(1,1)-2(1,2)-5(2,1)-1(3,1)-9(1,2)-6(2,2) 192 8.75
2(1,2)-10(2,2)-1(1,1)-4(1,2)-6(2,2)-7(3,1)-3(2,1)-5(1,2)-10(2,1)-9(2,2) 201 8.67
6(1,3)-9(2,1)-10(1,1)-7(1,2)-3(1,3)-8(2,2)-5(3,1)-4(2,1)-2(1,1)-1(2,3) 229 8.53

ACO-PSO-GA 6(2,1)-10(2,2)-5(1,1)-7(2,1)-4(2,3)-3(3,1)-1(2,1)-10(3,1)-9(2,1)-2(3,1) 236 8.42 8.75
6(1,3)-7(2,1)-9(2,1)-8(1,1)-4(2,1)-5(2,2)-1(1,2)-2(3,2)-3(1,2)-10(3,3) 278 8.34

ACO-GA 4(3,3)-5(1,2)-8(3,1)-3(2,3)-2(1,1)-10(2,3)-5(2,1)-4(1,2)-6(1,2)-7(2,2) 281 8.7
ACO 3(1,2)-10(2,1)-8(3,1)-2(2,3)-3(3,1)-1(1,1)-5(2,1)-4(1,2)-6(2,2)-8(1,2) 253 8.73
GA 4(3,3)-5(1,2)-8(3,1)-3(2,3)-2(1,1)-10(2,3)-5(2,1)-4(1,2)-6(1,2)-7(2,2) 262 8.7

3(2,3)-7(1,2)-4(3,1)-3(2,1)-1(1,1)-5(2,1)-10(2,2)-8(1,3)-6(1,1)-2(3,2) 303 7.91 8.00
ACO-PSO-GA 8(3,2)-7(2,1)-9(3,1)-10(2,3)-1(2,2)-3(2,1)-6(2,1)-5(1,2)-4(3,3)-2(1,2) 338 7.66 7.75

10(1,2)-7(,12)-6(3,1)-5(3,2)-4(2,2)-2(1,3)-3(2,1)-1(3,2)-8(2,2)-9(2,1) 381 7.48

Model 5.2B: r-4DTSP with time Constraint in bi-rough Environments (BR-4DTSP)

Here we take the cost and time as bi-rough values for the r-4DTSP as Equ.
5.17 and Equ. 5.18. Also we consider maximum three types routes and con-
veyances. We use bi-rough variables ([ξ − p1, ξ + q1],[ξ − r1, ξ + s1]). For
bi-rough values, we consider p1 = 2, q1 = 2, r1 = 3, s1 = 3 according to the
Table 5.18. Since ξ is a rough variable connecting with the corresponding com-
ponents in Table 5.18. For time matrix ([ξ − p1, ξ + q1],[ξ − r1, ξ + s1]), we
consider p1 = .01, q1 = .01, r1 = .2, s1 = .2.

Model 5.2B: r-4DTSP for virtual data

Here CSTSP are solved by ACO-PSO-GA with large scale data which are
randomly generated for different cities and the results are presented in Table 5.20.
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Table 5.18: Input Data: r-4DTSP(rough) (Model 5.2B)
Rough Cost Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
([29,30],[27,32]) ([13,15],[12,17]) ([20,21],[18,22]) ([28,29],[26,31]) ([23,26],[21, 27]) ([15,16],[13,17]) ([26,28],[23,29])

1 ∞ ([35,37],[34,39]) ([36,37][34,39]) ([31,33],[30,34]) ([19,20],[18,21]) ([21,23],[20,25]) ([34,36],[32,37]) ([37,38],[35,39])
([24,25],[23,28]) ([29,30],[27,31]) ([29,30],[28,35]) ([58,59],[57,62]) ([7,8],[6,10]) ([44,46],[43,47]) ([17,18],[16,20])

([33,34],[33,35] ([38,39],[37,41]) ([15,16],[14,18]) ([33,34],[32,35]) ([39,40],[37,41]) ([39,40],[38,41]) ([32,33],[31,34])
2 ([23,24],[22,26]) ∞ ([20,21],[19,22]) ([28,29],[27,30]) ([25,26],[24,27]) ([28,29],27,31]) ([29,30],[28,31]) ([40,41],[39,42])

([15,16],[14,17]) ([29,30],[28,32]) ([9,10],[8,11]) ([33,35],[32.37]) ([2,22],[20,23]) ([57,59],[56,61]) ([54,55],[53,59])
([34,35],[33,38]) ([15,17],[13,18]) ([11,12],10,13]) ([39,40],[37,42]) ([33,35],[32,36]) ([18,19],[17,20]) ([29,32],[28,33])

3 ([28,29],[27,30]) ([54,56],[53,58]) ∞ ([22,24],[21,25]) ([23,24],[22,25]) ([33,34],[31,36]) ([10,11],[9,13]) ([32,33],[31,30])
([28,29],[27,30]) ([30,31],[29,34]) ([13,14],[11,15]) ([44,45],[43,46]) ([32,33],31,34]) ([7,8],[6,10]) ([23,25],[22,26])
([26,28],[25,29]) ([9,10],[8,11]) ([15,16],[14,18]) ([28,30],[27,31]) ([23,25],[22,26]) ([19,21],[18,22]) ([33,35],[32,36])

4 ([17,18],[16,20]) ([19,20],[18,22]) ([8,9],[7,10]) ∞ ([18,19],[17,20]) ([14,16],[13,17]) ([30,31],[29,33]) ([33,34],[32,36])
([9,10],[8,11]) ([14,15],[13,17]) ([27,29],[26,30]) ([22,23],[21,24]) ([25,27],[26,28]) ([31,33],[30,34]) ([15,16],[14,17])

([15,17],[14,18]) ([39,40],[38,42]) ([33,35],[32,36]) ([18,19],[17,20]) ([29,30],[28,32]) ([43,44],[42,45]) ([28,29],[27,30])
5 ([13,15],[12,16]) ([21,23],[20,24]) ([33,34],[32,36]) ([11,13],[10,14]) ∞ ([20,21],,[19,22]) ([15,16],[13,17]) ([29,30],[27,31])

([6,7],[5,8]) ([31,34],[30,35]) ([35,37],[34,38]) ([42,43],[41,44]) ([40,41],[39,43]) ([25,27],[24,28]) ([12,13],[11.14])
([15,16],14,18]) ([27,28],[26,29]) ([4,6],[3,8]) ([6,7],[5,8]) ([26,27],[28,30]) ([32,33],[30,34]) ([39,40],[38,42])

6 ([6,7].[5,8]) ([21,22],[20,23]) ([25,26],[24,27]) ([7,9],[6,10]) ([27,29],[26,30]) ∞ ([41,42],[40,44]) ([29,31],[28,30])
([7,8],[6,10]) ([28,29],[27,30]) ([26,28],[25,29]) ([11,12],[10,15]) ([38,39],[37,40]) ([23,24],[22,25]) ([21,22],[20,25])

([33,34],[35,37]) ([25,26],[23,28]) ([28,29],[27,30]) ([21,22],[20,23]) ([36,37],[35,38]) ([39,40],[38,42]) ([8,9],[7,10])
7 ([36,39],[35,40]) ([48,49],[47,53]) ([37,38],[36,39]) ([40,43],[39,44]) ([55,56],[54,58]) ([20,21],[19,25]) ∞ ([39,40],[38,43])

([28,30],[27,31]) ([25,26],[23,27]) ([24,25],[23,26]) ([23,24],[22,25]) ([39,40],[38,41]) ([43,44],[42,45]) ([11,13],[10,14])
([39,40],[37,41]) ([23,25],[22,26]) ([29,32],[28,33]) ([38,40],[37,41]) ([35,36],[33,38]) ([23,25],[22,27]) ([40,41],[39,42])

8 ([41,42],[40,44]) ([5,6],[4,7]) ([49,53],[48,54]) ([19,21],[18,22]) ([33,36],[31,37]) ([13,16],[12,18]) ([20,21],[19,22]) ∞
([22,23],[21,24]) ([15,17],[14,18]) ([44,45],[43,47]) ([39,40],[38,42]) ([45,47],[44,48]) ([5,6],[4,7]) ([41,43],[39,44])

Rough Time Matrix(10×10) for RCSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8

([.56,.58],[.55,.62]) ([.71,.73],[.7,.75]) ([.68,.69],[.67,.7]) ([.62,.64],[.61,.66]) ([.81,.83],[.8,.87]) ([.76,.77],[.75,.8]) ([.67,.68],[.66,.69])
1 ∞ ([.52,.54],[.51,.55]) ([.51,.53],[.5,.56]) ([.57,.6],[.54,.61]) ([.71,.73],[.7,.78]) ([.69,.71],[.68,.73]) ([.55,.58],[.53,.59]) ([.48,.52],[.47,.54])

([.25,.27],[.23,.28]) ([.63,.64],[.61,.67]) ([.54,.56],[.53,.59]) ([.31,.33],[.3,.34]) ([.81,.83],[.8,.88]) ([.47,.49],[.45,.5]) ([.65,.66],[.64,.68])
([.54,.55],[.53,.6]) ([.51,.52],[.5,.54]) ([.7,71],[.67,.77]) ([.63,.64],[.61,.6]) ([.53,.55],[.51,.56]) ([.5,.51],[.52,.54]) ([.6,.62],[.57,.63])

2 ([.64,.65],[.61,.67]) ∞ ([.71,.72],[.69,.74]) ([.6,.62],[.57,.63]) ([.61,.62],[.58,.68]) ([.6,.63],[.57,.64]) ([.61,.62],[.6,.66]) ([.51,.52],[.5,.53])
([.72,.73],[.7,.79]) ([.61,.63],[.6,.64]) ([.76,.77],[.74,.85]) ([.55,.56],[.52,.58]) ([.66,.67],[.65,.7]) ([.33,.35],[.31,.36]) ([.27,.29],[.26,.32])

([.55,.56],[.53,.58]) ([.71,.72],[.7,.77]) ([.76,.77],[.75,.79]) ([.53,.54],[.51,.54]) ([.53,.54],[.5,.59]) ([.71,.72],[.7,.74]) ([.57,.59],[.56,.62])
3 ([.6,.62],[.59,.64]) ([.33,.34],[.31,.35]) ∞ ([.67,.7],[.66,.72]) ([.7,.71],[.69,.74]) ([.55,.56],[.53,.59]) ([.81,.83],[.79,.85]) ([.6,.61],[.59,.63])

([.61,.63],[.6,.66]) ([.6,62],[.57,.64]) ([.76,.77],[.73,.8]) ([.43,.44],[.42,.49]) ([.6,.62],[.57,.58]) ([.83,.84],[.81,.86]) ([.68,.67],[.66,.67])
([.61,.62],[.6,.65]) ([.81,.82],[.79,.85]) ([.77,.78],[.76,.79]) ([.65,.66],[.63,.67]) ([.68,.69],[.67,.7]) ([.71,.73],[.7,.77]) ([.67,.68],[.64,.69])

4 ([.73,.74],[.7,.76]) ([.71,.73],[.7,.74]) ([.85,.87],[.83,.9]) ∞ ([.73,.74],[.7,.79]) ([.71,.72],[.73,.77]) ([.6,.63],[.56,.65]) ([.56,.58],[.55,.6])
([.76,.78],[.74,.84]) ([.76,.77],[.75,.79]) ([.63,.65],[.62,.66]) ([.67,.68],[.65,.71]) ([.66,.69,],[.64,.7]) ([.61,.63],[.6,.66]) ([.71,.73],[.7,.77])
([.76,.77],[.74,.8]) ([.52,.54],[.51,.55]) ([.56,.57],[.55,.6]) ([.73,.75],[.72,.76]) ([.63,.65],[.6,.66]) ([.47,.48],[.44,.5]) ([.61,.63],[.58,.64])

5 ([.76,.77],[.73,.8]) ([.67,.68,],[.65,.69]) ([.56,.58],[.55,.6]) ([.78,.79],[.76,.82]) ∞ ([.73,.74],[.7,.76]) ([.76,.78],[.75,.8]) ([.63,.64],[.62,.66])
([.83,.84],[.8,.88]) ([.56,.58],[.55,.6]) ([.51,.53],[.5,56]) ([.49,.51],[.47,.52]) ([.53,.54],[.5,.55]) ([.67,.68][.66,.69]) ([.74,.76],[.73,.8])
([.78,.8],[.7,.81]) ([.67,.68],[.59,.69]) ([.86,.88],[.83,.89]) ([.8,.85],[.78,.88]) ([.69,.7],[.66,.71]) ([.6,.63],[.56,.64]) ([.51,.55],[.5,.56])

6 ([.87,.89],[.85,.9]) ([.77,.79],[.76,.8]) ([.73,.74],[.72,.76]) ([.83,.88],[.81,.89]) ([.67,.68],[.66,.7]) ∞ ([.53,.55],[.51,.56]) ([.61,.63],[.6,.67])
([.8,.81],[.78,.85]) ([.67,.7],[.66,.71]) ([.63,.65],[.6,.66]) ([.76,.8],[.73,.81]) ([.51,.53],[.5,.54]) ([.73,.74],[.7,.75]) ([.7,.78])
([.55,.56],[.5,.57]) ([.66,.67],[.65,.68]) ([.63,.64],[.62,.67]) ([.71,.72],[.69,.75]) ([.61,.62],[.6,.63]) ([.5,.54],[.49,.56]) ([.78,.79],[.77,.84])

7 ([.55,.57],[.53,.6]) ([.41,.42],[.4,43]) ([.56,.59],[.55,.6]) ([.49,.52],[.47,.56]) ([.33,.37],[.31,.39]) ([.73,.76],[.71,.77]) ∞ ([.55,.56],[.54,.58])
([.63,64],[.6,.67]) ([.68,.7],[.66,.71]) ([.67,.68],[.66,.71]) ([.65,.69],[.64,.7]) ([.49,.54],[.48,.55]) ([.5,.56],[.49,.57]) ([.79,.8],[.77,.82])
([.51,.55],[.5,.56]) ([.67,.7],[.65,.71]) ([.63,.65],[.6,.66]) ([.57,.58],[.55,.6]) ([.56,.57],[.55,.59]) ([.66,.68],[.65,.69]) ([.56,.57],[.55,.59])

8 ([.51,.55],[.5,.56]) ([.73,.74],[.7,.78]) ([.41,.42],[.39,.43]) ([.7,.71],[.67,.72]) ([.56,.6],[.55,.57]) ([.76,.77],[.75,.78]) ([.71,.72],[.7,.74]) ∞
([.7,.72],[.69,.73]) ([.73,.74],[.7,.77]) ([.49,.5],[.47,.52]) ([.52,.54],[.5,.55]) ([.45,.48],[.43,.49]) ([.87,.88],[.86,.89]) ([.5,.52],[.49,.55])

Table 5.19: Optimum Results of BR-r-4DTSP (Model 5.2B)
Path(Route,Vehicle) Obj Value Time Tmax

7(1,1)-3(2,2)-6(1,3)-1(1,2)-4(3,1)-5(3,2)-2(1,3)-8(2,1) 136 7.47
3(1,2)-1(2,3)-4(3,2)-5(1,3)-6(2,3)-7(1,3)-2(2,3)-8(1,3) 138.5 7.6
8(2,1)-7(1,2)-3(2,1)-6(1,2)-4(2,3)-2(2,1)-5(2,3)-1(2,1) 141.5 7.34 7.75
7(1,3)-6(2,3)-4(3,2)-1(1,2)-8(1,1)-5(2,1)-3(3,2)-2(1,1) 154.5 7.67
1(1,2)-7(2,1)-8(1,2)-4(3,1)-2(1,2)-5(3,3)-3(2,3)-6(1,2) 177.5 7.1
7(2,1)-1(3,2)-8(1,3)-5(2,3)-8(2,2)-3(2,3)-2(3,2)-4(1,3) 184.5 7.25 7.5
3(1,1)-1(3,1)-7(2,3)-8(2,3)-5(2,3)-6(2,1)-2(1,3)-4(1,2) 226.5 7.15 7.25
4(2,1)-8(2,3)-6(1,3)-2(2,1)-7(1,3)-5(2,2)-3(1,3)-1(2,1) 234.5 7.17
4(3,2)-8(2,3)-1(2,1)-7(1,2)-6(2,1)-5(3,2)-3(2,2)-2(3,2) 260 6.6
7(1,2)-2(3,2)-6(1,2)-8(1,3)-4(3,1)-1(2,1)-5(3,5)-3(3,3) 285.5 6.97 7.00
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Table 5.20: Results with virtual data (Model 5.2B)
Instances (Cities) Costs Tmax

15×15 254 9.5
20×20 365 13.7
25×25 457 18.5
30×30 565 25.5
35×35 951 31.4
40×40 1462 44.3
45×45 1824 61.5
50×50 2568 73.1
80×80 7145 78.3

100×100 1512 131.5
150×150 27410 185.5
250×250 38652 276.1

5.3.4 Statistical Test

Performance of the proposed method is statistically tested running it 25
times and calculating the average value, standard deviation and percentage rel-
ative error according to optimal solution against some standard test problems.
The results obtained by proposed method are given in Table 5.21. Examining
the Table 5.21, it is concluded that the proposed method, hybrid algorithm has
generated the closer results to the optimal solutions with minimal standard de-
viations for the problems bayg29, eil51, berlin52 and rat99. It can be seen that
three problems eil76, kroa100 and kroa200 have large size of SD and all other
problems close to the standard results. Only kroa200 not found the best results
by ACO-PSO-GA but all other are the same as the corresponding best results in
literature.

5.3.5 Discussion

In this investigation, a new evolutionary hybrid algorithm ACO-PSO-GA
is proposed and illustrated in r-4DTSP formulated in different environments. In
the proposed algorithm, where initial solutions are generated by ACO, then swap
operator based discrete PSO used and at end GA is applied with a rough 7 -
point pheromone based selection, comparison crossover along with generation

228



5.4. CONCLUSION

Table 5.21: Dispersion Tests of ACO-PSO-GA
Instances BKS Best Worst Average SDb Error(%)

fri26 937 937 939 937.32 1.31 0.19
bays29 2020 2020 2034 2020.25 2.37 1.21
bayg29 1610 1610 1616 1610.42 0.46 0.24

dantzig42 699 699 704 700.71 1.52 1.49
eil51 426 426 429 427.15 0.98 0.17

berlin52 7542 7542 7567 7544.45 0.76 1.37
st70 675 675 686 679.4 1.43 0.23
eil76 538 538 557 543.3 23.57 0.53
pr76 108159 108159 108343 108211.73 2.12 2.70
rat99 1211 1211 1220 1217.5 0.74 0.29

kroa100 21282 21282 21604 21432.30 56.17 1.07
lin105 14379 14379 14431 14387.25 1.35 0.94
eil101 629 629 646 629.7 1.23 0.07
ch105 6528 6528 6636 6543.7 31.62 3.46

kroa200 29368 29468 29874 29736.15 103.28 2.87

dependent random mutation. For the first time restricted 4DTSP are introduced
in the area of TSPs and regarded as highly NP-hard combinatorial optimization
problems. Such r-4DTSPs are formulated with crisp and bi-rough costs and
time boundary and solved by the proposed ACO-PSO-GA. Here, development
of ACO-PSO-GA is in general form and it can be applied in other discrete prob-
lems such as network optimization, graph theory, solid transportation problems,
vehicle routing, VLSI chip design, etc. In spite of the better results by ACO-PSO-
GA, there is a lot of scope for development in ACO-PSO-GA, specially for the
r-4DTSPs. In the four dimensional TSPs with conveyances and routes, we have
assigned a conveyance and route arbitrarily during each crossover and mutation
for the optimum selection of the routes and conveyances. This is a limitation of
the present r-4DTSPs.

5.4 Conclusion

In this chapter, we formulated two hybridized evolutionary algorithms and
solved 4DTSP and restricted 4DTSP under crisp, bi-fuzzy and bi-rough environ-
ments. The above 4DTSP and r-4DTSP are also new in TSP family. To the best
of our knowledge, there is no direct application of PSO to TSP till now. Here we
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have also presented a sequence based PSO algorithm along with other two bio-
inspired heuristics ACO and GA to solve proposed TSPs. Here, real-life complex
problems such as courier services, online retailer business, etc, which are expo-
nentially increasing in the third world countries, can be modelled like r-4DTSP
and solved through proposed hybrid heuristics. This method/its modified form
can be used to solve the decision-making problems easily in other areas such
as network optimization, routing, VLSI chip design, social networking, supply
chain, logistics etc,. The proposed algorithms can be extended to solve multi
objective optimization problems.
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Multi-Objective Optimization Using a
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Chapter 6

Multi-Objective Optimization Using
Heuristics Algorithms

6.1 Introduction

This chapter aims at presenting the general problem of decision making
in unknown, complex or changing environment by an extension of static multi-
objective optimization problem. General optimization problem is defined, which
encompasses not just dynamics, but also change in the optimization problem
itself, with focus on changing number of objectives used to evaluate potential so-
lutions. In order to solve a defined problem, a variant of multi-objective genetic
algorithm was used. Since the chapter focuses on the performance of the algo-
rithm as well as used for solving the problem, but tends to demonstrate the ap-
proach, experimental results produced by tests with MOGA are presented. These
experimental results clearly demonstrate that MOGA successfully furnished the
population of potential solutions to the problem for different test cases, such as
homogeneous, non-homogeneous, and the problem with changing number of ob-
jectives.

Using various approaches, such as estimation of behavior of the system with
statistically known disturbances, introduction of adaptation of controller parame-
ters etc. [7], a wider problem domain can be encompassed, nevertheless it is still
very clearly defined in advance. An approach to apply a multi-objective evolu-
tionary algorithm to solving a defined dynamic multi-objective problem of search
for solution was demonstrated in this chapter.

Dynamic multi-objective problems defined based on a class of test functions
with known features have been chosen in order to evaluate the application of the
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proposed approach, in conditions when the features of the problem are known
(features of test functions, Pareto front etc.). Also we, design 3DTSP in the form
of two objectives as cost and time with risk constraint. Here for an unkonwn
problem as muti-objective, solid TSPs are modeled in different uncertain envi-
ronments. The impreciseness in MOGA are of fuzzy, fuzzy extended and rough
environment. Statistical tests are done for each case for the effectiveness of the
proposed algorithms.

6.2 Model-6.1: An imprecise Multi-Objective Genetic Algo-
rithm for uncertain Constrained Multi-Objective Solid Trav-
elling Salesman Problem 1

In this model, an imprecise Multi-Objective Genetic Algorithm (iMOGA)
is developed to solve Constrained Multi-Objective Solid Travelling Salesman
Problems (CMOSTSPs) in crisp, random, random-fuzzy, fuzzy-random and bi-
random environments. In the proposed iMOGA, ‘3 - and 5 - level linguistic
based age oriented selection’, probabilistic selection and an adaptive crossover
are used along with a new generation dependent mutation. In each environment,
some sensitivity studies due to different risks/discomfort factors and other system
parameters are presented. To test the efficiency, combining same size single ob-
jective problems from standard TSPLIB [162], the results of such multi-objective
problems are obtained by the proposed algorithm, simple MOGA (Roulette wheel
selection, cyclic crossover and random mutation), NSGA-II, MOEA-D/ACO and
compared. Moreover, a statistical analysis (Analysis of Variance) is carried out
to show the supremacy of the proposed algorithm.

6.2.1 Proposed iMOGA

Here a proposed algorithm, iMOGA using the fuzzy (3-level linguistic) and
fuzzy extended (5-level linguistic) age based (FEA) selection, probabilistic se-
lection, an adaptive crossover and a generation dependent mutation is developed.

1This portion is published in Expert Systems With Applications, Elsevier , 46(2016), 196-223, with title An
imprecise Multi-Objective Genetic Algorithm for uncertain Constrained Multi-Objective Solid Travelling Salesman
Problem.
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6.2. MODEL-6.1: AN IMPRECISE MULTI-OBJECTIVE GA (IMOGA) FOR CMOSTSP
UNDER UNCERTAIN ENVIRONMENTS

Initially a randomly set of potential solutions is generated and then using pro-
posed algorithm, we find out the Pareto optimal solutions until the termination
criteria are encountered. The proposed iMOGA and its procedures are presented
below:
(i) Representation:
Here a complete tour on N cities represents a solution. So an N dimensional in-
teger vector Xi = (xi1, xi2, ..., xiN ) is used to represent a solution (path), where
xi1, xi2, ..., xiN represent N consecutive cities in a tour. Population size number
M and i-th solution Xi = (xi1, xi2, ..., xiN ), where xi1, xi2, ..., xiN , are randomly
generated by random number generator between 1 to N maintaining the TSP con-
ditions such as not repeating of cities (nodes) and also satisfying the constraints.
Fitness are evaluated by summing the costs and times between the consecutive
cities (nodes) of each solution (chromosome). The f(Xi) represents the i-th solu-
tion fitness in the solution space. Since the maximum population size is M, so M
numbers of solutions (chromosomes) are generated randomly.
(ii) Selection:

Here three selection procedures are used for the selection of chromosomes.
These are as follows:
(a). Fuzzy Set Based Age Dependent Selection

For the solution of an optimization problem, in the proposed iMOGA, the age
of a chromosome is determined by a new mechanism based on weighted mean of
their two objective values i.e. fitness values and then a ‘fuzzy age based selec-
tion’ is applied. Here the age of each chromosome lie in a region of the common
age represented by a fuzzy set using three linguistic expressions. These regions
are termed as ”young”, ”middle” and ”old”. So for the age of each chromosome,
a linguistic value - young, middle or old is created. Now according to the age dis-
tributions of the members (in pair) of the mating pool, similar linguistic variables
such as low, medium and high are generated for the said chromosomes to fix pc’s.
Using the membership function of fuzzy set, the probability of crossover, pc for
each chromosome is assigned by the corresponding linguistic variables (cf Table
6.1).

Last et al. [88] and Roy et al. [147] improved the performance of GAs by pro-
viding a new fuzzy-based extension of the Life Time feature. They used a fuzzy
logic controller (FLC) to adapt the crossover probability as a function of the chro-
mosomes ages. These algorithms used three types of fuzzy classifications on the
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Table 6.1: Fuzzy Based Linguistics
Chromosomes Young Middle Old

Young Low Medium Low
Middle Medium High Medium

Old Low Medium Low

basis of ages. Also, they consider the age of the chromosome in fuzzy environ-
ment. But, here we calculate the age differently which is described below and
form a common fuzzy age. Next each chromosome age is compared with com-
mon fuzzy age to create the membership values. Then according to the Table
6.1, corresponding pcs are generated which are also presented in Fig. 6.2.1. The
general principle is that for both young and old individuals, the crossover proba-
bility is naturally low, while there is a certain age interval, where this probability
is high. The concepts of young, old, and middle-aged are modeled as linguistic
variables.
(a) Age formation

The above M such two-objective solutions have fitnesses represented by f1(xi)
and f2(xi) of the i−th chromosomes. Now f(xi)=λf1(xi)+(1− λ)f2(xi), λ ∈ rand
[0,1]. At the time of initialization, each chromosome age is defined as null. Now
in every generation, the age is counted using the mechanism in Equ. 4.48.

Now since age is calculated as crisp values, we construct the common fuzzy
values from it as,

Fuzzy Age=(r1*avg age, r2*avg age, r3*avg age),
where r1=Avg Age−Min Age

Avg Age , r2=Max Age
2 , r3=Max Age−Avg Age

Avg Age

For common fuzzy age (a, b, c) and ε (a small positive number given by
the user), it is described as

Age =

 Y oung for a ≤ age < b− ε
Middle for b− ε ≤ age ≤ b+ ε
Old for b+ ε < age ≤ c

(6.1)
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6.2. MODEL-6.1: AN IMPRECISE MULTI-OBJECTIVE GA (IMOGA) FOR CMOSTSP
UNDER UNCERTAIN ENVIRONMENTS

Table 6.2: Fuzzy Extended Based Linguistic
Chromosomes Very Young Young Middle Old Very Old
Very Young Very Low Low Medium Low Very Low

Young Low Low High Low Very Low
Middle Medium High Very High High Medium

Old Low Low High Low Very Low
Very Old Very Low Very Low Medium Very Low Very Low
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Fig.6.2.1 : Fuzzy age distribution of Pc.

(b) Fuzzy Extended Age Based Selection:
As the mating selection enhances the exploitation of existing solutions and

thus increases searching in more probable search regions, it will be more fruit-
ful to divide the chromosomes, ages into more fuzzy classifications. To have
more accurate classification, we make five classifications instead of above three
and then, the region of common age is divided into very young, young, middle,
old and very old. As before, combining the eligible parents, the very low, low,
medium, high and very high linguistic variables are assigned for pc’s of chromo-
somes. To achieve this, for the first time, membership function of fuzzy variable
is divided and defined in the five regions which are shown in Equ. 6.2 and Fig.
6.2.2. Determined pc values of the extended linguistics are also given below in
the Fig 6.2.2.

The common fuzzy age ( a,b,c ) is extended to 0 ≤ a ≤ a11 ≤ a12 < b <
b11 ≤ b12 ≤ c and is described as below,

Age =


V ery Y oung for a ≤ age ≤ a11

Y oung for a11 < age ≤ a12

Middle for a12 < age ≤ b11

Old for b11 < age ≤ b12

V ery Old for b12 < aged ≤ c

(6.2)
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Fig.6.2.2 : Fuzzy extended age distribution of Pc.

Algorithm for Fuzzy extended set based selection
1. Set minimum age, maximum age
2. Evaluate the average fitness combining two objectives
3. if average fitness > current fitness
4. age(xi)=avg(age)+k∗(avgfit−f(Xi))

(avgfit−minfit)
5. else
6. age(xi)=

avg(age)
2 + k∗(f(Xi)−avgfit)

(maxfit−avgfit)
7. if (age(xi)> maximum age)
8. age(xi)= maximum age
9. else if (age(xi)< minimum age)
10. age(xi)= minimum age
11. Determine average age
12. Determine common fuzzy age
13. Split Triangular Fuzzy Number in more regions
14. Developed linguistic variables very young, young, middle, old, very old
15. for each pair of parents do
16. Extended membership values based pc created
17. End do
18. End Algorithm.

The fuzzy age based selection algorithm as similar in the above algorithm.

(iii) Probabilistic Selection:
This part already given in section 4.2.1(c).

(iv) Adaptive Crossover:
At first, select two individuals (parents) from the matting pool, generate the
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random number r ∈[0,1]. If r < pc then select that population for first parent
(say Pr1). Similarly choose the other parent (say Pr2).
Let these are Pr1: a1, a2,..., aN , (v1, v2,..., vp)

and Pr2: s1, s2,..., sN , (v1, v2,..., vp)
Here (a1, a2,..., aN ) and (s1, s2,..., sN ) are nodes within (1, 2, 3,..., N), these are

numbers of cities. Then we choose a city randomly from 1 to N, say ai = sk(i=1,
2, ..., N), k=(1, 2,..., N). Then modify the first parents by placing ai or sk in the
first place of Pr1 and Pr2. Now the modified parents are given by

Pr1: ai, a1, a2,.., ai−1, ai+1,....aN , (v1, v2,..., vp)
Pr2: sk, s1, s2,., sk−1, sk+1,....., sN , (v1, v2,..., vp)

Here the vehicle set are unchanged. To get the first child (Ch1), placing ai in the
first place of Ch1, then compare the adaptive weighted (say) A=m1*Ci1+m2*Ti1,
(m1, m2 are weight constants of cost and time respectively, Ci1 and Ti1 are the
cost and time between the two node ai to a1, also m1, m2 < 1) between the next
route ai to a1 and ai to s1. Minimum adaptive weight route be selected in Ch1.
The procedure is discussed in the section 4.3.1(c)(iii).

(v) Mutation:

(a) Generation Dependent Mutation:
Here model a new form of mutation mechanism where probability of mutation

(pm) is determined as follows
Pm= k√

(Current generation number)
, k∈[0,1].

So, here proposed mutation mechanism follows the real world demand and pm
decreases smoothly as generation increases.

(b) Mutation process:
Now for the particular node dependent problem like TSP, to mutate a chromo-

some X = (x1, x2, ...xN), (v1, v2, ...vP ), we find the number of mutated nodes
as T= pm* N, N=total number of nodes in chromosome. If r < pm, r ∈ rand
[0,1], then corresponding chromosome is selected for mutation. Now two kinds
of mutation process are presented below:

(i) Random Method: At first, we randomly generate two distinct integer xi,
xj (say) between [1,N]. Then interchange xi, xj to get mutated solution which
replaces the parent solution. This process is repeated until T times.
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(ii) Fixed Method : In the selected chromosome X=(x1, x2, ...xN), (v1, v2, ...vP ),
choose a consecutive T

2 nodes and interchange them. If T becomes odd, then sim-
ilarly interchange the places of the solutions up to T

2 +1 times. This new solution
replace the parent solution.

Algorithm for generation dependent random mutation

1.Start
2. Set g=current generation number
3. pm= k

sqrt(g) , k∈[0,1]
4. Determine T= pm*N // total number of mutated node
5. for(i=0; i< pop size; i++)
6. r=rand(0,1)
7. if( r< pm){
8. Select current chromosome
9. a=rand[1,N]
10. b=rand[1,N]
11. if (a==b)
12. Goto step 9
13. for ( j=1; j<=N; j++) // N= total number of nodes
14. if (x[j]==a)
15. p=j;
16. if (x[j]==b)
17. q=j;
18. x[p]=b;// replace a by b.
19. x[q]=a; // replace b by a.
20. end for
21. Repeat step-8 to 20 up to T times
22 . End if
23. End for
24. End Algorithm

Algorithm for generation dependent fixed location mutation
1.Start
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2. Set g=current generation number
3. pm= k

sqrt(g) , k∈[0,1]
4. Determine T= pm*N // total number of mutated node
5. for(i=0; i< pop size; i++)
6. r=rand(0,1)
7. if( r< pm){
8. Select current chromosome
9. for ( j=1; j< T

2 ; j++)
10. Exchange (x[j]=x[j+1])
11. end for
12. End if
13. End for
14. End Algorithm

(vi) Algorithm for Fuzzy age based GA:

Input: max gen, Population Size (pop size), Probability of Mutation (pm),
Problem Data (cost and risk matrices).

Output: Pareto set/font as optimum solutions.

1. Start
2. g← 0 // g: iteration/generation number
3. Initialize P(g) // randomly generate initial population P (g)
4. Evaluate f(P(g)); //Evaluate fitness of each chromosome.
5. while (g ≤ max gen) {

// Selection Operation
6. for every chromosome {
7. Determine the age of each chromosome of P(g)
8. Create common fuzzy age
9. }

// fuzzy set based selection
10. for every chromosome {
11. Three-fold linguistic developed // young, middle, old
12. Membership function used for each pair
13. pc created for each chromosomes in P(g)
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14. }
// fuzzy extended selection

15. for every chromosome {
16. Five-fold linguistic developed
17. Membership function as Equ. 3.8 used
18. pc created for each chromosomes in P(g)
19. }

// Crossover Operation according to subsection-2.3
20. Select the parents for crossover using pc from matting pool
21. for each pair of parents {
22. Modify the parents;
23. Generate off springs according to subsection-2.3.1
24. }

// generation dependent mutation
25. Generate pm according given in section 2.4.1
26. Calculated T=pm*N, N=Total number of nodes,
27. Select the off springs for mutation based on pm

// random method
28. for selected chromosome {
29. Randomly exchange the nodes up to T times
30. }

// fixed location method
31. for selected chromosome {
32. Select the T numbers of nodes
33. Swap the nodes up to T

2 , T2 + 1 times as T even, odd
34. }
35. Store the new off springs into offspring set
36. Reproduce a new P(g)
37. Evaluate f(P(g));//evaluate the fitness of reproduce chromosome
38. Store the local optimum and near optimum solutions
39. g← g+1
40. } //endwhile
41. Store the global optimum and near optimum results;
42. End Algorithm.
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(vii) Division of P (T ) into disjoint subsets having non-dominated solutions:
Now according to Deb et al. [36]), the procedure is given in section 2.1.5 used

for create the disjoint subset.

(viii) To determine distance of a solution of subset F from other solutions:
According to Deb et al. [36], some modifications are made to evaluate the

distance of Pareto solutions which are given as
Set n=number of solutions in F
For every x ∈ F do

xdistance = 0
End For
For every objective m do

Sort F , in ascending order of magnitude of mth objective.
F [1] = F [n] = M , where M is a big quantity.
For i=2 to n-1 do
F [i]distance = F [i]distance + (F [i + 1].objm − F [i − 1].objm)/(fmaxm −

faveragem )
End For

End For
In the algorithm F [i] represents ith solution of F , F [i].objm represent mth ob-
jective value of F [i]. fmaxm and faveragem represents the maximum and average
values of mth objective function respectively.

(ix) Complexity Analysis:
MOGAs, that use non-dominated sorting and sharing are mainly criticized

for their O(MN3) complexity, but fast and elitist non-dominated sorting algo-
rithm has O(MN2) computational complexity where N is the popsize and M is
the number of objectives. Here also the proposed iMOGA has the same O(MN2)
computational complexity.

6.2.2 Mathematical Formulation and Its crisp equivalence

Model 6.1A: Multi-Objective TSP with Risk/Discomfort Constraints:
In a classical Multi-Objective TSP (MOTSP), a salesman has to travelN cities
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at minimum cost and time. In this tour, salesman starts from a city, visit all the
cities exactly once and comes back to the starting city using minimum cost and
time. Here some risk/discomfort factors in travelling from one city to another
are considered. The salesman should choose such a path in which a minimum
risks/discomforts are involved i.e. a maximum risk factor for the entire tour is less
than the permitted risk value. Let c(i, j), t(i, j) and r(i, j) be the cost, time and
risk/discomfort factor for travelling from i-th city to j-th city. Then the problem
can be mathematically formulated as (Dantzig et al., [31]):

Minimize Z =
∑
i6=j
c(i, j)xij

Minimize T =
∑
i6=j
t(i, j)xij

subject to
N∑
i=1

xij = 1 for j = 1, 2, ..., N

N∑
j=1

xij = 1 for i = 1, 2, ..., N

N∑
i∈S

N∑
j∈S

xij ≤ |S| − 1,∀S ⊂ P

N∑
i=1

N∑
j=1

r(i, j)xij ≤ rmax

where xij ∈ {0, 1}, i, j = 1, 2.., N.



(6.3)

where P={1, 2, 3,.., N} set of nodes, xij is the decision variable and xij = 1 if the
salesman travels from city-i to city-j, otherwise xij = 0 and rmax is the maximum
permitted risk/discomfort factor that should be maintained for the entire tour to
avoid unwanted situation. Then the above CMOTSP reduces to

determine a complete tour (x1, x2, ..., xN , x1)

to minimize Z =
N−1∑
i=1

c(xi, xi+1) + c(xN , x1)

to minimize T =
N−1∑
i=1

t(xi, xi+1) + t(xN , x1)

subject to
N−1∑
i=1

r(xi, xi+1) + r(xN , x1) ≤ rmax

where xi 6= xj, i, j = 1, 2..., N.


(6.4)
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Model 6.1B: MOSTSP with Risk/Discomfort Constraints (CMOSTSP):
In a MOSTSP, a salesman has to travel N cities by choosing any one of the

P types of conveyances available with minimum cost and time. Risk/discomfort
factors in travelling from one city to another using different vehicles are different.
The salesman should choose such paths and conveyances such that a maximum
risk/discomfort level is not exceeded for the entire tour. Let c(i, j, k) and t(i, j, k)
are cost and time for travelling from i-th city to j-th city using k-th type con-
veyance and r(i, j, k) be the risk/discomfort factor in travelling from i-th city to
j-th using k-th type conveyances. Then the salesman has to determine a complete
tour (x1, x2, ...,xN , x1) and corresponding conveyance types (v1, v2, ..., vP ) to be
used for the tour, where xi ∈ {1, 2, ..N} for i = 1, 2, ..., N , vi ∈ {1, 2, ..P} for
i = 1, 2, ..., N and all xi’s are distinct. Then the problem can be mathematically
formulated as:

Determine a complete tour (x1, x2, ..., xN , x1) using any one available cor-
responding conveyance in each step from the vehicle types (v1, v2, ..., vP ) so as

to minimize Z =
N−1∑
i=1

c(xi, xi+1, vi) + c(xN , x1, vl),

to minimize T =
N−1∑
i=1

t(xi, xi+1, vi) + t(xN , x1, vl),

subject to
N−1∑
i=1

r(xi, xi+1, vi) + r(xN , x1, vl) ≤ rmax,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(6.5)

where rmax is the maximum risk/discomfort factor that should be maintained by
the salesman in the entire tour to avoid unwanted situation.
Model 6.1C: CMOSTSP in Random Environment (RaCMOSTSP):

In the problem in Equ. 6.5, if costs, times and risk/discomfort factors i.e,
ĉ(i, j, k), t̂(i, j, k) and r̂(i, j, k) respectively are random variables, and maximum
risk/discomfort limit rmax also is random variables r̂max then the Equ. 6.5 re-
duces to:
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minimize Z =
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)

minimize T =
N−1∑
i=1

t̂(xi, xi+1, vi) + t̂(xN , x1, vl)

subject to
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂(xN , x1, vl) ≤ r̂max

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(6.6)

Now using Chance-constrained programming technique, the above model re-
duces to:

to minimize Z =
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)

minimize T =
N−1∑
i=1

t̂(xi, xi+1, vi) + t̂(xN , x1, vl)

subject to P [
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂(xN , x1, vl) ≤ r̂max] ≥ pi,

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.
Here pis are crisp values giving the levels of probability.


(6.7)

Here we consider all random variables as normal variate. Then the objective
functions are also normal variate. Thus the problem is finally stated as:

Minimize F(X) = k1 ∗ E[
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)]

+k2 ∗
√

(XTV X),

Minimize T(X) = k3 ∗ E[
N−1∑
i=1

t̂(xi, xi+1, vi) + t̂(xN , x1, vl)]

+k4 ∗
√

(XTV X),

subject to h̄i + si
√

(V ar(hi) ≤ 0, i = 1, 2, ....n
xj ≥ 0, j = 1, 2, ...., n

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}, k1, k2, k3, k4 ≥ 0


(6.8)

Here h̄i = E[
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂(xN , x1, vl)]− r̄maxi,

where ( k1, k3) and ( k2, k4) are constants indicating the weights of mean and
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variance functions respectively, si is the tabulated value of the normal distribu-
tion.
Model 6.1D: CMOSTSP in Fuzzy Random Environment (FRCMOSTSP):

In the Equ. 6.5, if costs, times and risk/discomfort factors i.e, ˜̂c(i, j, k),
˜̂t(i, j, k) respectively are fuzzy random variables, and ˜̂r(i, j, k) and maximum
risk/discomfort limit rmax is also a fuzzy random variable ˜̂rmax then the Equ. 6.5
reduces to:

to minimize Z =
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl)

to minimize T =
N−1∑
i=1

˜̂t(xi, xi+1, vi) + ˜̂t(xN , x1, vl)

subject to
N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r(xN , x1, vl) ≤ ˜̂rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.9)

Above Equ. 6.9 can be reformulated as given, where the objective function
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl) ≤ F ,

N−1∑
i=1

˜̂t(xi, xi+1, vi) +˜̂(xN , x1, vl) ≤ T , where F and T are given crisps, and equa-

tions evaluated using fuzzy random chance constrained programming technique.
to minimize F and T

s.t. Ch{
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl) ≤ F}(γ) ≥ δ

Ch{
N−1∑
i=1

˜̂t(xi, xi+1, vi) + ˜̂t(xN , x1, vl) ≤ T}(γ1) ≥ δ1

Ch
N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r(xN , x1, vl) ≤ ˜̂rmax}(η) ≥ θ

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.10)
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Here the parameters γ, δ, γ1, δ1, θ, η are predetermined confidence levels in [0,1].
The above Equ. 6.10 is reformulated as

minimize {F, T}
s.t Ch{ ˜̂

Cx ≤ F}(γ) ≥ δ

Ch{ ˜̂
T1x ≤ T}(γ1) ≥ δ1

Ch{ ˜̂
R1x ≤ ˜̂

Rmax}(η) ≥ θ
x ∈ X


(6.11)

where ˜̂
C =

N−1∑
i=1

˜̂c(xi, xi+1, vi)+˜̂c(xN , x1, vl), ˜̂
T1 =

N−1∑
i=1

˜̂t(xi, xi+1, vi)+
˜̂t(xN , x1, vl),

˜̂
R1 =

N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r1(xN , x1, vl),˜R̂max = ˜̂rmax, and x as a decision vec-

tors.
It follows from section 3.13.9, the Equ. 6.11 is converted as follows using Prob-
ability Possibility measure

minimize{F, T}
s.t. Pr{ω|Pos{ ˜̂

Cx ≤ F} ≥ δ} ≥ γ

Pr{ω|Pos{ ˜̂
T1x ≤ T} ≥ δ1} ≥ γ1

Pr{ω|Pos{ ˜̂
R1x ≤ ˜̂

Rmax} ≥ θ} ≥ η
x ∈ X


(6.12)

and the Probability Necessity measure form is given below

minimize{F, T}
s.t. Pr{ω|Nes{ ˜̂

Cx ≤ F} ≥ δ} ≥ γ

Pr{ω|Nes{ ˜̂
T1x ≤ T} ≥ δ1} ≥ γ1

Pr{ω|Nes{ ˜̂
R1x ≤ ˜̂

Rmax} ≥ θ} ≥ η
x ∈ X


(6.13)

where γ, δ, γ1, δ1, η, θ ∈ [0, 1] are the predetermined confidence levels, Pos{.}
denotes possibility of the fuzzy events in {.}, and Pr{.} denotes te probability of
the random events in {.}, similarly for Nes{.} denotes the necessity of the fuzzy
events in {.}.
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To find the crisp values of probability possibility and necessity model ac-
cording the theorems 3.7, 3.8 and 3.9, the above model Equs.6.12 and 6.13 are
converted as follows

minimize F = R−1(δ)βCTx+ dCTx+ φ−1(1− γ)
√

(xTV Cx)

minimize T = R−1(δ1)β
CT1x+ dCT1x+ φ−1(1− γ1)

√
(xTV T1x)

s.t R−1(θ)βRmax + L−1(θ)αR1Tx− (dR1Tx− db)−
φ−1(η)

√
(xTV R1x+ (σRmax)2) ≥ 0

 (6.14)

and

minimize F = dCTx− L−1(1− δ)αCTx
+φ−1(1− γ)

√
(xTV Cx)

minimize T = dCT1x− L−1(1− δ1)α
CT1x

+φ−1(1− γ1)
√

(xTV T1x)

s.t φ−1(1− η)
√

(xTV R1x+ (σRmax)2)− L−1(1− θ)αRmax
−R−1(θ)βR1Tx+ (dRmax − dR1Tx) ≥ 0


(6.15)

Model 6.1E: CMOSTSP in Random-Fuzzy Environment (RFCMOSTSP):
In Equ 6.5, if cost, times and risk/discomfort factors i.e, ˆ̃c(i, j, k), ˆ̃t(i, j, k) and

ˆ̃r(i, j, k) respectively are random-fuzzy variables, and maximum risk/discomfort
limit rmax is also random-fuzzy variables ˆ̃rmax, then the Equ. 6.5 reduces to:

minimize Z =
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl)

minimize T =
N−1∑
i=1

ˆ̃t(xi, xi+1, vi) + ˆ̃t(xN , x1, vl)

subject to
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.16)

Above Equ. 6.16 can be reformulated as given below where the objective func-
tions are

N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ F1, F1 is crisp.

N−1∑
i=1

ˆ̃t(xi, xi+1, vi) + ˆ̃t(xN , x1, vl) ≤ T1, T1 is crisp.
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Now the Equ. 6.16 using section 3.13.15 defined as possibilistic and necessity
chance constraint forms is given below

minimize F1 and T1

Pos{Prob{
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ F1} ≥ θ̂obj1 } ≥ ĥobj1

Pos{Prob{
N−1∑
i=1

ˆ̃t(xi, xi+1, vi) + ˆ̃t(xN , x1, vl) ≤ T1} ≥ θ̂obj2 } ≥ ĥobj2

Nes{Prob{
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ F1} ≥ θ̂obj1 } ≥ ĥobj1

Nes{Prob{
N−1∑
i=1

ˆ̃t(xi, xi+1, vi) + ˆ̃t(xN , x1, vl) ≤ T1} ≥ θ̂obj2 } ≥ ĥobj2

s.t Pos{Prob{
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

Nes{Prob{
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.



(6.17)

The above Equ. 6.17 is equivalently written into

Pos{Prob{ ˆ̃Cx ≤ F1} ≥ θ̂obj1 } ≥ ĥobj1

Pos{Prob{ ˆ̃Tx ≤ T1} ≥ θ̂obj2 } ≥ ĥobj2

Nes{Prob{ ˆ̃Cx ≤ F1} ≥ θ̂obj1 } ≥ ĥobj1

Nes{Prob{ ˆ̃Tx ≤ T1} ≥ θ̂obj2 } ≥ ĥobj2

subject to Pos{Prob{ ˆ̃Rx ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst

Nes{Prob{ ˆ̃Rx ≤ ˆ̃rmax} ≥ θ̂cst} ≥ ĥcst


(6.18)

where ˆ̃C =
N−1∑
i=1

ˆ̃c1(xi, xi+1, vi) + ˆ̃c1(xN , x1, vl),

ˆ̃T =
N−1∑
i=1

ˆ̃t1(xi, xi+1, vi) + ˆ̃t1(xN , x1, vl), ˆ̃R =
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl).
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The above Equ. 6.18 using section 3.13.15 is transformed to

N∑
i=1

{mc
i − L ∗ (ĥ1i

obj
)αc1i}xi + Φ−1(θ̂obj1 )

√
(xtV cx) ≤ F1

N∑
i=1

{mt
i − L ∗ (ĥ2i

obj
)αt2i}xi + Φ−1(θ̂obj2 )

√
(xtV tx) ≤ T1

s.t.
N∑
i=1

{mR
i − L ∗ (ĥi

cst
)αRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2)

≤ mr
i + L ∗ (ĥcsti )βri

(using Possibility approach)


(6.19)

N∑
i=1

{mc
i + L ∗ (1− ĥ1i

obj
)βci }xi + Φ−1(θ̂obj1 )

√
(xtV cx) ≤ F1

N∑
i=1

{mt
i + L ∗ (1− ĥ2i

obj
)βti}xi + Φ−1(θ̂obj2 )

√
(xtV tx) ≤ T1

s.t.
N∑
i=1

{mR
i + L ∗ (1− ĥi

cst
)βRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2)

≤ mr
i − L ∗ (1− ĥcsti )αri

(using Necessity approach)


(6.20)

Finally the above random-fuzzy models transformed into the crisp models as
given below:

Minimize F1 =
N∑
i=1

{mc
i − L ∗ (ĥ1i

obj
)αci}xi + Φ−1(θ̂obj1 )

√
(xtV cx)

Minimize T1 =
N∑
i=1

{mt
i − L ∗ (ĥ2i

obj
)αt2i}xi + Φ−1(θ̂obj2 )

√
(xtV tx)

s.t.
N∑
i=1

{mR
i − L ∗ (ĥi

cst
)αRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2)

≤ mr
i + L ∗ (ĥcsti )βri


(6.21)
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and

Minimize F1 =
N∑
i=1

{mc
i + L ∗ (1− ĥ1i

obj
)βci }xi

+Φ−1(θ̂obj1 )
√

(xtV cx)

Minimize T1 =
N∑
i=1

{mt
i + L ∗ (1− ĥ2i

obj
)βti}xi

+Φ−1(θ̂obj2 )
√

(xtV tx)
subject to

N∑
i=1

{mR
i + L ∗ (1− ĥi

cst
)βRi }xi + Φ−1(θ̂cst)

√
(xtV Rx+ (σri )

2)

≤ mr
i − L ∗ (1− ĥcsti )αri



(6.22)

where αci , α
R
i , β

c
i , β

R
i and βri are predetermined given values. Again ĥobj1 , ĥobj2 ,

ĥcst1 ĥcst2 are permissible possibility or necessity levels for the objectives and risk/dis-
comfort constraints. Also θ̂obj1 , θ̂cst2 are permissible probability levels for the ob-
jectives and constraints.
Model 6.1F: CMOSTSP in Bi-random Environment (BRCMOSTSP):

In Equ. 6.5, if the costs, times and risk/discomfort factors i.e, ˜̃c(i, j, k),
˜̃t(i, j, k) and ˜̃r(i, j, k) respectively are bi-random variables and maximum risk/dis-
comfort limit rmax is also bi-random variables ˜̃rmax, then the Equ. 6.5 reduces
to:

minimize Z =
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl)

minimize T =
N−1∑
i=1

˜̃t(xi, xi+1, vi) + ˜̃t(xN , x1, vl)

subject to
N−1∑
i=1

˜̃r(xi, xi+1, vi) + ˜̃r(xN , x1, vl) ≤ ˜̃rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.23)

Above Equ.6.23 can be reformulated with the objective functions as
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl) ≤ F ,
N−1∑
i=1

˜̃t(xi, xi+1, vi) + ˜̃t(xN , x1, vl) ≤ T ,

where F and T are crisp, and equations evaluated using equilibrium chance con-
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strained programming technique.

to minimize { F,T}

subject to Che{
N−1∑
i=1

˜̃c(xi, xi+1, vi) + ˜̃c(xN , x1, vl) ≤ F} ≥ α5

subject to Che{
N−1∑
i=1

˜̃t(xi, xi+1, vi) + ˜̃t(xN , x1, vl) ≤ T} ≥ α6

Che
N−1∑
i=1

˜̃r(xi, xi+1, vi) + ˜̃r(xN , x1, vl) ≤ ˜̃rmax} ≥ β4

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.24)

Here α, β are predetermined confidence levels.
Now the above Equ. 6.24 is reformulated as

minimize { F, T}
s.t Che{ ˜̃Cx ≤ F} ≥ α5

Che{ ˜̃Tx ≤ T} ≥ α6

Che{ ˜̃Rx ≤ ˜̃Rmax} ≥ β4

x ∈ D


(6.25)

where ˜̃C =
N−1∑
i=1

˜̃c(xi, xi+1, vi)+˜̃c(xN , x1, vl), ˜̃T =
N−1∑
i=1

˜̃t(xi, xi+1, vi)+
˜̃t(xN , x1, vl),

˜̃R =
N−1∑
i=1

˜̃r(xi, xi+1, vi) + ˜̃r1(xN , x1, vl), ˜̃Rmax = ˜̃rmax, and D is a fixed set that

usually determined by a finite of inequalities involving functions of x.
It follows from Theorem 3.13.5 and 3.13.6 the Equ. 6.25 can be written as

minimize { F, T}
subject to Pr{ω ∈ Ω|Pr{ ˜̃C(ω)x ≤ F} ≥ α5} ≥ α5

Pr{ω ∈ Ω|Pr{ ˜̃T (ω)x ≤ T} ≥ α6} ≥ α6

Pr{ω ∈ Ω|Pr{ ˜̃R(ω)x ≤ ˜̃Rmax} ≥ β4} ≥ β4

x ∈ D


(6.26)

Finally the above problem using Lemmas in section 3.13.5 and 3.13.6 reduces
to:
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Determine a complete tour (x1, x2, ..., xN , x1) and using any one available corre-
sponding conveyance in each step from the vehicle types (v1, v2, ..., vP )

minimize F = µcx+ Φ−1(α5)
√

(xTV cx) + Φ−1(α5)
√

(xTV ncx)

minimize T = µtx+ Φ−1(α6)
√

(xTV tx) + Φ−1(α6)
√

(xTV ntx)

s.t µRx+ Φ−1(β4)
√

(xTV Rx+ (σRmax)2) + Φ−1(β4)
√

(xTV nRx
+(σRnmax)2) ≤ µRmax,

x ∈ D.

 (6.27)

Here α, β are given values. Again σRmax, σRnmax, V R, V nR, V c, V nc are standard
deviation and variances of maximum of risk/discomfort factors and costs in two
fold randomness. Also Φ is the standard normal variate distributions.
Solution Procedures:

The deterministic forms of the uncertain CMOSTSPs given by Equ.6.5 for
crisp CMOSTSP, Equ. 6.8 for RCMOSTSP in random environment, Equ. 6.14
and Equ. 6.15 for FRCMOSTSP in fuzzy random parameters, Equ. 6.21 and
Equ. 6.22 for RFCMOSTSP in random fuzzy and Equ. 6.27 for BRCMOSTSP
in birandom environment are solved by the proposed iMOGA, developed for this
purpose in section 6.2.1.

6.2.3 Numerical Experiments

(i) Testing for iMOGA:
To judge the effectiveness and feasibility of the developed algorithm iMOGA,

we have applied it on the standard two TSP problems from TSPLIB [162] with
the combination of same size test problems. Table 6.3 gives the results of said
multi-objective by iMOGA and the standard MOGA along with the comparison
in terms of total cost and iterations and CPU time in minutes. Here classical
MOGA is the combinations of RW-selection, cyclic crossover and random mu-
tation, where as our proposed iMOGA is the combination fuzzy extended age
based selection (FEA), adaptive crossover and generation dependent (GD) muta-
tions.

(ii) Performance matrices:
To have a fair comparison, the Coverage (C) (Zitzler et al., [189]) and Inverted

Generational Distance (IGD) (Zhang et al., [185]) metrics are used to access the
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Table 6.3: Test combining Standard TSPLIB Problems by iMOGA
Instances Single Multi iMOGA MOGA

Cost Iteration Time Cost Iteration Time
bays29 2020
bayg29 1610 - 4268 132 .14 4786 457 4.53
eil76 538 -
pr76 108159 111953 216 2.25 118447 874 7.21

kroA100 21282
kroB100 22141 49639 (Samanlioglu, [148]) 49428 234 3.02 54658 679 6.45
kroA100 21282
kroC100 20749 50245 (Samanlioglu, [148]) 49810 276 2.57 52754 734 6.57
kroB100 22141
kroC100 20749 - 48564 342 3.43 71368 751 7.23
kroB100 22141
kroD100 21294 - 52645 423 4.12 92743 932 9.54
kroD100 21294
kroC100 20749 - 49941 678 4.13 67894 876 9.02
kroA100 20182
kroD100 21294 50623 564 5.27 82347 829 9.39

performance of the two algorithms. The Coverage metric is used to compare the
achieved non-dominated solutions.

C(A1, A2)= |{π|π∈A2,∃φ∈A1:F (φ)≺F (π)}|
|A2|

where A1, A2 are the obtained non-dominated sets by two algorithms, F (φ) ≺
F (π) denotes F (φ) dominates F(π). C(A1, A2) is not necessarily equal to 1-
C(A2, A1). If C(A1, A2) is large and C(A2, A1) is small, then A1 is better than A2

in a sense.
Lat A∗ be a set of uniformly distributed Pareto optimal points in the PF. Let A

be an approximation to the PF. The IGD metric is defined as follows,
IGD(A∗, A)=

∑
d(v,A)
|A∗|

where d(v, A) is a minimum distance between v and any point in A, and |A∗|
is the cardinality of A∗. The IGD metric can measure both convergence and di-
versity. To have a low IGD value, A must be close to the PF and cannot miss
any part of the whole PF. Here we combine the results obtained by all runs of all
algorithms and find out the non-dominated solutions from the combination as the
reference A∗.

Table 6.4 presents the statistical results of the Coverage and IGD metrics. It
shows that iMOGA performs better than MOGA. The IGD represents both the
diversity and convergence qualities of the final approximation. It can be seen that
for all problems, the approximation obtained by iMOGA are better than other two
algorithms.
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Figure 6.1: Pareto front kroAB and kroCD

Table 6.4: Results (Mean, SD) of iMOGA(A), MOEA/D-ACO(D), MOGA(S)
Instances Coverage IGD

C(A, D) C(D, A) C( A, S) C( S, A) A D S
kroAB100 0.625, 0.121 0.098, 0.068 0.997, 0.008 0.002, 0.002 1217.8, 384.32 2115.45, 237.41 12875.23, 487.16
kroAC100 0.567, 0.116 0.099, 0.074 0.967, 0.017 0.001, 0.018 1134.4, 367.45 1876.25, 272.59 13246.54, 376.82
kroAD100 0.653, 0.139 0.087, 0.051 0.974, 0.021 0.003, 0.005 1356.6, 246.56 1508.54, 229.13 12387.47, 512.23
kroBC100 0.598, 0.113 0.089, 0.087 0.982, 0.010 0.002, 0.002 1754.5, 364.75 2052.63, 373.52 14547.81, 631.27
kroBD100 0.703, 0.139 0.081, 0.057 0.985, 0.007 0.011, 0.003 1678.9, 302.56 1935.61, 307.18 14123.52, 565.87
kroCD100 0.634, 0.126 0.078, 0.072 0.975, 0.009 0.004, 0.001 1734.7, 267.83 2245.73, 337.82 15025.17, 579.63

(iii) Comparison iMOGA with other algorithms:
According to Lust et al., [107] [108], we compare iMOGA with two states of

art algorithms as MOEA/D-ACO and 2PPLS. The quality indicators are hyper-
volume H (to be maximized), the R measure (normalized between 0 and 1, to be
maximized), the average distance D1 and maximal distance D2 (to be minimized).
The results are considered 40 runs of each algorithm.

(iv) Different forms of iMOGA:
Moreover, for a particular test problem bayg29 and bays29, both standard

MOGA and proposed iMOGA are used with different Pc’s, Pm’s and proposed
Ps’s. The obtained Pareto optimal solutions are presented in Tables 6.6 and 6.7.

Model 6.1A: Results of CMOTSP and CMOSTSP with Risk/Discomfort
Constraint in Crisp Environment:
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Table 6.5: Comparison with state-of-art-algorithms
Instances Algorithm H(108) Iε R D1 D2 Time(S)

iMOGA 283.56 1.005718 0.913348 0.572 3.487 127.68
kroAB100 2PPLS 281.32 1.024810 0.883471 0.688 3.357 119.72

MOEA-D/ACO 254.76 1.030837 0.901294 0.732 5.546 480.96
iMOGA 286.21 1.003182 0.914578 0.543 3.273 132.65

kroAC100 2PPLS 282.11 1.014218 0.913760 0.677 3.758 122.76
MOEA-D/ACO 276.31 1.025123 0.912365 0.665 11.816 528.73

iMOGA 281.45 1.004319 0.912486 0.503 4.891 117.39
kroAD100 2PPLS 280.27 1.015827 0.906591 0.631 8.349 134.75

MOEA-D/ACO 280.61 1.019564 0.902187 0.652 12.864 620.81
iMOGA 285.28 1.005507 0.917582 0.703 4.549 137.58

kroBC100 2PPLS 284.81 1.005584 0.915273 0.727 8.756 141.82
MOEA-D/ACO 281.37 1.034253 0.916479 0.726 10.278 532.78

iMOGA 283.73 1.032613 0.915423 0.563 4.923 141.82
kroBD100 2PPLS 283.42 1.006489 0.915376 0.643 7.870 141.77

MOEA-D/ACO 282.78 1.030743 0.915338 0.759 19.569 567.20
iMOGA 288.91 1.005075 0.914482 0.634 4.437 139.87

kroCD100 2PPLS 286.01 1.023783 0.913276 0.689 10.392 147.32
MOEA-D/ACO 284.67 1.025034 0.912787 0.705 21.548 589.13

Table 6.6: Comparison of iMOGA and MOGA

Algorithm Selection Crossover Generation pc pm ps Result
MOGA Roulette Wheel Cyclic 457 0.31 0.3 -
MOGA Probabilistic Cyclic 432 0.31 0.3 -
iMOGA Probabilistic Adaptive 256 0.4 0.3 -
iMOGA Probabilistic Adaptive 276 0.44 0.3 -
iMOGA Probabilistic Adaptive 163 - 0.3 0.3 [2342, 1876]
iMOGA Age based Adaptive 182 - 0.3 -
iMOGA Extended Age based Adaptive 173 - 0.3 -
iMOGA Extended Age based Adaptive 158 - GD
iMOGA Extended Age based Adaptive 146 - GD -
iMOGA Extended Age based Adaptive 132 - GD & Rand -

257



CHAPTER 6. MULTI-OBJECTIVE OPTIMIZATION USING HEURISTICS ALGORITHMS

Table 6.7: Comparison of iMOGA for bayg29 and bays29
Algorithm Selection Crossover Mutation Generation Pm Result

737 0.4
Simple 598 0.3

634 0.2
Fuzzy 356 0.4

Random 265 0.3
Age 273 0.2

Based Adaptive 166 0.4
Fixed 161 0.3

155 0.2
iMOGA GD 149 - [2342, 1876]

664 0.4
Simple 564 0.3

605 0.2
Fuzzy 234 0.4

Random 221 0.3
216 0.2

Extended Adaptive 164 0.4
Age Based Fixed 158 0.3

150 0.2
GD 132 -

Here we consider a deterministic CMOSTSP given by Equ. 6.7, whose costs,
times and risk/discomfort matrices are given by Table 6.8. The problem is solved
by iMOGA and the results are presented in Tables 6.9 and 6.10. Here, for
CMOSTSP, we consider three types of conveyances. With the same data for the
1st conveyance, we solve the CMOTSP (with single conveyance) and the results
are presented in Table 6.9.

For Table 6.9, we took maximum generation=1000 and max-pop size =100
and for Table 6.10, maximum generation=2000, and maximum popsize=150.

Table 6.8: Input Data: Crisp CMOSTSP (Model 6.1A)
Crisp Cost Matrix(10 × 10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 35,36,27 18,39,30 20,33,34 30,21,62 6,23,8 15,36,47 27,38,19 40,31,42 20,31,42
2 35,26,17 ∞ 40,21,32 18,29,10 35,26,37 40,31,22 40,31,59 33,42,59 18,37,20 24,16,18
3 38,30,29 17,58,34 ∞ 12,25,14 42,25,46 35,36,34 19,11,8 32,33,25 30,19,41 30,22,33
4 28,20,11 10,22,14 17,8,29 ∞ 30,19,24 25,16,27 21,31,33 35,36,17 12,23,34 27,48,39
5 17,15,9 42,23,34 35,36,37 20,31,43 ∞ 30,21,42 45,16,27 30,31,13 19,10,8 28,26,7
6 15,6,7 30,21,29 5,26,28 8,9,12 28,29,40 ∞ 33,42,24 40,31,22 32,23,35 30,41,32
7 38,39,30 25,54,26 30,38,26 22,43,24 37,58,39 40,21,45 ∞ 10,41,13 32,33,35 20,15,26
8 40,41,23 25,6,17 32,53,45 40,21,42 35,36,47 25,16,5 40,22,43 ∞ 22,53,24 37,37,39
9 40,11,33 40,39,36 3,36,37 25,34,29 20,32,21 22,33,25 7,38,39 32,33,14 ∞ 28,19,26

10 18,27,29 30,21,32 28,19,30 20,31,22 11,33,22 32,12,34 37,28,39 40,41,33 30,51,33 ∞
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i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 15,16,17 28,19,20 30,13,14 20,31,12 62,13,68 25,16,27 17,28,39 30,21,22 30,21,22
2 15,16,27 ∞ 30,31,22 38,19,40 15,16,17 30,21,32 30,21,9 13,22,9 28,17,10 14,36,28
3 30,21,32 17,58,34 ∞ 12,25,14 42,25,46 35,36,34 19,11,8 32,33,25 30,19,41 30,22,33
4 28,20,11 10,22,14 17,8,29 ∞ 30,19,24 25,16,27 21,31,33 35,36,17 12,23,34 27,48,39

Crisp Time Matrix(10 ×10) With Three Conveyances
5 17,15,9 42,23,34 35,36,37 20,31,43 ∞ 30,21,42 45,16,27 30,31,13 19,10,8 28,26,7
6 25,26,37 20,31,19 55,16,18 61,58,55 18,19,20 ∞ 13,22,14 30,21,32 22,33,15 20,11,12
7 27,8,14 25,12,36 20,18,16 20,31,12 17,8,19 20,21,25 ∞ 30,21,33 22,13,15 30,25,16
8 38,19,40 15,16,17 28,19,20 30,13,14 20,31,12 62,13,68 25,16,27 ∞ 17,28,39 30,21,22
9 40,11,33 40,39,36 3,36,37 25,34,29 20,32,21 22,33,25 7,38,39 32,33,14 ∞ 28,19,26

10 28,17,19 20,31,12 18,39,20 30,11,18 31,33,22 32,12,34 37,28,39 40,41,33 30,51,33 ∞
Crisp Risks/Discomforts Matrix(10×10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ .69,.68,.75 .84,.63,.7 .82,.7,.71 .72,.8,.42 .96,.79,.93 .87,.66,.55 .74,.42,.81 .41,.7,.59 .81,.7,.59
2 .67,.76,.84 ∞ .61,.8,.7 .83,.73,.92 .67,.76,.65 .41,.71,.79 .41,.71,.43 .69,.6,.42 .83,.64,.81 .77,.85,.3
3 .63,.71,.73 .83,.44,.67 ∞ .89,.76,.86 .59,.76,.55 .66,.65,.67 .83,.91,.94 .69,.68,.76 .71,.82,.6 .71,.79,.68
4 .73,.81,.9 .9,.78,.86 .84,.93,.72 ∞ .71,.82,.77 .77,.86,.75 .81,.71,.69 .66,.65,.84 .89,.79,.77 .74,.53,.43
5 .84,.86,.92 .59,.78,.67 .66,.65,.64 .82,.71,.59 ∞ .71,.81,.59 .57,.85,.74 .71,.7,.88 .82,.91,.93 .74,.75,.93
6 .85,.84,.93 .7,.8,.71 .95,.74,.72 .92,.91,.89 .73,.72,.61 ∞ .69,.59,.77 .61,.71,.79 .69,.78,.66 .71,.6,.69
7 .63,.62,.71 .77,.47,.76 .71,.63,.76 .79,.59,.77 .66,.43,.62 .6,.79,.55 ∞ .9,.6,.87 .69,.68,.66 .81,.87,.76
8 .61,.6,.78 .76,.95,.84 .69,.47,.56 .61,.81,.6 .67,.66,.55 .6,.85,.95 .61,.8,.59 ∞ .79,.48,.77 .64,.64,.62
9 .61,.91,.71 .61,.62,.65 .97,.65,.64 .76,.77,.72 .81,.69,.73 .79,.68,.76 .94,.66,.63 .69,.68,.87 ∞ .73,.82,.75

10 .83,.74,.72 .71,.8,.69 .73,.83,.72 .8,.69,.78 .89,.67,.78 .7,.9,.71 .64,.74,.22 .61,.59,.68 .71,.5,.67 ∞

Table 6.9: Results of CMOTSP in Crisp (Model 6.1A)
Algorithm Path Value Rmax

8-2-10-5-9-6-1-4-3-7 [124,147] Without Rmax

8-2-10-5-9-6-1-4-3-7 [124, 147] 8.64
iMOGA 5-9-6-4-3-7-10-8-2-1 [130,126] 8.64

6-8-2-10-4-3-7-9-1-5 [139, 110] 8.64
4-8-2-10-5-9-6-1-3-7 [140, 104] 8.64

iMOGA 1-7-2-5-9-6-10-4-3-2 [167, 106] 8.5
MOGA 10-8-2-5-9-6-1-4-3-7 [207, 118] 8.5
iMOGA 8-5-9-6-1-4-3-7-2-10 [228, 109] 8.00
MOGA 1-2-5-10-4-3-7-9-6-8 [294, 132] 8.00
iMOGA 7-2-6-9-1-4-8-5-10-3 [242, 104] 8.00

Table 6.10: Results of CMOSTSP in Crisp (Model 6.1B)
Algorithm Path(Vehicle) Cost Risk achieved Rmax

1(1)-10(1)-5(2)-4(1)-2(1)-9(1)-3(2)-7(1)-8(3)-6(2) [107, 142] 8.71
9(1)-7(1)-8(1)-6(2)-1(1)-3(1)-4(1)-2(1)-10(1)-5(3) [131, 138] 8.50 8.75
8(3)-2(2)-10(1)-9(1)-6(2)-4(2)-3(3)-7(2)-5(2)-1(3) [141, 128] 8.50

iMOGA 7(1)-8(1)-6(2)-1(1)-10(3)-5(2)-4(3)-2(3)-9(1)-3(2) [144, 123] 8.19 8.75
MOGA 2(2)-9(1)-3(3)-7(3)-8(1)-6(2)-1(3)-10(2)-5(2)-4(1) [190, 108] 8.73 8.75

5(2)-4(3)-2(1)-9(3)-8(1)-6(3)-1(1)-3(2)-7(1)-10(1) [151, 102] 7.92
iMOGA 2(2)-10(3)-9(1)-3(1)-7(1)-8(1)-6(2)-1(1)-5(2)-4(1) [165, 91] 7.79 8.00

7(1)-5(2)-4(1)-2(3)-9(2)-3(3)-8(1)-6(2)-1(2)-10(2) [240, 83] 7.75
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Model 6.1C: CMOSTSP with Risk/Discomfort Constraint in Random
Environment (RaCMOSTSP):

Here we have taken the costs, times and risk/discomfort values as random for
the CMOSTSP. Also we consider three types of conveyances. The random cost,
time matrices for the CMOSTSP and random risk/discomfort matrix in the form
of means and variances are given in Table 6.11. The Pareto optimum results of
this CMOSTSP model for different values of k1 and k2 are obtained by iMOGA
and presented in Table 6.12.

Model 6.1E: CMOSTSP with Risks/Discomforts Constraint in Random-
Fuzzy Environment (RFCMOSTSP):

Here the costs, times and risk/discomfort factors are in random-fuzzy val-
ues for the CMOSTSP. Also we consider three types of conveyances. Assume
that M̃ c is a triangular fuzzy number. The random-fuzzy cost matrix for the
CMOSTSP and corresponding random-fuzzy risk/discomfort matrix are presented
in Table 6.13, where first part is a TFN (mean) and second part is a given variance
presented in Table 6.13.

Here we took permissible probability levels θ̂obj = θ̂cst=0.94. We set L(x)=1-
x, left and right spreads respectively αc = mc − ĥobj, βc = mc − 2 ∗ ĥobj,
αR = mR − ĥcst, βR = mR − 2 ∗ ĥcst, αr = mr − ĥcst, βr = mr − 2 ∗ ĥcst.

Model 6.1D: CMOSTSP with risk/discomfort Constraint in Fuzzy Random
Environment ( FRCMOSTSP):

Here we have taken the costs, times and risk/discomfort as fuzzy random val-
ues for the CMOSTSP. Also we consider three types of conveyances. The ex-
tended operations on the basis of min-max cannot be directly applied to fuzzy
numbers with discrete supports. So fuzzy numbers in LR-representation are used
since computational effort in this case decreases very much . Assume that the
costs are LR-type fuzzy random numbers as (ĉ, α, β) where ĉ is a normal variate
and α, β are respectively left and right spreads of the LR- fuzzy variables. Sim-
ilarly time and risk/discomfort are taken as LR-type fuzzy random variables (t̂,
α, β) and (r̂, α, β) where t̂ and r̂ are normal random variates and α, β are left and
right spreads of the LR- fuzzy variables. The fuzzy random costs and times ma-
trices for the CMOSTSP and corresponding fuzzy random risk/discomfort matrix
are presented in Table 6.15.
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6.2. MODEL-6.1: AN IMPRECISE MULTI-OBJECTIVE GA (IMOGA) FOR CMOSTSP
UNDER UNCERTAIN ENVIRONMENTS

Table 6.11: Input Data: RaCMOSTSP (Model 6.1C)
Random Cost Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
(32,1.1) (19,.9) (21,1.02) (30,1.01) (7,1.23) (16,1.11) (28,1.04) (41,1.12) (21,1.02)

1 ∞ (37,1.21) (39,1.07) (33,1.15) (21,.98) (23,1.02) (36,1.03) (39,1.12) (31,1.13) (31,1.1)
(28,1.02) (30,1.11) (35,1.17) (62,1.2) (8,1.19) (47,.97) (19,1.18) (42,1.03) (43,1.01)

(35,1.12) (41,1.03) (18,1.11) (35,1.07) (40,1.02) (40,1.13) (33,1.03) (19,1.2) (24,1.19)
2 (26,1.18) ∞ (21,1.17) (29,1.12) (26,1.2) (31,1.2) (30,1.15) (42,1.21) (37,1.13) (16,1.12)

(17,1.13) (32,1.32) (10,1.03) (37,1.2) (23,1.31) (59,1.14) (59,1.16) (20,1.3) (18,1.03)
(38,1.29) (17,1.21) (12,1.25) (42,1.23) (35,1.21) (19,1.13) (32,1.1) (30,1.11) (30,1.21)

3 (30,1.13) (58,1.43) ∞ (25,1.21) (25,1.23) (36,1.4) (11,1.1) (33,1.21) (19,1.22) (22,1.16)
(29,1.15) (34,1.32) (14,1.11) (46,1.24) (34,1.12) (8,1.3) (25,1.16) (41,1.41) (33,1.33)
(28,1.14) (10,1.2) (18,1.21) (30,1.13) (25,1.23) (21,1.4) (35,1.3) (12,1.21) (27,1.6)

4 (20,1.1) (22,1.32) (9,1.4) ∞ (19,1.15) (16,1.12) (31,1.4) (36,1.2) (23,1.31) (48,1.2)
(10,1.31) (14,1.2) (29,1.31) (24,1.21) (27,1.13) (33,1.19) (17,1.23) (34,1.2) (39,1.28)
(18,1.31) (42,1.2) (35,1.12) (20,1.31) (30,1.21) (45,1.16) (30,1.24) (19,1.34) (28,1.42)

5 (15,1.2) (23,1.31) (36,1.41) (13,1.31) ∞ (21,1.36) (16,1.02) (31,1.27) (10,1.01) (26,1.47)
(8,1.2) (34,1.21) (38,1.34) (43,1.15) (41,1.5) (27,1.31) (13,1.02) (8,1.04) (27,1.21)

(15,1.31) (29,1.15) (4,1.32) (8,1.41) (28,1.61) (33,1.26) (40,1.53) (32,1.21) (30,1.54)
6 (6,1.65) (21,1.75) (26,1.62) (9,1.7) (29,1.21) ∞ (42,1.31) (31,1.32) (23,1.34) (41,1.52)

(7,1.27) (29,1.15) (28,1.72) (12,1.04) (39,1.37) (24,1.32) (22,1.65) (35,1.21) (32,1.52)
(37,1.6) (25,1.21) (30,1.5) (22,1.61) (37,1.98) (40,1.76) (10,1.31) (33,1.54) (20,1.04)

7 (39,1.43) (53,1.6) (38,1.71) (43,1.31) (58,1.21) (21,1.65) ∞ (43,1.65) (34,1.71) (15,1.2)
(30,1.32) (26,1.54) (26,1.56) (24,1.76) (40,1.21) (45,1.61) (13,1.21) (36,1.37) (26,1.6)
(41,1.27) (26,1.43) (32,1.34) (40,1.21) (35,1.53) (25,1.53) (40,1.27) (22,1.31) (37,1.76)

8 (42,1.43) (6,1.32) (53,1.43) (21,1.21) (36,1.21) (16,1.06) (21,1.03) ∞ (53,1.62) (36,1.78)
(23,1.15) (17,1.23) (45,1.17) (42,1.31) (47,1.32) (5,1.03) (43,1.04) (24,1.02) (40,1.02)
(40,1.72) (41,1.56) (6,1.24) (25,1.71) (21,1.04) (23,1.32) (7,1.01) (32,1.32) (28,1.41)

9 (11,1.21) (39,1.56) (36,1.42) (34,1.57) (32,1.3) (33,1.06) (38,1.02) (33,1.76) (19,1.32)
(32,1.02) (36,1.42) (37,1.76) (29,1.08) (21,1.02) (25,1.03) (39,1.21) (13,1.52) ∞ (26,1.72)
(17,1.51) (30,1.31) (28,1.15) (20,1.72) (11,1.82) (32,1.52) (38,1.02) (41,1.62) (31,1.52)

10 (26,1.01) (21,1.04) (19,1.21) (31,1.02) (33,1.27) (12,1.18) (28,1.13) (42,1.81) (52,1.37) ∞
(29,1.21) (32,1.92) (30,1.72) (22,1.51) (22,1.19) (34,1.17) (39,1.16) (33,1.21) (32,1.15)

Random Time Matrix(10×10) for RCMOSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

(22,1.1) (29,.9) (31,1.02) (20,1.01) (37,1.23) (26,1.11) (18,1.04) (11,1.12) (31,1.02)
1 ∞ (17,1.21) (19,1.07) (31,1.15) (31,.98) (33,1.02) (16,1.03) (19,1.12) (21,1.13) (21,1.1)

(18,1.02) (20,1.11) (15,1.17) (12,1.2) (38,1.19) (7,.97) (39,1.18) (22,1.03) (23,1.01)
(15,1.12) (21,1.03) (18,1.11) (35,1.07) (20,1.02) (20,1.13) (13,1.03) (19,1.2) (14,1.19)

2 (16,1.18) ∞ (21,1.17) (19,1.12) (16,1.2) (21,1.2) (20,1.15) (22,1.21) (17,1.13) (16,1.12)
(37,1.13) (22,1.32) (10,1.03) (17,1.2) (33,1.31) (9,1.14) (39,1.16) (10,1.3) (18,1.03)
(18,1.29) (27,1.21) (12,1.25) (12,1.23) (25,1.21) (39,1.13) (12,1.1) (20,1.11) (20,1.21)

3 (20,1.13) (8,1.43) ∞ (15,1.21) (15,1.23) (26,1.4) (31,1.1) (13,1.21) (19,1.22) (12,1.16)
(19,1.15) (14,1.32) (34,1.11) (6,1.24) (14,1.12) (38,1.3) (15,1.16) (21,1.41) (23,1.33)
(18,1.14) (30,1.2) (38,1.21) (20,1.13) (15,1.23) (31,1.4) (25,1.3) (32,1.21) (17,1.6)

4 (30,1.1) (32,1.32) (39,1.4) ∞ (39,1.15) (46,1.12) (21,1.4) (16,1.2) (23,1.31) (8,1.2)
(40,1.31) (24,1.2) (19,1.31) (24,1.21) (17,1.13) (23,1.19) (37,1.23) (14,1.2) (19,1.28)
(38,1.31) (22,1.2) (15,1.12) (20,1.31) (20,1.21) (5,1.16) (20,1.24) (29,1.34) (28,1.42)

5 (35,1.2) (33,1.31) (16,1.41) (13,1.31) ∞ (21,1.36) (36,1.02) (21,1.27) (30,1.01) (16,1.47)
(48,1.2) (14,1.21) (18,1.34) (43,1.15) (21,1.5) (17,1.31) (33,1.02) (38,1.04) (27,1.21)

(35,1.31) (19,1.15) (44,1.32) (8,1.41) (18,1.61) (23,1.26) (20,1.53) (22,1.21) (20,1.54)
6 (46,1.65) (11,1.75) (16,1.62) (9,1.7) (19,1.21) ∞ (22,1.31) (21,1.32) (23,1.34) (21,1.52)

(37,1.27) (19,1.15) (18,1.72) (12,1.04) (29,1.37) (14,1.32) (22,1.65) (35,1.21) (12,1.52)
(17,1.6) (15,1.21) (20,1.5) (22,1.61) (27,1.98) (20,1.76) (20,1.31) (33,1.54) (10,1.04)

7 (19,1.43) (3,1.6) (18,1.71) (43,1.31) (8,1.21) (11,1.65) ∞ (43,1.65) (14,1.71) (15,1.2)
(20,1.32) (16,1.54) (26,1.56) (24,1.76) (20,1.21) (15,1.61) (13,1.21) (36,1.37) (16,1.6)
(31,1.27) (16,1.43) (12,1.34) (40,1.21) (15,1.53) (15,1.53) (10,1.27) (22,1.31) (17,1.76)

8 (22,1.43) (46,1.32) (6,1.43) (21,1.21) (26,1.21) (26,1.06) (21,1.03) ∞ (33,1.62) (16,1.78)
(33,1.15) (37,1.23) (5,1.17) (42,1.31) (17,1.32) (35,1.03) (13,1.04) (14,1.02) (30,1.02)
(20,1.72) (21,1.56) (46,1.24) (25,1.71) (11,1.04) (3,1.32) (27,1.01) (12,1.32) (18,1.41)

9 (31,1.21) (19,1.56) (26,1.42) (34,1.57) (22,1.3) (23,1.06) (28,1.02) (13,1.76) (39,1.32)
(22,1.02) (16,1.42) (17,1.76) (29,1.08) (31,1.02) (15,1.03) (19,1.21) (33,1.52) ∞ (16,1.72)
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(27,1.51) (20,1.31) (18,1.15) (20,1.72) (21,1.82) (12,1.52) (28,1.02) (21,1.62) (11,1.52)
10 (16,1.01) (31,1.04) (39,1.21) (31,1.02) (23,1.27) (32,1.18) (18,1.13) (22,1.81) (2,1.37) ∞

(19,1.21) (22,1.92) (20,1.72) (22,1.51) (12,1.19) (14,1.17) (19,1.16) (13,1.21) (22,1.15)
Random Risks/Discomforts Matrix(10×10) for RaCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
(.62,1.1) (.75,.9) (.7,1.02) (.66,1.01) (.87,1.23) (.8,1.11) (.68,1.04) (.5,1.12) (.74,1.02)

1 ∞ (.54,1.21) (.53,1.07) (.61,1.15) (.78,.98) (.71,1.02) (.58,1.03) (.52,1.12) (.64,1.13) (.63,1.1)
(.28,1.02) (.64,1.11) (.59,1.17) (.34,1.2) (.88,1.19) (.49,.97) (.76,1.18) (.55,1.03) (.52,1.01)

(.6,1.12) (.54,1.03) (.77,1.11) (.6,1.07) (.55,1.02) (.54,1.13) (.62,1.03) (.76,1.2) (.71,1.19)
2 (.65,1.18) ∞ (.74,1.17) (.62,1.12) (.68,1.2) (.64,1.2) (.66,1.15) (.53,1.21) (.58,1.13) (.78,1.12)

(.79,1.13) (.63,1.32) (.85,1.03) (.58,1.2) (.7,1.31) (.35,1.14) (.32,1.16) (.73,1.3) (.74,1.03)
(.58,1.29) (.77,1.21) (.79,1.25) (.54,1.23) (.59,1.21) (.76,1.13) (.62,1.1) (.66.11) (.61,1.21)

3 (.64,1.13) (.35,1.43) ∞ (.7,1.21) (.745,1.23) (.59,1.4) (.85,1.1) (.61,1.21) (.76,1.22) (.72,1.16)
(.66,1.15) (.62,1.32) (.81,1.11) (.49,1.24) (.62,1.12) (.86,1.3) (.7,1.16) (.52,1.41) (.62,1.33)
(.65,1.14) (.86,1.2) (.78,1.21) (.66,1.13) (.7,1.23) (.77,1.4) (.69,1.3) (.82,1.21) (.69,1.6)

4 (.76,1.1) (.73,1.32) (.9,1.4) ∞ (.79,1.15) (.77,1.12) (.63,1.4) (.6,1.2) (.71,1.31) (.47,1.2)
(.84,1.31) (.79,1.2) (.65,1.31) (.71,1.21) (.7,1.13) (.63,1.19) (.77,1.23) (.59,1.2) (.54,1.28)
(.8,1.31) (.54,1.2) (.6,1.12) (.75,1.31) (.65,1.21) (.5,1.16) (.63,1.24) (.76,1.34) (.68,1.42)

5 (.8,1.2) (.69,1.31) (.6,1.41) (.82,1.31) ∞ (.76,1.36) (.8,1.02) (.64,1.27) (.84,1.01) (.48,1.47)
(.88,1.2) (.6,1.21) (.56,1.34) (.51,1.15) (.54,1.5) (.68,1.31) (.8,1.02) (.86,1.04) (.64,1.21)
(.8,1.31) (.69,1.15) (.89,1.32) (.85,1.41) (.7,1.61) (.63,1.26) (.55,1.53) (.63,1.21) (.65,1.54)

6 (.89,1.65) (.79,1.75) (.76,1.62) (.88,1.7) (.68,1.21) ∞ (.55,1.31) (.67,1.32) (.72,1.34) (.52,1.52)
(.85,1.27) (.7,1.15) (.65,1.72) (.8,1.04) (.53,1.37) (.73,1.32) (.74,1.65) (.7,1.21) (.61,1.52)
(.55,1.6) (.7,1.21) (.67,1.5) (.72,1.61) (.62,1.98) (.54,1.76) (.84,1.31) (.62,1.54) (.84,1.04)

7 (.57,1.43) (.42,1.6) (.59,1.71) (.52,1.31) (.37,1.21) (.76,1.65) ∞ (.58,1.65) (.62,1.71) (.79,1.2)
(.66,1.32) (.7,1.54) (.71,1.56) (.69,1.76) (.54,1.21) (.5,1.61) (.82,1.21) (.6,1.37) (.68,1.6)
(.55,1.23) (.7,1.43) (.65,1.34) (.58,1.21) (.59,1.53) (.68,1.53) (.57,1.27) (.72,1.31) (.58,1.76)

8 (.55,1.43) (.78,1.32) (.42,1.43) (.74,1.21) (.6,1.21) (.76,1.06) (.72,1.03) ∞ (.44,1.62) (.6,1.78)
(.72,1.15) (.77,1.02) (.5,1.32) (.54,1.03) (.48,1.05) (.88,1.31) (.52,1.38) (.61,1.73) (.57,1.28)
(.54,1.72) (.51,1.56) (.88,1.24) (.7,1.71) (.72,1.04) (.71,1.32) (.87,1.01) (.7,1.32) (.68,1.41)

9 (.84,1.21) (.56,1.56) (.6,1.42) (.61,1.57) (.67,1.3) (.61,1.06) (.62,1.02) (.63,1.76) (.74,1.32)
(.57,1.02) (.59,1.42) (.6,1.76) (.67,1.08) (.75,1.02) (.74,1.03) (.58,1.21) (.82,1.52) ∞ (.7,1.72)
(.8,1.51) (.68,1.31) (.69,1.15) (.76,1.72) (.8,1.82) (.61,1.52) (.58,1.02) (.56,1.62) (.63,1.52)

10 (.7,1.01) (.74,1.04) (.55,1.21) (.64,1.02) (.61,1.27) (.8,1.18) (.68,1.13) (.55,1.81) (.42,1.37) ∞
(.64,1.21) (.65,1.92) (.66,1.72) (.73,1.51) (.74,1.19) (.54,1.17) (.58,1.16) (.57,1.21) (.6,1.15)

Table 6.12: Results of RaCMOSTSP (Model 6.1C)

K1 K2 Algorithm Path(Vehicle) Costs & Time Rmax

iMOGA 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) [50.80, 39.3] 8.5
0.5 0.5 AMOGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [54.32, 35.65] 8.5

iMOGA 7(3)-4(2)-1(3)-5(1)-6(1)-2(2)-3(3)-10(1)-8(2)-9(3) [56.60,33.20] 8.5
0.5 0.5 MOGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [64.32, 27.71] 8.5
0.4 0.6 iMOGA 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) [41.36, 48.63] 8.5.
0.6 0.4 iMOGA 10(1)-5(2)-9(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) [60.24, 26.28] 8.5
0.5 0.5 iMOGA 6(2)-4(3)-3(1)-5(1)-2(3)-7(1)-8(2)-2(1)-1(2)-9(2) [72.2, 37.84] 8.25
0.5 0.5 MOGA 4(2)-10(3)-2(2)-5(3)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [84.17, 41.18] 8.0
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6.2. MODEL-6.1: AN IMPRECISE MULTI-OBJECTIVE GA (IMOGA) FOR CMOSTSP
UNDER UNCERTAIN ENVIRONMENTS

Table 6.13: Input Data: RFCMOSTSP (Model 6.1E)
Random-Fuzzy Cost Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 1 2 3 4 5
[(32,35,36),1.21] [(17,19,20),.98] [(17,21,22),1.76] [(29,30,31),1.13]

1 ∞ [(36,37,39),1.21] [(38,39,42),1.32] [(31,33,34),1.16] [(20,21,23),1.13]
[(26,28,29),1.08] [(26,30,31),1.03] [(33,35,36),1.23] [(60,62,63),1.05]

[(34,35,38),1.34] [(40,41,44),1.42] [(16,18,19),1.13] [(32,35,37),1.45]
2 [(22,26,27),1.12] ∞ [(18,21,22),1.14] [(28,29,32),1.17] [25,26,27),1.18]

[(14,17,19),1.54] [(27,32,33),1.36] [(6,10,12),1.12] [(34,37,38),1.4]
[(36,38,39),1.18] [(16,17,20),1.43] [(10,12,13),1.17] [(40,42,45)1.54]

3 [(29,30,32),1.41] [(54,58,60),1.31] ∞ [(24,25,26),1.17] [(23,25,26),1.02]
[(28,29,32),1.72] [(31,34,35),1.32] [(12,14,17),1.03] [(45,46,48),1.13]
[(27,28,30),1.42] [(9,10,11),1.17] [(16,18,20),1.18] [(29,30,33),.9]

4 [(18,20,21),1.46] [(19,22,23),1.32] [(7,9,10),1.62] ∞ [(17,19,20),1.54]
[(9,10,12),1.14] [(12,14,15),1.17] [(27,29,30),1.14] [(23,24,25),1.76]
[(16,18,19,1.17] [(41,42,44),1.17] [(34,35,37),1.14] [(17,20,21)1.2]

5 [(14,15,18),1.3] [(21,23,24),1.3] [(35,36,37),1.3] [(12,13,14),1.38] ∞
[(6,8,9),1.3] [(32,34,37),1.3] [(33,38,39),1.3] [(40,43,44),1.16]

[(13,15,16),1.3] [(26,29,30),1.54] [(4,4,6),1.17] [(6,8,9),1.3]),1.13] [(26,28,29),1.34]
6 [(5,6,8),1.3] [(20,21,23),1.17] [(25,26,27),1.41] [(7,9,11),1.2] [(26,29,30),1.73]

[(5,7,8),1.3] [(27,29,30),1.3] [(27,28,30),1.3] [(10,12,13),1.24] [(38,39,41),1.3]
[(36,37,39),1.71] [(23,25,26),1.16] [(27,30,32),1.3] [(21,22,24),1.3] [(35,37,38),1.43]

7 [(37,39,40),1.43] [(53,53,55),1.13] [(37,38,39),1.3] [(40,43,44),1.17] [(56,58,60),1.3]
[(28,30,32),1.43] [(25,26,27),1.31] [(24,26,27),.98] [(23,24,25),1.3] [(37,39,40),1.23]
[(39,41,42),1.37] [(24,26,28),1.43] [(30,32,33),1.54] [(38,40,42),1.27] [(34,35,37),1.3]

8 [(41,42,43),1.14] [(5,6,7),1.33] [(52,53,54),1.22] [(19,21,22),1.3] [(34,36,37),1.25]
[(20,23,24),1.46] [(16,17,18),1.23] [(43,45,46),1.79] [(40,42,43),1.3] [( 46,47,48),1.3]
[(38,40,41),1.41] [(39,41,42),1.21] [(4,6,9),1.16] [(23,25,26),1.3] [(20,21,23),1.3]

9 [(10,11,13),1.02] [(38,39,40),1.28] [(34,36,37),1.45] [(33,34,36),1.3] [(31,32,33),1.41]
[(31,32,33),1.37] [(34,36,37),1.11] [(36,37,39),1.19] [(28,29,30),1.3] [(20,21,22),1.3]
[(15,17,18),1.12] [(28,30,31),1.34] [(26,28,29),1.32] [(18,20,21),1.3] [(9,11,12),1.47]

10 [(25,26,28),1.13] [(20,21,22),1.33] [(18,19,20),1.23] [(29,31,32),1.43] [(32,33,34),1.63]
[(25,29,30),1.2] [(31,32,34),1.63] [(28,30,32),1.13] [(21,22,24),1.53] [(20,22,24),1.37]

Random-Fuzzy Cost Matrix(10 ×10) for RaCMOSTSP With Three Conveyances
i/j 6 7 8 9 10

[(5,7,10),1.32] [(15,16,18),.99) [(25,28,29),1.1] [(39,41,42),1.13] [(20,22,23),1.12]
1 [(22,23,25),1.16] [(35,33,37),1.14] [(37,39,43),1.11] [(26,31,33),1.15] [(30,31,34),1.09]

[(6,8,9),1.06] [(46,47,48),1.23] [(16,19,20),1.9] [(41,42,43)1.22] [(42,43,45),1.41]
[(39,40,41),1.2] [(39,40,42),1.67] [(30,33,34),1.13] [(17,19,22),1.16] [(23,24,26),1.14]

2 [(30,31,32),1.34] [(29,30,32),1.32] [(41,42,45),1.41] [(36,37,38),1.3] [(13,16,17),1.17]
[(21,23,26),1.76] [(57,59,60),1.33] [(58,59,62),1.72] [(17,20,21),1.8] [(17,18,20),1.17]
[(33,35,36),1.13] [(17,19,20),1.15] [(30,32,33),1.98] [(28,30,31),1.09] [(29,30,31),1.31]

3 [(34,36,39),1.13] [(11,11,12),1.17] [(30,33,34),1.07] [(18,19,21),1.73] [(19,22,23),1.32]
[(33,34,35),1.5] [(5,8,10),1.14] [(24,25,27),1.53] [(40,41,44),1.72] [(32,33,35),1.36]
[(23,25,26),1.3] [(19,21,22),.78] [(33,35,36),1.7] [(10,12,13),1.6] [(24,27,29),1.65]

4 [(15,16,18),1.43] [(30,31,32),1.52] [(32,36,38),1.15] [(20,23,24),1.76] [(47,48,49),1.17]
[(25,27,28),1.9] [(30,33,34),1.31] [(16,17,18),1.7] [(32,34,35),1.45] [(37,39,40),1.76]

[(29,30,31),1.26] [(42,45,46),1.23] [(27,30,31),1.18] [(18,19,22),1.3] [(26,28,29),1.51]
5 [(20,21,23),1.3] [(14,16,18),1.3] [(30,31,32),1.3] [(8,10,11),1.3] [(25,26,27),1.3]

[(40,41,42),1.15] [(25,27,27),1.54] [(12,13,16),1.71] [(7,8,9),1.3] [(25,27,28),1.3]
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[(31,33,34),1.21] [(39,40,42),1.3] [(30,32,33),1.3] [(28,30,31),1.3]
6 ∞ [(40,43,44),1.3] [(30,31,31),1.3] [(22,23,24),1.3] [(40,41,42),1.47]

[(23,24,26),1.3] [(20,22,23),1.3] [(35,35,36),1.28] [(30,32,34),1.3]
7 [(38,40,41),1.14] [(7,10,11),1.3] [(31,33,34),1.3] [(19,20,22),1.46]

[(20,21,22),1.16] ∞ [(40,43,44),1.3] [(33,34,35),1.45] [(13,15,16),1.3]
[(43,45,46),1.24] [(11,13,14),1.3] [(34,36,37),1.3] [(25,26,28),1.3]

8 [(23,25,26),1.3] [(39,40,42),1.3] [(20,22,23),1.67] [(35,37,38),1.3]
[(15,16,18),1.3] [(19,21,22),1.04] ∞ [(52,53,54),1.61] [(35,36,38),1.3]

[(4,5,6),1.3] [(41,43,4),1.12] [(23,24,27),1.3] [(39,40,41),1.15]
9 [(22,23,25),1.3] [(5,7,8),1.17] [(30,32,33),1.7] [(27,28,30),1.04]

[(31,33,34),1.68] [(36,38,39),1.3] [(32,33,34),1.27] ∞ [(18,19,20),1.3]
[(23,25,26),1.3] [(38,39,41),1.3] [(11,13,15),1.3] [(24,26,27),1.3]

10 [(30,32,34),1.49] [(35,38,39),1.3] [(40,41,43),1.23] [(29,31,32),1.25]
[(10,12,13),1.41] [(26,28,29),1.3] [(41,42,43),1.3] [(51,52,54),1.3] ∞
[(33,34,35),1.57] [(38,39,41),1.17] [(30,33,34),1.15] [(30,32,33),1.2]
Random-Fuzzy Time Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 1 2 3 4 5
[(12,15,16),1.21] [(27,29,30),.98] [(27,31,32),1.54] [(19,20,21),1.13]

1 ∞ [(16,17,19),1.21] [(18,19,12),1.32] [(21,23,24),1.43] [(30,31,33),1.13]
[(16,18,19),1.08] [(16,20,21),1.03] [(13,15,16),1.23] [(5,6,7),1.05]

[(14,15,18),1.34] [(10,11,14),1.42] [(36,38,39),1.13] [(22,25,27),1.45]
2 [(32,36,37),1.12] ∞ [(28,31,32),1.14] [(18,19,22),1.17] [15,16,17),1.18]

[(34,37,39),1.54] [(17,22,23),1.36] [(46,51,52),1.12] [(31,17,18),1.4]
[(16,18,19),1.18] [(26,27,30),1.43] [(20,22,23),1.17] [(10,12,15)1.54]

3 [(19,20,22),1.41] [(4,8,10),1.31] ∞ [(34,35,36),1.17] [(13,15,16),1.02]
[(18,19,22),1.72] [(11,14,15),1.32] [(32,34,37),1.03] [(5,6,8),1.13]
[(17,18,20),1.42] [(39,40,41),1.17] [(26,28,30),1.18] [(19,20,23),.9]

4 [(28,30,31),1.46] [(39,42,43),1.32] [(47,49,50),1.62] ∞ [(37,39,40),1.54]
[(49,50,52),1.14] [(32,34,35),1.17] [(37,39,40),1.14] [(33,34,35),1.76]
[(36,38,39),1.17] [(11,12,14),1.17] [(14,15,17),1.14] [(27,30,31)1.2]

5 [(14,15,18),1.3] [(21,23,24),1.3] [(35,36,37),1.3] [(12,13,14),1.38] ∞
[(56,58,59),1.3] [(22,24,27),1.3] [(23,28,29),1.3] [(10,13,14),1.16]
[(13,15,16),1.3] [(26,29,30),1.54] [(4,4,6),1.17] [(6,8,9),1.3]),1.13] [(26,28,29),1.34]

6 [(55,56,58),1.3] [(30,31,33),1.17] [(15,16,17),1.41] [(57,59,61),1.2] [(16,19,20),1.73]
[(45,47,48),1.3] [(17,19,20),1.3] [(17,18,20),1.3] [(40,42,43),1.24] [(18,19,21),1.3]
[(26,27,29),1.71] [(13,15,16),1.16] [(17,20,22),1.3] [(31,32,34),1.3] [(25,27,28),1.43]

7 [(17,19,20),1.43] [(3,5,6),1.13] [(17,18,19),1.3] [(10,13,14),1.17] [(6,8,9),1.3]
[(18,20,22),1.43] [(15,16,17),1.31] [(14,16,17),.98] [(13,14,15),1.3] [(17,19,20),1.23]
[(19,21,22),1.37] [(14,16,18),1.43] [(20,22,23),1.54] [(18,19,22),1.27] [(14,15,17),1.3]

8 [(21,22,23),1.14] [(45,46,47),1.33] [(2,5,9),1.22] [(39,41,42),1.3] [(24,26,27),1.25]
[(30,33,34),1.46] [(26,27,28),1.23] [(3,5,6),1.79] [(10,1213),1.3] [( 6,7,8),1.3]
[(18,20,21),1.41] [(9,11,12),1.21] [(44,46,49),1.16] [(13,15,16),1.3] [(30,31,33),1.3]

9 [(30,31,33),1.02] [(18,19,20),1.28] [(14,16,17),1.45] [(23,24,26),1.3] [(21,22,23),1.41]
[(21,22,23),1.37] [(14,16,17),1.11] [(16,17,19),1.19] [(18,19,20),1.3] [(10,11,12),1.3]
[(35,37,38),1.12] [(28,30,31),1.34] [(26,28,29),1.32] [(38,40,41),1.3] [(49,51,52),1.47]

10 [(35,36,38),1.13] [(30,31,32),1.33] [(38,39,30),1.23] [(9,11,12),1.43] [(12,13,14),1.63]
[(15,19,20),1.2] [(11,12,14),1.63] [(18,20,22),1.13] [(11,12,14),1.53] [(10,12,15),1.37]
Random-Fuzzy Time Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 6 7 8 9 10
[(55,57,60),1.32] [(35,36,38),.99) [(15,18,19),1.1] [(19,21,22),1.13] [(30,32,33),1.12]

1 [(12,13,15),1.16] [(15,16,17),1.14] [(17,19,23),1.11] [(16,21,13),1.15] [(10,11,14),1.09]
[(56,58,59),1.06] [(6,7,8),1.23] [(36,39,30),1.9] [(21,22,23)1.22] [(22,23,25),1.41]
[(19,20,21),1.2] [(19,10,12),1.67] [(10,13,14),1.13] [(37,39,42),1.16] [(23,24,26),1.14]

2 [(10,11,12),1.34] [(39,40,42),1.32] [(11,12,15),1.41] [(16,17,18),1.3] [(23,26,27),1.17]
[(31,33,36),1.76] [(7,9,10),1.33] [(8,9,12),1.72] [(27,30,31),1.8] [(27,28,30),1.17]
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6.2. MODEL-6.1: AN IMPRECISE MULTI-OBJECTIVE GA (IMOGA) FOR CMOSTSP
UNDER UNCERTAIN ENVIRONMENTS

[(13,15,16),1.13] [(17,19,20),1.15] [(20,22,23),1.98] [(18,20,21),1.09] [(19,20,21),1.31]
3 [(14,16,19),1.13] [(31,31,32),1.17] [(10,13,14),1.07] [(18,19,21),1.73] [(19,22,23),1.32]

[(13,14,15),1.5] [(45,48,50),1.14] [(14,15,17),1.53] [(10,11,14),1.72] [(12,13,15),1.36]
[(13,15,16),1.3] [(19,21,22),.78] [(13,15,16),1.7] [(40,42,43),1.6] [(24,27,29),1.65]

4 [(25,26,28),1.43] [(10,11,12),1.52] [(12,16,18),1.15] [(10,13,14),1.76] [(7,8,9),1.17]
[(15,17,18),1.9] [(20,23,24),1.31] [(36,37,38),1.7] [(22,24,25),1.45] [(17,19,20),1.76]

[(19,20,21),1.26] [(2,5,6),1.23] [(17,18,21),1.18] [(18,19,22),1.3] [(26,28,29),1.51]
5 [(30,31,33),1.3] [(24,26,28),1.3] [(20,21,22),1.3] [(38,40,41),1.3] [(25,26,27),1.3]

[(10,11,12),1.15] [(15,17,17),1.54] [(22,23,26),1.71] [(27,28,29),1.3] [(15,17,18),1.3]
[(11,13,14),1.21] [(19,20,22),1.3] [(10,12,13),1.3] [(18,20,21),1.3]

6 ∞ [(10,13,14),1.3] [(10,11,12),1.3] [(12,13,14),1.3] [(10,11,12),1.47]
[(13,14,16),1.3] [(10,12,13),1.3] [(15,15,16),1.28] [(10,12,14),1.3]

7 [(38,40,41),1.14] [(7,10,11),1.3] [(31,33,34),1.3] [(19,20,22),1.46]
[(20,21,22),1.16] ∞ [(40,43,44),1.3] [(33,34,35),1.45] [(13,15,16),1.3]

[(3,5,6),1.24] [(31,33,34),1.3] [(14,16,17),1.3] [(15,16,18),1.3]
8 [(13,15,16),1.3] [(9,10,12),1.3] [(10,12,13),1.67] [(15,17,18),1.3]

[(25,26,28),1.3] [(39,41,42),1.04] ∞ [(2,3,5),1.61] [(15,16,18),1.3]
[(44,45,46),1.3] [(1,3,4),1.12] [(13,14,17),1.3] [(9,10,11),1.15]

9 [(12,13,15),1.3] [(35,37,38),1.17] [(10,12,13),1.7] [(17,18,20),1.04]
[(21,23,24),1.68] [(16,18,19),1.3] [(12,13,14),1.27] ∞ [(28,32,30),1.3]
[(23,25,26),1.3] [(18,19,21),1.3] [(31,33,35),1.3] [(14,16,17),1.3]

10 [(20,22,24),1.49] [(15,18,19),1.3] [(20,21,23),1.23] [(19,21,22),1.25]
[(30,32,33),1.41] [(16,18,19),1.3] [(3,4,6),1.3] [(1,2,4),1.3] ∞
[(13,14,15),1.57] [(18,19,21),1.17] [(10,13,14),1.15] [(10,12,13),1.2]

Random-Fuzzy Risk/Discomfort Matrix(10 ×10) for RCMOSTSP With Three Conveyances
i/j 1 2 3 4 5

[(.69,.65,.61,1.12] [(.72,.7,.68),.1.13 [(.73,.71,.62),1.76] [(.61,.30,.31),1.13]
1 ∞ [(.36,.37,.39),1.21] [(.38,.39,.42),1.32] [(.31,.33,.34),1.16] [(.20,.21,.23),1.13]

[(.26,.28,.29),1.08] [(.26,.30,.31),1.03] [(.33,.35,.36),1.23] [(.60,.62,.63),1.05]
[(.34,.35,.38),1.34] [(.40,.41,.44),1.42] [(.16,.18,.19),1.13] [(.32,.35,.37),1.45]

2 [(.22,.26,.27),1.12] ∞ [(.18,.21,.22),1.14] [(.28,.29,.32),1.17] [.25,.26,.27),1.18]
[(.14,.17,.19),1.54] [(.27,.32,.33),1.36] [(.6,.10,.12),1.12] [(.34,.37,.38),1.4]
[(.36,.38,.39),1.18] [(.16,.17,.20),1.43] [(.10,.12,.13),1.17] [(.40,.42,.45)1.54]

3 [(.29,.30,.32),1.41] [(.54,.58,.61),1.31] ∞ [(.24,.25,.26),1.17] [(.23,.25,.26),1.02]
[(.28,.29,.32),1.72] [(.31,.34,.35),1.32] [(.12,.14,.17),1.03] [(.45,.46,.48),1.13]
[(.27,.28,.30),1.42] [(.9,.10,.11),1.17] [(.16,.18,.20),1.18] [(.29,.30,.33),.9]

4 [(.18,.20,.21),1.46] [(.19.,22,.23),1.32] [(.7,.9,.10),1.62] ∞ [(.17,.19,.20),1.54]
[(.9,.10,.12),1.14] [(.12,.14,.15),1.17] [(.27,.29,.30),1.14] [(.23,.24,.25),1.76]
[(.16,.18,.19,1.17] [(.41,.42,.44),1.17] [(.34,.35,.37),1.14] [(.17,.20,..21)1.2]

5 [(14.,.15,.18),1.3] [(.21,.23,.24),1.3] [(.35,.36,.37),1.3] [(.12,.13,.14),1.38] ∞
[(.6,.8,.9),1.3] [(.32,.34,.37),1.3] [(.33,.38,.39),1.3] [(.40,.43,.44),1.16]

[(.13,.15,.16),1.3] [(.26,.29,.30),1.54] [(.4,.4,.6),1.17] [(.6,.8,.9),1.3]),1.13] [(.26,.28,.29),1.34]
6 [(.5,.6,.8),1.3] [(.20,.21,.23),1.17] [(.25,.26,.27),1.41] [(.7,.9,.11),1.2] [(.26,.29,.30),1.73]

[(.5,.7,.8),1.3] [(.27,.29,.30),1.3] [(.27,.28,.30),1.3] [(.10,.12,.13),1.24] [(.38,.39,.41),1.3]
[(.36,.37,.39),1.71] [(.23,.25,.26),1.16] [(.27,.30,.32),1.3] [(.21,.22,.24),1.3] [(.35,.37,.38),1.43]

7 [(.37,.39,.40),1.43] [(.53,.53,.55),1.13] [(.37,.38,.39),1.3] [(.4,.43,.44),1.17] [(.56,.58,.60),1.3]
[(.28,.3,.32),1.43] [(.25,.26,.27),1.31] [(.24,.26,.27),.98] [(.23,.24,.25),1.3] [(.37,.39,.40),1.23]

[(.39,.41,.42),1.37] [(.24,.26,.28),1.43] [(.30,.32,.33),1.54] [(.38,.40,.42),1.27] [(.34,.35,.37),1.3]
8 [(.41,.42,.43),1.14] [(.5,.6,.7),1.33] [(.52,.53,.54),1.22] [(.19,.21,.22),1.3] [(.34,.36,.37),1.25]

[(.2,.23,.24),1.46] [(.16,.17,.18),1.23] [(.43,.45,.46),1.79] [(.4,.42,.43),1.3] [(.46,.47,.48),1.3]
[(.38,.40,.41),1.41] [(.39,.41,.42),1.21] [(.4,.6,.9),1.16] [(.23,.25,.26),1.3] [(.20,.21,.23),1.3]

9 [(.1,.11,.13),1.02] [(.38,.39,.4),1.28] [(.34,.36,.37),1.45] [(.33,.34,.36),1.3] [(.31,.32,.33),1.41]
[(.31,.32,.33),1.37] [(.34,.36,.37),1.11] [(.36,.37,.39),1.19] [(.28,.29,.30),1.3] [(.2,.21,.22),1.3]
[(.15,.17,.18),1.12] [(.28,.30,.31),1.34] [(.26,.28,.29),1.32] [(.18,.20,.21),1.3] [(.9,.11,.12),1.47]

10 [(.25,.26,.28),1.13] [(.2,.21,.22),1.33] [(.18,.19,.20),1.23] [(.29,.31,.32),1.43] [(.32,.33,.34),1.63]
[(.25,.29,.30),1.2] [(.31,.32,.34),1.63] [(.28,.30,.32),1.13] [(.21,.22,.24),1.53] [(.20,.22,.24),1.37]
Random-Fuzzy Risk/Discomfort Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 6 7 8 9 10
[(.5,.7,.10),1.32] [(.15,.16,.18),.99) [(.25,.28,.29),1.1] [(.39,.41,.42),1.13] [(.20,.22,.23),1.12]

1 [(.22,.23,.25),1.16] [(.35,.33,.37),1.14] [(.37,.39,.43),1.11] [(.26,.31,.33),1.15] [(.30,.31,.34),1.09]
[(.6,.8,.9),1.06] [(.46,.47,.48),1.23] [(.16,.19,.20),1.9] [(.41,.42,.43)1.22] [(.42,.43,.45),1.41]

[(.39,.40,.41),1.2] [(.39,.40,.42),1.67] [(.30,.33,.34),1.13] [(.17,.19,.22),1.16] [(.23,.24,.26),1.14]
2 [(.30,.31,.32),1.34] [(.29,.30,.32),1.32] [(.41,.42,.45),1.41] [(.36,.37,.38),1.3] [(.13,.16,.17),1.17]

[(.21,.23,.26),1.76] [(.57,.59,.60),1.33] [(.58,.59,.62),1.72] [(.17,.20,.21),1.8] [(.17,.18,.20),1.17]
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[(.33,.35,.36),1.13] [(.17,.19,.20),1.15] [(.30,.32,.33),1.98] [(.28,.30,.31),1.09] [(.29,.30,.31),1.31]
3 [(.34,.36,.39),1.13] [(.11,.11,.12),1.17] [(.3,.33,.34),1.07] [(.18,.19,.21),1.73] [(.19,.22,.23),1.32]

[(.33,.34,.35),1.5] [(.5,.8,.10),1.14] [(.24,.25,.27),1.53] [(.40,.41,.44),1.72] [(.32,.33,.35),1.36]
[(.23,.25,.26),1.3] [(.19,.21,.22),.78] [(.33,.35,.36),1.7] [(.10,.12,.13),1.6] [(.24,.27,.29),1.65]

4 [(.15,.16,.18),1.43] [(.30,.31,.32),1.52] [(.32,.36,.38),1.15] [(.20,.23,.24),1.76] [(.47,.48,.49),1.17]
[(.25,.27,.28),1.9] [(.30,.33,.34),1.31] [(.16,.17,.18),1.7] [(.32,.34,.35),1.45] [(.37,.39,.40),1.76]
[(.29,.30,.31),1.26] [(.42,.45,.46),1.23] [(.27,.30,.31),1.18] [(.18,.19,.22),1.3] [(.26,.28,.29),1.51]

5 [(.20,.21,.23),1.3] [(.14,.16,.18),1.3] [(.30,.31,.32),1.3] [(.08,.01,.11),1.3] [(.25,.26,.27),1.3]
[(.40,.41,.42),1.15] [(.25,.27,.27),1.54] [(.12,.13,.16),1.71] [(.07,.08,.09),1.3] [(.25,.27,.28),1.3]

[(.31,.33,.34),1.21] [(.39,.40,.42),1.3] [(.30,.32,.33),1.3] [(.28,.3,.31),1.3]
6 ∞ [(.40,.43,.44),1.3] [(.30,.31,.31),1.3] [(.22,.23,.24),1.3] [(.4,.41,.42),1.47]

[(.23,.24,.26),1.3] [(.2,.22,.23),1.3] [(.35,.35,.36),1.28] [(.3,.32,.34),1.3]
7 [(.38,.4,.41),1.14] [(.07,.1,.11),1.3] [(.31,.33,.34),1.3] [(.19,.20,.22),1.46]

[(.20,.21,.22),1.16] ∞ [(.40,.43,.44),1.3] [(.33,.34,.35),1.45] [(.13,.15,.16),1.3]
[(.43,.45,.46),1.24] [(.11,.13,.14),1.3] [(.34,.36,.37),1.3] [(.25,.26,.28),1.3]

8 [(.23,.25,.26),1.3] [(.39,.40,.42),1.3] [(.20,.22,.23),1.67] [(.35,.37,.38),1.3]
[(.15,.16,.18),1.3] [(.19,.21,.22),1.04] ∞ [(.52,.53,.54),1.61] [(.35,.36,.38),1.3]
[(.04,.05,.06),1.3] [(.41,.43,.4),1.12] [(.23,.24,.27),1.3] [(.39,.40,.41),1.15]

9 [(.22,.23,.25),1.3] [(.05,.07,.08),1.17] [(.3,.32,.33),1.7] [(.27,.28,.30),1.04]
[(.31,.33,.34),1.68] [(.36,.38,.39),1.3] [(.32,.33,.34),1.27] ∞ [(.18,.19,.20),1.3]
[(.23,.25,.26),1.3] [(.38,.39,.41),1.3] [(.11,.13,.15),1.3] [(.24,.26,.27),1.3]

10 [(.30,.32,.34),1.49] [(.35,.38,.39),1.3] [(.40,.41,.43),1.23] [(.29,.31,.32),1.25]
[(.10,.12,.13),1.41] [(.26,.28,.29),1.3] [(.41,.42,.43),1.3] [(.51,.52,.54),1.3] ∞
[(.33,.34,.35),1.57] [(.38,.39,.41),1.17] [(.30,.33,.34),1.15] [(.30,.32,.33),1.2]

Table 6.14: Results of RFCMOSTSP (Model 6.1E)

ĥobj ĥcst Algorithm DM Path(Vehicle) Costs Rmax

iMOGA PDM 3(1)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) [152.68,103.2] 8.5
ODM 3(1)-10(3)-2(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) [144.2,121.3] 8.5

iMOGA PDM 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [156.5, 100.4] 8.5
ODM 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [146.5, 112.3] 8.5

0.95 0.95 iMOGA PDM 10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [156.61, 110.7] 6.75
ODM 10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [148.3, 124.1] 6.75

MOGA PDM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) [224.2, 117.3] 6.0
ODM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) [162.4, 101.4] 6.0

0.95 0.7 iMOGA PDM 6(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) [145.2, 132.7] 6.75
ODM 6(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) [141.7, 138.2] 6.75

0.7 0.95 iMOGA PDM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) [164.9, 98.4] 6.5
ODM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) [154.1, 118.2] 6.5

0.8 0.75 iMOGA PDM 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) [151.2, 120.9]1 6.0
ODM 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) [147.3, 125.7] 6.0
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6.2. MODEL-6.1: AN IMPRECISE MULTI-OBJECTIVE GA (IMOGA) FOR CMOSTSP
UNDER UNCERTAIN ENVIRONMENTS

Table 6.15: Input Data: FRCMOSTSP (Model 6.1D)
Fuzzy Random Cost Matrix(10×10) for FRCSTSP With Three Conveyances

i/j 1 2 3 4 5
[(c,5,6),c∼ N(35,1)] [(c,1,2),c∼N(17,2)] [(c,1,2),c∼N(16,3)] [(c,3,3),c∼N(29,2)]

1 ∞ [(c,3,3),c∼N(36,2)] [(c,3,2),c∼N(38,2)] [(c,3,4),c∼N(31,2)] [(c,1,2),c∼N(20,2)]
[(c,2,2),c∼N(26,2)] [(c,3,3),c∼N(26,2)] [(c,5,6),c∼N(33,2)] [(c,2,3),c∼N(60,4)]

[(c,3,3),c∼N(31,1)] [(c,4,4),c∼N(40,2)] [(c,1,1),c∼N(16,2)] [(c,3,3),c∼N(32,2)]
2 [(c,2,2),c∼N(22,3)] ∞ [(c,2,2),c∼N(18,2)] [(c,2,3),c∼N(28,2)] [(c,2,2),c∼N(25,2)]

[(c,1,1),c∼N(14,4)] [(c,2,3),c∼N(27,1)] [(c,1,1),c∼N(6,3)] [(c,3,4),c∼N(38,1)]
[(c,3,3),c∼N(36,2)] [(c,1,2),c∼N(16,3)] [(c,1,1),c∼N(10,2)] [(c,4,4)c∼N(40,1)]

3 [(c,3,3),c∼N(26,3)] [(c,5,6),c∼N(54,1)] ∞ [(c,2,2),c∼N(24,1)] [(c,2,2),c∼N(26,3)]
[(c,2,3),c∼N(28,2)] [(c,3,3),c∼N(31,2)] [(c,1,1),c∼N(12,1)] [(c,4,4),c∼N(45,5]
[(c,2,3),c∼N(26,1)] [(c,1,1),c∼N(9,2)] [(c,1,2),c∼N(16,4)] [(c,3,3),c∼N(29,3)]

4 [(c,2,2),c∼N(18,2)] [(c,2,2),c∼N(19,1)] [(c,5,4),c∼N(7,2)] ∞ [(c,1,2),c∼N(17,3)]
[(c,1,1),c∼N(9,2)] [(c,1,1),c∼N(12,4)] [(c,2,3),c∼N(27,2)] [(c,2,2),c∼N(23,4)]
[(c,1,1,c∼N(16,1)] [(c,4,4),c∼N(41,3)] [(c,3,3),c∼N(34,2)] [(c,2,2),c∼N(17,2)]

5 [(c,1,1),c∼N(14,1)] [(c,2,2),c∼N(22,2)] [(c,6,7),c∼N(36,2)] [(c,1,1),c∼N(12,2)] ∞
[(c,1,1),c∼N(6,2)] [(c,3,3),c∼N(32,3)] [(c,3,3),c∼N(33,2)] [(c,4,4),c∼N(38,3)]

[(c,1,1),c∼N(15,1)] [(c,2,3),c∼N(26,2)] [(c,1,1),c∼N(5,5)] [(c,2,3),c∼N(6,2)])] [(c,2,2),c∼N(26,1)]
6 [(c,1,4),c∼N(6,2)] [(c,2,2),c∼N(20,1)] [(c,6,7),c∼N(36,2)] [c,1,1),c∼N(13,3)] [(c,2,3),c∼N(26,2)]

[(c,2,3),c∼N(6,2)] [(c,2,3),c∼N(26,2)] [(c,2,3),c∼N(26,3)] [(c,1,1),c∼N(10,3)] [(c,3,4),c∼N(38,4)]
[(c,3,3),c∼N(36,1)] [(c,2,2),c∼N(36,3)] [(c,3,3),c∼N(27,1)] [(c,2,4),c∼N(20,2)] [(c,3,3),c∼N(35,2)]

7 [(c,3,4),c∼N(37,2)] [(c,3,5),c∼N(53,4)] [(c,3,3),c∼N(37,2)] [(c,4,4),c∼N(43,1)] [(c,5,4),c∼N(56,2)]
[(c,3,3),c∼N(26,1)] [(c,2,2),c∼N(25,2)] [(c,2,2),c∼N(26,3)] [(c,2,2),c∼N(20,1)] [(c,3,4),c∼N(39,3)]
[(c,4,4),c∼N(39,2)] [(c,2,2),c∼N(24,1)] [(c,3,3),c∼N(30,3)] [(c,4,4),c∼N(38,2)] [(c,3,3),c∼N(34,3)]

8 [(c,4,3),c∼N(41,2)] [(c,1,1),c∼N(6,4)] [(c,3,4),c∼N(53,1)] [(c,2,2),c∼N(20,3)] [(c,6,3),c∼N(32,2)]
[(c,2,2),c∼N(20,2)] [(c,1,1),c∼N(16,3)] [(c,4,4),c∼N(40,2)] [(c,4,3),c∼N(40,2)] [( c,1,2),c∼N(43,1)]
[c,4,1),c∼N(38,2)] [(c,4,4),c∼N(39,3)] [(c,1,2),c∼N(4,2)] [(c,2,2),c∼N(23,2)] [(c,1,3),c∼N(20,6)]

9 [(c,1,1),c∼N(10,4)] [(c,3,4),c∼N(38,3)] [(,3,3),c∼N(34,5)] [(c,3,3),c∼N(33,3)] [(c,3,3),c∼N(31,4)]
[(c,3,3),c∼N(31,2)] [(c,3,3),c∼N(34,1)] [(c,3,3),c∼N(36,1)] [(c,2,3),c∼N(28,1)] [(c,2,2),c∼N(20,2)]
[(c,1,1),c∼N(15,2)] [(c,3,3),c∼N(28,3)] [(c,2,2),c∼N(28,3)] [(c,2,2),c∼N(18,2)] [(c,1,1),c∼N(9,2)]

10 [(c,2,2),c∼N(25,1)] [(c,2,2),c∼N(20,2)] [(c,1,2),c∼N(18,3)] [(c,3,2),c∼N(29,2)] [(c,3,3),c∼N(32,2)]
[(c,2,3),c∼N(25,2)] [(c,3,3),c∼N(31,3)] [(c,3,3),c∼N(28,2)] [(c,2,2),c∼N(21,5)] [(c,2,4),c∼N(20,4)]

Fuzzy Random Cost Matrix(10 ×10) for RCSTSP With Three Conveyances
i/j 6 7 8 9 10

[(c,1,1),c∼N(5,2)] [(c,1,1),c∼N(15,1)) [(c,2,3),c∼N(25,3)] [(c,1,2),c∼N(39,3)] [(c,2,2),c∼N(20,3)]
1 [(c,2,2),c∼N(22,3)] [(c,3,3),c∼N(35,3)] [(c,3,4),c∼N(37,2)] [(c,3,1),c∼N(26,4)] [(c,1,3),c∼N(30,2)]

[(c,1,2),c∼N(6,1)] [(c,4,4),c∼N(46,6)] [(c,1,2),c∼N(16,2)] [(c,2,3),c∼N(41,2)] [(c,4,5),c∼N(42,4)]
[(c,4,1),c∼N(39,2)] [(c,1,2),c∼N(39,3)] [(c,3,3),c∼N(30,2)] [(c,1,2),c∼N(17,1)] [(c,2,2),c∼N(23,2)]

2 [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(29,1)] [(c,2,4),c∼N(41,2)] [(c,3,8),c∼N(36,2)] [(c,1,1),c∼N(13,2)]
[(c,3,2),c∼N(30,1)] [(c,5,6),c∼N(57,2)] [(c,5,6),c∼N(58,1)] [(c,2,2),c∼N(17,2)] [(c,1,2),c∼N(17,3)]
[(c,3,3),c∼N(33,1)] [(c,1,2),c∼N(17,3)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(28,2)] [(c,3,3),c∼N(29,1)]

3 [(c,3,3),c∼N(34,3)] [(c,1,2),c∼N(11,4)] [(c,3,3),c∼N(30,2)] [(c,1,2),c∼N(18,1)] [(c,2,2),c∼N(19,4)]
[(c,4,5),c∼N(33,4)] [(c,1,1),c∼N(5,1)] [(c,2,2),c∼N(24,2)] [(c,4,4),c∼N(40,4)] [(c,3,3),c∼N(32,3)]
[(c,2,2),c∼N(23,2)] [(c,1,2),c∼N(19,5)] [(c,3,3),c∼N(33,1)] [(c,2,3),c∼N(10,3)] [(c,2,2),c∼N(24,4)]

4 [(c,6,8),c∼N(15,1)] [(c,1,3),c∼N(30,2)] [(c,3,8),c∼N(32,5)] [(c,2,4),c∼N(20,1)] [(c,4,9),c∼N(47,2)]
[(c,2,2),c∼N(25,3)] [(c,3,3),c∼N(30,4)] [(c,1,1),c∼N(16,3)] [(c,3,5),c∼N(32,3)] [(c,3,4),c∼N(37,2]
[(c,3,3),c∼N(29,1)] [(c,5,6),c∼N(42,2)] [(c,3,3),c∼N(27,1)] [(c,1,2),c∼N(18,3)] [(c,2,2),c∼N(26,1)]

5 [(c,2,2),c∼N(20,2)] [(c,1,1),c∼N(14,1)] [(c,3,3),c∼N(30,4)] [(c,1,1),c∼N(8,1)] [(c,2,2),c∼N(25,1)]
[(c,4,4),c∼N(40,2)] [(c,2,2),c∼N(25,3)] [(c,1,6),c∼N(12,1)] [(c,8,9),c∼N(7,1)] [(c,2,2),c∼N(25,1)]

[(c,3,3),c∼N(31,1)] [(c,4,2),c∼N(39,3)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(28,4)]
6 ∞ [(c,4,4),c∼N(40,1)] [(c,3,3),c∼N(30,1)] [(c,2,2),c∼N(22,1)] [(c,4,4),c∼N(40,1)]

[(c,2,6),c∼N(23,1)] [(c,2,2),c∼N(20,1)] [(c,3,3),c∼N(35,1)] [(c,3,3),c∼N(30,1)]
7 [(c,4,4),c∼N(38,1)] [(c,1,1),c∼N(7,1)] [(c,3,3),c∼N(31,1)] [(c,2,2),c∼N(19,1)]

[(c,2,2),c∼N(20,1)] ∞ [(c,4,4),c∼N(40,1)] [(c,3,3),c∼N(33,1)] [(c,1,1),c∼N(13,1)]
[(c,4,6),c∼N(43,1)] [(c,1,4),c∼N(11,1)] [(c,3,7),c∼N(34,3)] [(c,6,8),c∼N(25,2)]

8 [(c,2,2),c∼N(23,1)] [(c,4,4),c∼N(39,1)] [(c,2,2),c∼N(20,1)] [(c,3,3),c∼N(35,1)]
[(c,1,1),c∼N(15,1)] [(c,2,2),c∼N(19,1)] ∞ [(c,3,4),c∼N(52,1)] [(c,6,8),c∼N(35,3)]
[(c,1,2),c∼N(4,2)] [(c,3,4),c∼N(41,4)] [(c,4,2),c∼N(23,1)] [(c,4,4),c∼N(39,1)]

9 [(c,2,2),c∼N(22,1)] [(c,1,3),c∼N(5,1)] [(c,3,3),c∼N(30,1)] [(c,2,3),c∼N(27,1)]
[(c,3,3),c∼N(31,1)] [(c,3,3),c∼N(36,1)] [(c,3,3),c∼N(32,1)] ∞ [(c,1,2),c∼N(18,1)]
[(c,2,2),c∼N(23,1)] [(c,3,4),c∼N(38,1)] [(c,1,1),c∼N(11,2)] [(c,2,7),c∼N(24,3)]
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10 [(c,3,3),c∼N(30,1)] [(c,3,39),c∼N(3,1)] [(c,4,3),c∼N(40,2)] [(c,3,3),c∼N(29,1)]
[(c,1,1),c∼N(10,1)] [(c,8,9),c∼N(26,1)] [(c,4,4),c∼N(41,3)] [(c,5,5),c∼N(51,5)] ∞
[(c,3,3),c∼N(33,1)] [(c,3,4),c∼N(38,1)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(30,1)]

Fuzzy Random Time Matrix(10×10) for FRCSTSP With Three Conveyances
i/j 1 2 3 4 5
2 [(c,2,4),c∼ N(25,1)] [(c,2,3),c∼N(27,2)] [(c,2,2),c∼N(26,3)] [(c,2,3),c∼N(19,2)]
1 ∞ [(c,2,3),c∼N(12,2)] [(c,4,2),c∼N(18,2)] [(c,3,4),c∼N(21,2)] [(c,1,2),c∼N(28,2)]

[(c,2,2),c∼N(16,2)] [(c,3,3),c∼N(16,2)] [(c,1,6),c∼N(13,2)] [(c,2,3),c∼N(10,4)]
[(c,3,3),c∼N(11,1)] [(c,4,4),c∼N(10,2)] [(c,1,1),c∼N(36,2)] [(c,3,3),c∼N(12,2)]

2 [(c,2,2),c∼N(32,3)] ∞ [(c,2,2),c∼N(48,2)] [(c,2,3),c∼N(18,2)] [(c,2,2),c∼N(25,2)]
[(c,1,1),c∼N(34,4)] [(c,2,3),c∼N(17,1)] [(c,1,1),c∼N(36,3)] [(c,3,4),c∼N(18,1)]
[(c,3,3),c∼N(16,2)] [(c,1,2),c∼N(26,3)] [(c,1,1),c∼N(30,2)] [(c,4,4)c∼N(10,1)]

3 [(c,3,3),c∼N(16,3)] [(c,5,6),c∼N(4,1)] ∞ [(c,2,2),c∼N(34,1)] [(c,2,2),c∼N(36,3)]
[(c,2,3),c∼N(18,2)] [(c,3,3),c∼N(21,2)] [(c,1,1),c∼N(32,1)] [(c,4,4),c∼N(5,5]
[(c,2,3),c∼N(16,1)] [(c,1,1),c∼N(39,2)] [(c,1,2),c∼N(36,4)] [(c,3,3),c∼N(39,3)]

4 [(c,2,2),c∼N(38,2)] [(c,2,2),c∼N(39,1)] [(c,5,4),c∼N(47,2)] ∞ [(c,1,2),c∼N(37,3)]
[(c,1,1),c∼N(49,2)] [(c,1,1),c∼N(32,4)] [(c,2,3),c∼N(27,2)] [(c,2,2),c∼N(23,4)]
[(c,2,1,c∼N(36,1)] [(c,3,4),c∼N(11,3)] [(c,3,3),c∼N(14,2)] [(c,2,2),c∼N(37,2)]

5 [(c,1,1),c∼N(34,1)] [(c,2,2),c∼N(22,2)] [(c,6,7),c∼N(16,2)] [(c,1,1),c∼N(32,2)] ∞
[(c,1,1),c∼N(36,2)] [(c,3,3),c∼N(12,3)] [(c,3,3),c∼N(13,2)] [(c,4,4),c∼N(18,3)]
[(c,1,1),c∼N(35,1)] [(c,2,3),c∼N(26,2)] [(c,1,1),c∼N(45,5)] [(c,2,3),c∼N(46,2)])] [(c,2,2),c∼N(26,1)]

6 [(c,1,4),c∼N(46,2)] [(c,2,2),c∼N(30,1)] [(c,6,7),c∼N(16,2)] [c,1,1),c∼N(33,3)] [(c,2,3),c∼N(26,2)]
[(c,2,3),c∼N(46,2)] [(c,2,3),c∼N(26,2)] [(c,2,3),c∼N(26,3)] [(c,1,1),c∼N(30,3)] [(c,3,4),c∼N(18,4)]
[(c,3,3),c∼N(16,1)] [(c,2,2),c∼N(16,3)] [(c,3,3),c∼N(27,1)] [(c,2,4),c∼N(20,2)] [(c,3,3),c∼N(15,2)]

7 [(c,3,4),c∼N(17,2)] [(c,3,5),c∼N(13,4)] [(c,3,3),c∼N(17,2)] [(c,3,4),c∼N(13,1)] [(c,5,4),c∼N(6,2)]
[(c,3,3),c∼N(26,1)] [(c,2,2),c∼N(25,2)] [(c,2,2),c∼N(26,3)] [(c,2,2),c∼N(20,1)] [(c,3,4),c∼N(19,3)]
[(c,4,4),c∼N(19,2)] [(c,2,2),c∼N(24,1)] [(c,3,3),c∼N(10,3)] [(c,4,4),c∼N(18,2)] [(c,3,3),c∼N(14,3)]

8 [(c,4,3),c∼N(11,2)] [(c,1,1),c∼N(46,4)] [(c,3,4),c∼N(13,1)] [(c,2,2),c∼N(20,3)] [(c,6,3),c∼N(12,2)]
[(c,2,2),c∼N(30,2)] [(c,1,1),c∼N(36,3)] [(c,4,4),c∼N(10,2)] [(c,4,3),c∼N(10,2)] [(c,1,2),c∼N(13,1)]
[c,4,1),c∼N(18,2)] [(c,4,4),c∼N(19,3)] [(c,1,2),c∼N(42,2)] [(c,2,2),c∼N(23,2)] [(c,1,3),c∼N(20,6)]

9 [(c,1,1),c∼N(30,4)] [(c,3,4),c∼N(18,3)] [(,3,3),c∼N(14,5)] [(c,3,3),c∼N(13,3)] [(c,3,3),c∼N(11,4)]
[(c,3,3),c∼N(11,2)] [(c,3,3),c∼N(14,1)] [(c,3,3),c∼N(16,1)] [(c,2,3),c∼N(18,1)] [(c,2,2),c∼N(30,2)]
[(c,1,1),c∼N(35,2)] [(c,3,3),c∼N(28,3)] [(c,2,2),c∼N(28,3)] [(c,2,2),c∼N(38,2)] [(c,1,1),c∼N(49,2)]

10 [(c,2,2),c∼N(35,1)] [(c,2,2),c∼N(30,2)] [(c,1,2),c∼N(38,3)] [(c,3,2),c∼N(29,2)] [(c,3,3),c∼N(12,2)]
[(c,2,3),c∼N(15,2)] [(c,3,3),c∼N(11,3)] [(c,3,3),c∼N(23,2)] [(c,2,2),c∼N(19,5)] [(c,2,4),c∼N(30,4)]

Fuzzy Random Time Matrix(10 ×10) for RCMOSTSP With Three Conveyances
i/j 6 7 8 9 10

[(c,1,1),c∼N(45,2)] [(c,1,1),c∼N(35,1)) [(c,2,3),c∼N(25,3)] [(c,1,2),c∼N(19,3)] [(c,2,2),c∼N(30,3)]
1 [(c,2,2),c∼N(32,3)] [(c,3,3),c∼N(15,3)] [(c,3,4),c∼N(17,2)] [(c,3,1),c∼N(16,4)] [(c,1,3),c∼N(20,2)]

[(c,1,2),c∼N(46,1)] [(c,4,4),c∼N(6,6)] [(c,1,2),c∼N(36,2)] [(c,2,3),c∼N(11,2)] [(c,4,5),c∼N(12,4)]
[(c,4,1),c∼N(19,2)] [(c,1,2),c∼N(19,3)] [(c,3,3),c∼N(20,2)] [(c,1,2),c∼N(37,1)] [(c,2,2),c∼N(13,2)]

2 [(c,3,3),c∼N(20,1)] [(c,3,3),c∼N(19,1)] [(c,2,4),c∼N(11,2)] [(c,3,8),c∼N(16,2)] [(c,1,1),c∼N(33,2)]
[(c,3,2),c∼N(20,3] [(c,5,6),c∼N(7,2)] [(c,5,6),c∼N(8,1)] [(c,2,2),c∼N(37,2)] [(c,1,2),c∼N(17,3)]
[(c,3,3),c∼N(13,1)] [(c,1,2),c∼N(17,3)] [(c,3,3),c∼N(30,1)] [(c,3,3),c∼N(38,2)] [(c,3,3),c∼N(39,1)]

3 [(c,3,3),c∼N(14,3)] [(c,1,2),c∼N(31,4)] [(c,3,3),c∼N(10,2)] [(c,1,2),c∼N(38,1)] [(c,2,2),c∼N(39,4)]
[(c,4,5),c∼N(13,4)] [(c,1,1),c∼N(35,1)] [(c,2,2),c∼N(14,2)] [(c,4,4),c∼N(20,4)] [(c,3,3),c∼N(12,3)]
[(c,2,2),c∼N(13,2)] [(c,1,2),c∼N(39,5)] [(c,3,3),c∼N(13,1)] [(c,2,3),c∼N(30,3)] [(c,2,2),c∼N(24,4)]

4 [(c,6,8),c∼N(35,1)] [(c,1,3),c∼N(20,2)] [(c,3,8),c∼N(12,5)] [(c,2,4),c∼N(30,1)] [(c,4,9),c∼N(7,2)]
[(c,2,2),c∼N(15,3)] [(c,3,3),c∼N(20,4)] [(c,1,1),c∼N(36,3)] [(c,3,5),c∼N(12,3)] [(c,3,4),c∼N(17,2]
[(c,3,3),c∼N(19,1)] [(c,5,6),c∼N(2,1)] [(c,3,3),c∼N(17,1)] [(c,1,2),c∼N(38,3)] [(c,2,2),c∼N(16,1)]

5 [(c,2,2),c∼N(30,2)] [(c,1,1),c∼N(34,1)] [(c,3,3),c∼N(20,4)] [(c,1,1),c∼N(38,1)] [(c,2,2),c∼N(25,1)]
[(c,4,4),c∼N(10,2)] [(c,2,2),c∼N(25,3)] [(c,1,6),c∼N(41,1)] [(c,8,9),c∼N(37,1)] [(c,2,2),c∼N(25,1)]

[(c,3,3),c∼N(11,1)] [(c,4,2),c∼N(19,3)] [(c,3,3),c∼N(10,1)] [(c,3,3),c∼N(18,4)]
6 ∞ [(c,4,4),c∼N(20,1)] [(c,3,3),c∼N(20,1)] [(c,2,2),c∼N(22,1)] [(c,4,4),c∼N(10,1)]

[(c,2,6),c∼N(13,1)] [(c,2,2),c∼N(10,1)] [(c,3,3),c∼N(15,1)] [(c,3,3),c∼N(10,1)]
7 [(c,4,4),c∼N(18,1)] [(c,1,1),c∼N(37,1)] [(c,3,3),c∼N(11,1)] [(c,2,2),c∼N(39,1)]

[(c,2,2),c∼N(30,1)] ∞ [(c,4,4),c∼N(10,1)] [(c,3,3),c∼N(13,1)] [(c,1,1),c∼N(33,1)]
[(c,4,6),c∼N(13,1)] [(c,1,4),c∼N(31,1)] [(c,3,7),c∼N(14,3)] [(c,6,8),c∼N(15,2)]

8 [(c,2,2),c∼N(13,1)] [(c,4,4),c∼N(19,1)] [(c,2,2),c∼N(30,1)] [(c,3,3),c∼N(15,1)]
[(c,1,1),c∼N(35,1)] [(c,2,2),c∼N(39,1)] ∞ [(c,3,4),c∼N(2,1)] [(c,6,8),c∼N(15,3)]
[(c,1,2),c∼N(43,2)] [(c,3,4),c∼N(5,4)] [(c,4,2),c∼N(23,1)] [(c,4,4),c∼N(19,1)]

9 [(c,2,2),c∼N(19,1)] [(c,1,3),c∼N(35,1)] [(c,3,3),c∼N(10,1)] [(c,2,3),c∼N(17,1)]
[(c,3,3),c∼N(11,1)] [(c,3,3),c∼N(16,1)] [(c,3,3),c∼N(12,1)] ∞ [(c,1,2),c∼N(38,1)]
[(c,2,2),c∼N(23,1)] [(c,3,4),c∼N(18,1)] [(c,1,1),c∼N(31,2)] [(c,2,7),c∼N(14,3)]
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10 [(c,3,3),c∼N(10,1)] [(c,3,3),c∼N(43,1)] [(c,4,3),c∼N(10,2)] [(c,3,3),c∼N(19,1)]
[(c,1,1),c∼N(40,1)] [(c,8,9),c∼N(16,1)] [(c,4,4),c∼N(11,3)] [(c,5,5),c∼N(5,4)] ∞
[(c,3,3),c∼N(13,1)] [(c,3,4),c∼N(18,1)] [(c,3,3),c∼N(10,1)] [(c,3,3),c∼N(10,1)]
Fuzzy Random risk/discomfort Matrix(10×10) for FRCMOSTSP With Three Conveyances

i/j 1 2 3 4 5
(.69, .05, .01) (.72, .07, .08) (.73, .01, .02), (.61, .03, .01)

1 ∞ (.36, .03, .03) (.38, .03, .04) (.31, .03, .03) (.2, .02, .02)
(.26, .02, .02) (.26, .03, .03) (.33, .03, .03) (.6, .06, .06)

(.34, .03, .03) (.4, .04, .04) (.16, .01, .01) (.32, .03, .03)
2 (.22, .02, .02) ∞ (.18, .02, .02) (.28, .02, .03) (.25, .02, .02)

(.14, .01, .01) (.27, .03, .02) (.06, .01, .02) (.34, .03, .03)
(.36, .03, .03) (.16, .01, .02) (.1, .02, .03) (.4, .04, .03)

3 (.29, .03, .03) (.54, .08, .01) ∞ (.24, .02, .02) (.23, .02, .02)
(.28, .02, .03) (.31, .03, .03) (.12, .01, .01) (.45, .04, .04)
(.27, .02, .03) (.09, .01, .01) (.16, .01, .02) (.29, .03, .03)

4 (.18, .02, .02) (.19, .02, .02) (.7, .09, .01) ∞ (.17, .01, .02)
(.9, .01, .01) (.12, .01, .01) (.27, .02, .03) (.23, .02, .02)

(.16, .01, .01) (.41, .04, .04) (.34, .03, .03) (.17, .02, .02)
5 (.14, .01, .01) (.21, .02, .02) (.35, .03, .03) (.12, .01, .01) ∞

(.6, .01, .02) (.32, .03, .02) (.33, .03, .03) (.4, .04, .03)
(.13, .05, .01) (.26, .02, .03) (.4, .04, .03) (.6, .08, .09) (.26, .02, .02)

6 (.5, .06, .08) (.2, .02, .02) (.25, .02, .02) (.7, .09, .01) (.26, .02, .03)
(.5, .07, .03) (.27, .02, .03) (.27, .02, .03) (.1, .01, .01) (.38, .03, .01)

(.36, .03, .03) (.23, .02, .02) (.27, .03, .03) (.21, .02, .02) (.35, .03, .03)
7 (.37, .03, .04) (.53, .05, .05) (.37, .03, .03) (.4, .04, .04) (.56, .05, .01)

(.28, .03,.03) (.25, .02, .02) (.24, .02, .27) (.23, .02, .021) (.37, .03,.04)
(.39, .04, .04) (.24, .02, .02) (.3, .03, .03) (.38, .04, .04) (.34, .03, .03)

8 (.41, .04, .04) (.5, .01, .02) (.52, .05, .05) (.19, .02, .02) (.34, .03, .031)
(.2, .02, .02) (.16, .01, .01) (.43, .04, .04) (.4, .04, .04) (.46, .04, .04)

(.38, .04, .04) (.39, .04, .04) (.4, .01, .02) (.23, .025, .02) (.2, .021, .023)
9 (.1, .01, .01) (.38, .03, .04) (.34, .03, .03) (.33, .03, .03) (.31, .03, .03)

(.31, .03, .03) (.34, .03, .03) (.36, .03, .03) (.28, .02, .03) (.2, .02, .02)
(.15, .01, .01) (.28, .03, .03) (.26, .02, .02) (.18, .02, .02) (.9, .01, .01)

10 (.25, .02, .02) (.2, .02, .02) (.18, .01, .02) (.29, .03, .03) (.32, .03, .03)
(.25, .02, .03) (.31, .03, .03) (.28, .03, .03) (.21, .02, .02) (.2, .01, .01)

Fuzzy Random risk/discomfort Matrix(10 ×10) for FRCMOSTSP With Three Conveyances
i/j 6 7 8 9 10

(.5, .07, .01) (.15, .01, .01) (.25, .02, .02) (.39, .04, .05) (.2, .02, .03)
1 (.22, .02, .02) (.35, .03, .03) (.37, .03, .04) (.26, .03, .03) (.3, .03, .03)

(.6, .08, .09) (.46, .07, .08) (.16, .01, .02) (.41, .04, .04) (.42, .01, .04)
(.39, .04, .04) (.39, .04, .04) (.3, .03, .03) (.17, .01, .02) (.23, .02, .02)

2 (.3, .03, .03) (.29, .03, .03) (.41, .04, .04) (.36, .03, .03) (.13, .01, .01)
(.21, .02, .02) (.57, .05, .06) (.58, .05, .06) (.17, .02, .02) (.17, .01, .02)
(.33, .03, .03) (.17, .01, .02) (.3, .03, .04) (.28, .03, .03) (.29, .03, .03)

3 (.34, .03, .03) (.11, .01, .01) (.3, .03, .03) (.18, .01, .02) (.19, .02, .02)
(.33, .03, .03) (.05, .01, .01) (.24, .02, .02) (.4, .04, .04) (.32, .03, .03)
(.23, .02, .02) (.19, .02, .02) (.33, .03, .03) (.1, .01, .013) (.24, .02, .029)

4 (.15, .01, .01) [(.3, .03, .03) (.32, .03, .03) (.2, .02, .02) (.47, .04, .04)
(.25, .02, .02) (.3, .03, .03) (.16, .01, .01) (.32, .03, .03) (.37, .03, .04)
(.29, .03, .03) (.42, .04, .04) (.27, .03, .03) (.18, .01, .02) (.26, .02, .02)

5 (.2, .02, .02) (.14, .01, .02) (.3, .03, .02) (.08, .01, .01) (.25, .02, .02)
(.4, .04, .04) (.25, .02, .02) (.12, .02, .06) (.07, .01, .01) (.25, .02, .02)

(.31, .03, .04) (.39, .04, .04) (.3, .03, .03) (.28, .03, .03)
6 ∞ (.4, .04, .04) (.3, .03, .031) (.22, .02, .02) (.4, .04, .04)

(.23, .02, .02) (.2, .02, .02) (.35, .03, .03) (.3, .03, .03)
7 (.38, .04, .04) (.07, .001, .001) (.31, .03, .03) (.19, .02, .02)

(.2, .02, .02) ∞ (.4, .04, .04) (.33, .03, .03) (.13, .01, .01)
(.43, .04, .04) (.11, .01, .01) (.34, .03, .03) (.25, .02, .02)

8 (.23, .02, .02) (.39, .04, .04) (.2, .02, .02) (.35, .03, .03)
(.15, .01, .01) (.19, .02, .02) ∞ (.52, .05, .05) (.35, .03, .03)
(.04, .01, .01) (.41, .03, .03) (.23, .02, .02) (.39, .04, .04)

9 (.22, .02, .02) (.05, .07, .08) (.3, .03, .03) (.27, .02, .03)
(.31, .03, .03) (.36, .03, .03) (.32, .03, .03) ∞ (.18, .01, .02)
[(.23, .05, .06) (.38, .03, .04) (.11, .01, .01) (.24, .02, .02)

10 (.3, .03, .03) (.35, .03, .03) (.4, .04, .04) (.29, .03, .03)
(.1, .012, .01) (.26, .02,.03) (.41, .04, .04) (.51, .05, .05) ∞
(.33, .02, .01) (.38, .03, .04) (.3, .01, .01) (.3, .03, .03)
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Table 6.16: Results of FRCSTSP (Model 6.1D)

δ θ Algorithm DM Path(Vehicle) Costs & Times Rmax

iMOGA PDM 4(2)-10(3)-2(3)-9(3)-7(3)-8(1)-6(3)-1(1)-5(2)-3(1) [148.56, 102.43]
ODM 4(2)-10(3)-2(3)-9(3)-7(3)-8(1)-6(3)-1(1)-5(2)-3(1) [140.13, 113.86]

iMOGA PDM 6(3)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(1)-7(2) [151.21, 99.32] 8.5
ODM 6(3)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-113)-7(2) [147.18, 104.51]

0.9 0.9 iMOGA PDM 1(3)-10(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [166.25, 94.73]
ODM 1(3)-10(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [151.31, 98.31] 6.75

MOGA PDM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) [169.21, 118.62]
ODM 6(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-5(2)-1(3)-7(3) [162.45, 115.75] 6.0

0.96 0.7 iMOGA PDM 3(2)-8(1)-7(1)-1(1)-10(2)-5(3)-2(3)-4(1)-6(2)-9(3) [155.76, 124.84]
ODM 4(1)-8(3)-7(1)-1(1)-10(2)-5(3)-2(3)-3(1)-6(2)-9(3) [142.18, 106.57] 6.75

0.79 0.9 iMOGA PDM 5(3)-7(1)-8(1)-6(2)-1(2)-4(1)-9(2)-2(1)-10(1)-3(1) [161.34, 97.43]
ODM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-3(1) [164.13, 95.38] 6.5

0.85 0.75 iMOGA PDM 1(3)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-3(3)-7(3) [168.45, 100.37]
ODM 1(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) [146.93, 107.64] 6.0

Here we took permissible probability levels γ = η = 0.9, We set L(x)=1-x,
left and right spreads are taken from given data set in the Table 6.15. DM means
decision maker and optimistic DM (ODM), pessimistic DM (PDM). With these
data, the FRCMOSTSP model is solved by iMOGA for different values of δ and
θ and the optimum results are presented in Table 6.16.
Model 6.1F: CMOSTSP with Risk/Discomfort Constraint in Bi-random En-
vironment (BRCMOSTSP):

Here we took the costs, times and risk/discomfort factor in bi-random values
for the CMOSTSP. Also we consider three types of conveyances. We set two
fold randomness of the given values in the form of mean and variances. The bi-
random costs, times matrices for the CMOSTSP and corresponding bi-random
risk/discomfort matrix are given in Table 6.17. For these data, Pareto optimum
results obtained by iMOGA with different values of α and β are presented in
Table 6.18.

Cpu Time Scale for BRCMOSTSP

Here we study the cpu time in seconds for different sizes of problems from
n=10 to 50 in only bi-random environment. The parameters are choosen only for
α=β=0.95, and the mean with SD are considered for iMOGA. The results are
considered for 30 runs of each instances and given in Table 6.19.
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Table 6.17: Input data: BRCMOSTSP (Model 6.1F)
Bi-random Cost Matrix(10 ×10) for BRCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
(32,1.1) (19,.9) (21,1.02) (30,1.01) (7,1.23) (16,1.11) (28,1.04) (41,1.12) (21,1.02)

1 ∞ (37,1.21) (39,1.07) (33,1.15) (21,.98) (23,1.02) (36,1.03) (39,1.12) (31,1.13) (31,1.1)
(28,1.02) (30,1.11) (35,1.17) (62,1.2) (8,1.19) (47,.97) (19,1.18) (42,1.03) (43,1.01)

(35,1.12) (41,1.03) (18,1.11) (35,1.07) (40,1.02) (40,1.13) (33,1.03) (19,1.2) (24,1.19)
2 (26,1.18) ∞ (21,1.17) (29,1.12) (26,1.2) (31,1.2) (30,1.15) (42,1.21) (37,1.13) (16,1.12)

(17,1.13) (32,1.32) (10,1.03) (37,1.2) (23,1.31) (59,1.14) (59,1.16) (20,1.3) (18,1.03)
(38,1.29) (17,1.21) (12,1.25) (42,1.23) (35,1.21) (19,1.13) (32,1.1) (30,1.11) (30,1.21)

3 (30,1.13) (58,1.43) ∞ (25,1.21) (25,1.23) (36,1.4) (11,1.1) (33,1.21) (19,1.22) (22,1.16)
(29,1.15) (34,1.32) (14,1.11) (46,1.24) (34,1.12) (8,1.3) (25,1.16) (41,1.41) (33,1.33)
(28,1.14) (10,1.2) (18,1.21) (30,1.13) (25,1.23) (21,1.4) (35,1.3) (12,1.21) (27,1.6)

4 (20,1.1) (22,1.32) (9,1.4) ∞ (19,1.15) (16,1.12) (31,1.4) (36,1.2) (23,1.31) (48,1.2)
(10,1.31) (14,1.2) (29,1.31) (24,1.21) (27,1.13) (33,1.19) (17,1.23) (34,1.2) (39,1.28)
(18,1.31) (42,1.2) (35,1.12) (20,1.31) (30,1.21) (45,1.16) (30,1.24) (19,1.34) (28,1.42)

5 (15,1.2) (23,1.31) (36,1.41) (13,1.31) ∞ (21,1.36) (16,1.02) (31,1.27) (10,1.01) (26,1.47)
(8,1.2) (34,1.21) (38,1.34) (43,1.15) (41,1.5) (27,1.31) (13,1.02) (8,1.04) (27,1.21)

(15,1.31) (29,1.15) (4,1.32) (8,1.41) (28,1.61) (33,1.26) (40,1.53) (32,1.21) (30,1.54)
6 (6,1.65) (21,1.75) (26,1.62) (9,1.7) (29,1.21) ∞ (42,1.31) (31,1.32) (23,1.34) (41,1.52)

(7,1.27) (29,1.15) (28,1.72) (12,1.04) (39,1.37) (24,1.32) (22,1.65) (35,1.21) (32,1.52)
(37,1.6) (25,1.21) (30,1.5) (22,1.61) (37,1.98) (40,1.76) (10,1.31) (33,1.54) (20,1.04)

7 (39,1.43) (53,1.6) (38,1.71) (43,1.31) (58,1.21) (21,1.65) ∞ (43,1.65) (34,1.71) (15,1.2)
(30,1.32) (26,1.54) (26,1.56) (24,1.76) (40,1.21) (45,1.61) (13,1.21) (36,1.37) (26,1.6)
(41,1.27) (26,1.43) (32,1.34) (40,1.21) (35,1.53) (25,1.53) (40,1.27) (22,1.31) (37,1.76)

8 (42,1.43) (6,1.32) (53,1.43) (21,1.21) (36,1.21) (16,1.06) (21,1.03) ∞ (53,1.62) (36,1.78)
(23,1.15) (17,1.23) (45,1.17) (42,1.31) (47,1.32) (5,1.03) (43,1.04) (24,1.02) (40,1.02)
(40,1.72) (41,1.56) (6,1.24) (25,1.71) (21,1.04) (23,1.32) (7,1.01) (32,1.32) (28,1.41)

9 (11,1.21) (39,1.56) (36,1.42) (34,1.57) (32,1.3) (33,1.06) (38,1.02) (33,1.76) (19,1.32)
(32,1.02) (36,1.42) (37,1.76) (29,1.08) (21,1.02) (25,1.03) (39,1.21) (13,1.52) ∞ (26,1.72)
(17,1.51) (30,1.31) (28,1.15) (20,1.72) (11,1.82) (32,1.52) (38,1.02) (41,1.62) (31,1.52)

10 (26,1.01) (21,1.04) (19,1.21) (31,1.02) (33,1.27) (12,1.18) (28,1.13) (42,1.81) (52,1.37) ∞
(29,1.21) (32,1.92) (30,1.72) (22,1.51) (22,1.19) (34,1.17) (39,1.16) (33,1.21) (32,1.15)
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Bi-random Time Matrix(10 × 10) for BRCSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

(12,1.1) (39,.9) (21,1.02) (10,1.01) (37,1.23) (26,1.11) (18,1.04) (11,1.12) (13,1.02)
1 ∞ (17,1.21) (19,1.07) (13,1.15) (31,.98) (33,1.02) (16,1.03) (19,1.12) (11,1.13) (11,1.1)

(18,1.02) (10,1.11) (15,1.17) (2,1.2) (38,1.19) (7,.97) (29,1.18) (2,1.03) (3,1.01)
(15,1.12) (11,1.03) (28,1.11) (15,1.07) (10,1.02) (10,1.13) (13,1.03) (29,1.2) (14,1.19)

2 (16,1.18) ∞ (31,1.17) (29,1.12) (26,1.2) (11,1.2) (10,1.15) (12,1.21) (17,1.13) (36,1.12)
(37,1.13) (12,1.32) (30,1.03) (17,1.2) (13,1.31) (9,1.14) (9,1.16) (30,1.3) (28,1.03)
(18,1.29) (27,1.21) (22,1.25) (12,1.23) (15,1.21) (29,1.13) (12,1.1) (20,1.11) (20,1.21)

3 (10,1.13) (5,1.43) ∞ (15,1.21) (15,1.23) (16,1.4) (31,1.1) (13,1.21) (39,1.22) (22,1.16)
(29,1.15) (14,1.32) (34,1.11) (6,1.24) (14,1.12) (38,1.3) (15,1.16) (11,1.41) (13,1.33)
(18,1.14) (30,1.2) (28,1.21) (10,1.13) (15,1.23) (11,1.4) (15,1.3) (32,1.21) (17,1.6)

4 (30,1.1) (32,1.32) (39,1.4) ∞ (39,1.15) (36,1.12) (11,1.4) (16,1.2) (23,1.31) (8,1.2)
(20,1.31) (34,1.2) (19,1.31) (14,1.21) (17,1.13) (13,1.19) (27,1.23) (14,1.2) (19,1.28)
(38,1.31) (4,1.2) (15,1.12) (30,1.31) (10,1.21) (15,1.16) (10,1.24) (29,1.34) (28,1.42)

5 (35,1.2) (32,1.31) (16,1.41) (23,1.31) ∞ (31,1.36) (36,1.02) (11,1.27) (20,1.01) (16,1.47)
(28,1.2) (14,1.21) (18,1.34) (3,1.15) (4,1.5) (17,1.31) (23,1.02) (38,1.04) (17,1.21)

(25,1.31) (19,1.15) (44,1.32) (48,1.41) (18,1.61) (13,1.26) (10,1.53) (12,1.21) (10,1.54)
6 (36,1.65) (21,1.75) (16,1.62) (39,1.7) (19,1.21) ∞ (12,1.31) (11,1.32) (13,1.34) (11,1.52)

(37,1.27) (19,1.15) (18,1.72) (32,1.04) (19,1.37) (14,1.32) (12,1.65) (15,1.21) (12,1.52)
(17,1.6) (15,1.21) (10,1.5) (22,1.61) (17,1.98) (10,1.76) (30,1.31) (13,1.54) (10,1.04)

7 (19,1.43) (3,1.6) (18,1.71) (3,1.31) (8,1.21) (11,1.65) ∞ (13,1.65) (14,1.71) (25,1.2)
(10,1.32) (16,1.54) (12,1.56) (14,1.76) (10,1.21) (5,1.61) (33,1.21) (16,1.37) (16,1.6)
(11,1.27) (16,1.43) (12,1.34) (10,1.21) (15,1.53) (25,1.53) (10,1.27) (12,1.31) (17,1.76)

8 (12,1.43) (36,1.32) (5,1.43) (21,1.21) (16,1.21) (26,1.06) (11,1.03) ∞ (5,1.62) (16,1.78)
(23,1.15) (27,1.23) (5,1.17) (12,1.31) (7,1.32) (52,1.03) (3,1.04) (24,1.02) (10,1.02)
(10,1.72) (11,1.56) (62,1.24) (25,1.71) (21,1.04) (23,1.32) (37,1.01) (12,1.32) (28,1.41)

9 (31,1.21) (19,1.56) (16,1.42) (14,1.57) (12,1.3) (13,1.06) (18,1.02) (13,1.76) (39,1.32)
(12,1.02) (16,1.42) (17,1.76) (19,1.08) (21,1.02) (25,1.03) (19,1.21) (23,1.52) ∞ (16,1.72)
(27,1.51) (10,1.31) (18,1.15) (21,1.72) (31,1.82) (12,1.52) (18,1.02) (11,1.62) (11,1.52)

10 (16,1.01) (11,1.04) (39,1.21) (13,1.02) (13,1.27) (32,1.18) (18,1.13) (2,1.81) (5,1.37) ∞
(19,1.21) (12,1.92) (10,1.72) (12,1.51) (12,1.19) (14,1.17) (19,1.16) (13,1.21) (12,1.15)

Bi-random Risk/Discomfort Matrix(10 × 10) for BRCSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8 9 10

(.32,1.1) (.19,.9) (.21,1.02) (.30,1.01) (.07,1.23) (.16,1.11) (.28,1.04) (.41,1.12) (.21,1.02)
1 ∞ (.37,1.21) (.39,1.07) (.33,1.15) (.21,.98) (.23,1.02) (.36,1.03) (39,1.12) (.31,1.13) (.31,1.1)

(.28,1.02) (.30,1.11) (.35,1.17) (.62,1.2) (.08,1.19) (.47,.97) (.19,1.18) (.42,1.03) (43,1.01)
(.35,1.12) (.41,1.03) (.18,1.11) (.35,1.07) (.40,1.02) (.40,1.13) (.33,1.03) (.19,1.2) (.24,1.19)

2 (.26,1.18) ∞ (.21,1.17) (.29,1.12) (.26,1.2) (.31,1.2) (.30,1.15) (.42,1.21) (.37,1.13) (.16,1.12)
(.17,1.13) (.32,1.32) (.10,1.03) (.37,1.2) (.23,1.31) (.59,1.14) (.59,1.16) (.20,1.3) (.18,1.03)
(.38,1.29) (.17,1.21) (.12,1.25) (.42,1.23) (.35,1.21) (.19,1.13) (32,1.1) (.30,1.11) (.30,1.21)

3 (.30,1.13) (.58,1.43) ∞ (.25,1.21) (.25,1.23) (.36,1.4) (.11,1.1) (.33,1.21) (.19,1.22) (.22,1.16)
(.29,1.15) (.34,1.32) (.14,1.11) (.46,1.24) (.34,1.12) (.08,1.3) (.25,1.16) (.41,1.41) (.33,1.33)
(.28,1.14) (.10,1.2) (.18,1.21) (.30,1.13) (.25,1.23) (.21,1.4) (.35,1.3) (.12,1.21) (.27,1.6)

4 (.20,1.1) (.22,1.32) (.09,1.4) ∞ (.19,1.15) (.16,1.12) (.31,1.4) (.36,1.2) (.23,1.31) (.48,1.2)
(.10,1.31) (.14,1.2) (.29,1.31) (.24,1.21) (.27,1.13) (.33,1.19) (.17,1.23) (.34,1.2) (.39,1.28)
(.18,1.31) (.42,1.2) (.35,1.12) (.20,1.31) (.30,1.21) (.45,1.16) (.30,1.24) (.19,1.34) (.28,1.42)

5 (.15,1.2) (.23,1.31) (.36,1.41) (.13,1.31) ∞ (.21,1.36) (.16,1.02) (.31,1.27) (.10,1.01) (.26,1.47)
(.08,1.2) (.34,1.21) (.38,1.34) (.43,1.15) (.41,1.5) (.27,1.31) (.13,1.02) (.08,1.04) (.27,1.21)
(.15,1.31) (.29,1.15) (.04,1.32) (.08,1.41) (.28,1.61) (.33,1.26) (40,1.53) (.32,1.21) (.30,1.54)

6 (.06,1.65) (.21,1.75) (.26,1.62) (.09,1.7) (.29,1.21) ∞ (.42,1.31) (.31,1.32) (.23,1.34) (.41,1.52)
(.07,1.27) (.29,1.15) (.28,1.72) (.12,1.04) (.39,1.37) (.24,1.32) (.22,1.65) (.35,1.21) (.32,1.52)
(.37,1.6) (.25,1.21) (.30,1.5) (.22,1.61) (.37,1.98) (.40,1.76) (.10,1.31) (.33,1.54) (.20,1.04)

7 (.39,1.43) (.53,1.6) (.38,1.71) (.43,1.31) (.58,1.21) (.21,1.65) ∞ (.43,1.65) (.34,1.71) (.15,1.2)
(.30,1.32) (.26,1.54) (.26,1.56) (.24,1.76) (.40,1.21) (.45,1.61) (.13,1.21) (.36,1.37) (.26,1.6)
(.41,1.23) (.26,1.43) (.32,1.34) (.40,1.21) (.35,1.53) (.25,1.53) (.40,1.27) (.22,1.31) (.37,1.76)

8 (.42,1.43) (.06,1.32) (.53,1.43) (.21,1.21) (.36,1.21) (.16,1.06) (.21,1.03) ∞ (.53,1.62) (.36,1.78)
(.23,1.15) (.17,1.02) (.45,1.32) (.42,1.03) (.47,1.05) (.05,1.31) (.43,1.38) (.24,1.73) (.40,1.28)
(.40,1.72) (.41,1.56) (.06,1.24) (.25,1.71) (.21,1.04) (.23,1.32) (.07,1.01) (.32,1.32) (.28,1.41)

9 (.11,1.21) (.39,1.56) (.36,1.42) (.34,1.57) (.32,1.3) (.33,1.06) (.38,1.02) (.33,1.76) (.19,1.32)
(.32,1.02) (.36,1.42) (.37,1.76) (.29,1.08) (.21,1.02) (.25,1.03) (.39,1.21) (.13,1.52) ∞ (.26,1.72)
(.17,1.51) (.30,1.31) (.28,1.15) (.20,1.72) (.11,1.82) (.32,1.52) (.38,1.02) (.41,1.62) (.31,1.52)

10 (.26,1.01) (.21,1.04) (.19,1.21) (.31,1.02) (.33,1.27) (.12,1.18) (.28,1.13) (.42,1.81) (.52,1.37) ∞
(.29,1.21) (.32,1.92) (.30,1.72) (.22,1.51) (.22,1.19) (.34,1.17) (.39,1.16) (.33,1.21) (.32,1.15)
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Table 6.18: Results of BRCMOSTSP (Model 6.1F)

α β Algorithm Path(Vehicle) Costs & Times Rmax

0.95 0.95 iMOGA 2(2)-10(3)-3(3)-9(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) [56.31, 32.43] 9.5
MOGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [59.61, 30.54]

0.8 0.9 iMOGA 8(1)-6(2)-1(2)-9(1)-3(1)-4(2)-2(2)-10(1)-5(3)-7(3) [58.45, 33.76] 8.75
MOGA 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) [71.59, 27.56]

0.7 0.9 iMOGA 7(2)-8(1)-6(2)-1(1)-10(2)-5(3)-2(3)-3(1)-4(2)-9(3) [59.48, 30.23] 8.5
MOGA 10(2)-1(1)-9(2)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [64.54, 26.28]

0.75 0.75 iMOGA 3(2)-7(1)-8(1)-6(2)-1(2)-5(1)-9(2)-2(1)-10(1)-4(1) [63.42, 27.5] 8.0
MOGA 1(3)-10(2)-8(1)-6(1)-9(1)-2(1)-7(1)-5(3)-3(1)-4(1) [65.21, 25.43]

0.95 0.75 iMOGA 3(1)-4(3)-2(3)-10(2)-5(3)-9(3)-8(1)-6(1)-1(3)-7(2) [57.79, 32.78] 7.5
MOGA 5(1)-10(3)-2(2)-4(1)-3(3)-9(1)-8(1)-6(2)-1(3)-7(3) [72.49, 34.31]

Table 6.19: CPU time for BRCMOSTSP (Model 6.1F)
Instances iMOGA MOGA

Cities Mean SD Mean SD
10 151.45 3.81 273.71 22.56
20 341.47 4.13 465.91 30.91
30 568.75 7.69 531.32 28.64
40 697.32 9.57 861.81 31.43
50 863.51 10.43 976.54 31.79
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Table 6.20: Mean and Variance of the diversity metric
Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZTD4
NSGA-II 0.043246 0.357124 0.623163 0.021271 0.365122 0.535073 0.117382 0.414373

0.00135 0.017217 0.021836 0.035364 0.015125 0.032531 0.032163 0.012172
MOGA 0.052943 0.453495 0.310266 0.231765 0.3548221 0.213267 0.076296 0.197286

0.002769 0.036234 0.006362 0.003368 0.001513 0.003537 0.003164 0.023154
iMOGA 0.032356 0.241782 0.296783 0.015386 0.25372 0.232735 0.321785 0.414315

0.001928 0.002651 0.014362 0.003057 0.0010283 0.002319 0.001201 0.001013

Table 6.21: Mean and Variance of the convergence metric
Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZTD4
NSGA-II 0.003287 0.023942 0.020341 0.003275 0.125612 0.003562 0.001382 0.014317

0.000156 0.013231 0.001367 0.001364 0.000512 0.000538 0.002162 0.013183
MOGA 0.003162 0.024534 0.010261 0.004763 0.025481 0.013248 0.002373 0.021928

0.001505 0.005413 0.000721 0.001421 0.001639 0.000456 0.002036 0.000218
iMOGA 0.002354 0.001734 0.006711 0.000153 0.025372 0.023276 0.00178 0.012318

0.000092 0.0006513 0.004362 0.000543 0.000284 0.000339 0.000251 0.001312

6.2.4 Statistical Test and Sensitivity Analyses

Performance Measure for iMOGA:
Unlike in single objective optimization, there are two goals in a bi-objective

optimization problem. The first goal is to achieve the convergence to the Pareto
optimal set and second one is to preserve the diversity in solutions of the given
Pareto optimal set. Here two performance matrices following Deb et al., [37] are
obtained for the multi-objective optimization algorithms and given in Tables 6.20
and 6.21.

To show the performance of the proposed iMOGA, we used it for some
standard multi-objective test functions (Deb, [36]; He et al., [65]). Here each
function is compared with the Pareto optimal solutions of proposed iMOGA. For
all experiments with every test function, we set the parameters as described above
and the experimental results are presented in Tables 6.20 and 6.21. In Table 6.21,
we compare the mean and standard deviation (δ) of the convergence metric used
by (Deb et al. [36]) for NSGA-II, classical MOGA and proposed iMOGA. This
table demands that proposed iMOGA gives better results in the case of mean and
standard deviation of the convergence metric. Again from the Table 6.20, we
find out the diversity metrics using the same parameters against three algorithms
NSGA-II, MOGA and iMOGA. From the Table 6.20, it is observed that proposed
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Table 6.22: ANOVA: Number of win for different algorithms

Problem SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
iMOGA 79 87 74 82 77 86 90 85 78
NSGA-II 67 76 66 78 63 68 73 69 71
MOGA 61 51 64 66 61 59 69 57 58

algorithm gives better results except in some few cases.
Efficiency Test for iMOGA with other algorithms by ANOVA:

Some standard test problems are solved using the developed algorithm iMOGA.
Different parametric values of iMOGA, used for this purpose, are given below:

Here for three algorithms- iMOGA, NSGA-II and Classical MOGA, Pop−size=100
and Maxgen=2000.

The algorithm is tested against a list of standard test functions of crisp val-
ued benchmark problems (Deb et al. [36]). Results are obtained for these stan-
dard problems and number of wins for 100 runs of the algorithms- iMOGA,
NSGA and MOGA are presented in Table 6.22. To compare the efficiency of the
developed algorithm, another two established heuristic technique NSGA-II and
classical MOGA are used against these standard test functions and their results
(number of wins for 100 runs) are obtained.

Hence, when a set of algorithms are compared, the common statistical method
for testing the differences between more than two related samples i.e. ANOVA
test is used. Different steps of this ANOVA are as follows. For statistical com-
parison of the results (obtained by these three algorithms), i.e., for sample of runs
for the algorithms ( number of wins for 100 runs ), the ANOVA procedure is per-
formed.

For calculation of different steps of ANOVA easily, we subtract 60 (with out
lose of generality) from each numbers and the Table 6.22 reduces to the Table
6.23.
Here, total sample size of each algorithm is equal and say, I=9 and number of

algorithm is J=3. Mean of the sample means, X=10.85.

Critical F values, F0.05(2,24) ≈ 3.4. As the compared F (from Table 6.24) is
higher (38.36) than the critical F value (3.4) for 0.05 level of significance, it may
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Table 6.23: ANOVA: Subtracted table from Table 6.22

Problem SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Mean
X1 19 27 14 22 17 26 30 25 18 X1=22
X2 7 16 6 18 3 7 13 8 11 X2=9.89
X3 1 -9 4 6 1 -1 9 -3 -2 X3=0.67

Table 6.24: ANOVA summary table
Source of variation Sum of square df Mean of square F
Between groups SSB=2059.89 J-1=2 MSB=SSB

J−1
=1029.94

Within groups SSW=644.33 J(I-1)=24 MSW= SSW

J(I−1)
=26.85 MSB

MSW
=38.36

Total SST=2704.22 IJ-1=26

be inferred that there is a significant differences between the groups. When F ra-
tio is found to be significant in an ANOVA with more than two groups, it should
be followed by a multiple comparison test to find which group- means differ sig-
nificantly from each other. Scheffe’s multiple comparison F- test is done for this
purpose to find out whether iMOGA and NSGA-II and/or iMOGA and MOGA
are significant. For the first pair i.e., for iMOGA and MOGA, calculated F value
is given by F= (X1−X3)2

MSW ( 1
I+ 1

J )
=38.12. Similarly, for the second pair i.e., for iMOGA

and NSGA-II, calculated F= 12.28. As both calculated F values are greater than
the tabulated value (3.4), there is significant difference between iMOGA and
classical MOGA and also iMOGA and NSGA-II. From Table 6.23, it is observed
that the mean (X1) of X1 is higher than the other two means (X2 and X3). Sig-
nificant differences between the algorithms are observed (discussion already is
given above) and therefore, it can be concluded that iMOGA is better compared
to the other two algorithms.

6.2.5 Discussion

To validate the feasibility and effectiveness of the proposed algorithm, we
have applied the iMOGA on some standard TSP combination, (problems are
taken from TSPLIB [162]. The proposed algorithm is the combination of fuzzy,
fuzzy extended based selections, probabilistic selection, adaptive crossover and
generation depended mutation which was implemented in C++ with 150 chro-
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mosomes and 2000 iterations in maximum.
For Pareto optimal solutions, Table 6.3 shows the comparisons between MOGA

and iMOGA for some standard TSP problems. It is seen that the number of it-
erations is less in iMOGA than classical MOGA, where the classical MOGA is
the combinations of RW selection, cyclic crossover and random mutation. Here
we consider the multi-objective standard TSP from TSPLIB [162] combining the
same sizes problems. Again Table 6.3 asserts the effectiveness of the proposed
algorithm with respect to CPU time. In Table 6.6, we survey the importances of
different parameters and operators in proposed iMOGA. It indicates that for the
Pareto optimal solution of the combination of bayg29 and bays29, the algorithm
navigates the sample space better with generation dependent mutation. In this
case, Pareto optimal results are obtained quickly by 132 iterations only. Here
also, iMOGA performs better than the classical MOGA.

In Table 6.8, we consider 10 × 10 crisp costs and times, risk/discomfort ma-
trices for a CSTSP. The Pareto optimal results are presented in Table 6.9 for only
CMOTSP considering single conveyance for the given data in Table 6.9. It is
observed that CMOTSP without any total risk factor as a goal gives the lowest
minimum cost and time and as the total risk/discomfort decreases, total cost as
well as time increases. It is realistically true in our day-to-day life. For a particu-
lar value of risk/discomfort factor, some near Pareto optimum results along with
the Pareto optimum one are presented. Due to some reasons, if the TS fails to
implement the optimum result, he/she may choose the most feasible near Pareto
optimum solution. Again, we formulated a CMOSTSP with three conveyances
i.e. (10×10×3) costs, times and risks/discomforts matrices presented in Table
6.8. Along each route, the corresponding conveyance is in parentheses. The
Pareto optimum results of CMOSTSP are given in Table 6.10. Here also as total
risk/discomfort goes down, the corresponding travelling cost and time increases.
A (10×10×3) RCMOSTSP is presented in Table 6.11 where all costs, times and
risk/discomfort factors along with the targeted total risk/discomfort are random
variates. The Pareto optimum results are presented in Table 6.12. As expected,
as the risk goes down, corresponding costs and times compromise each other
and go up. For random-fuzzy CMOSTSP, random-fuzzy input data and Pareto
optimum results are presented in Tables 6.13 and 6.14 respectively. Here, costs,
times and risk/discomfort factors are L-L fuzzy numbers. For a fixed θ =0.88, re-
sults by possibility and necessity approaches are given and as before, optimistic
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(Possibilistic) representation gives better result (less cost, less time) than the pes-
simistic (Necessity) one. Again fuzzy random input data are given in Table 6.15
with the costs, times and risk factor, where, means are as random variables (stan-
dard normal variate ) with right and left spreads of the fuzzy variables. The
results presented in Table 6.16 show that Pareto optimal solution gives costs and
times w.r. to risk factor as per our expectations. Similarly for bi-random costs,
times and risk/discomfort factors are presented in Table 6.17, Pareto optimum
results are obtained with different probability levels-α and β for multi-objectives
(cost and time ) and constraint (risk/discomfort factors) and presented in Table
6.18. In all cases, the near Pareto optimum solutions along with optimal one are
available. Also iMOGA gives better results than the classical MOGA.
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6.3 Model-6.2 A Rough Multi-Objective Genetic Algorithm
for uncertain Constrained Multi-Objective Solid Travel-
ling Salesman Problem

This model addresses a Rough Multi-Objective Genetic Algorithm (R-
MOGA) to solve Constrained Multi-Objective Solid Travelling Salesman Prob-
lems (CMOSTSPs) in rough, fuzzy rough and random rough environments. In
the proposed R-MOGA, ‘3 - and 5 - level linguistic based rough age oriented
selection’, ‘adaptive crossover’ are used along with a new generation dependent
mutation. Here we model the CMOSTSP with travelling costs and times as two
objectives and a constraint for route risk/discomfort factors. The costs, times and
risk/discomfort are rough, fuzzy rough and random rough in nature. The above
model is illustrated by using empirical data and a statistical analysis (Analysis of
Variance) is carried out to show the supremacy of the proposed algorithm.

6.3.1 Proposed R-MOGA

Here proposed algorithm for R-MOGA using the rough (3-level linguis-
tic) age based and rough extended (5-level linguistic) age based (REA) selection
strategies, an adaptive crossover and a generation dependent mutation are pre-
sented. Initially a randomly set of potential solutions is generated and then using
proposed algorithm, we find out the Pareto optimal solutions until the termina-
tion criteria are encountered. The proposed R-MOGA and its procedures are
presented below:
(i) Representation:

Here a complete tour on N cities represents a solution. So an N dimensional
integer vector Xi = (xi1, xi2, ..., xiN ) is used to represent a solution (path), where
xi1, xi2, ..., xiN represent N consecutive cities in a tour. Population size number
M and i-th solution Xi = (xi1, xi2, ..., xiN )(vi1, vi2, ..., viP ), where xi1, xi2, ...,
xiN , and vi1, vi2, ..., viP are randomly generated by random number generator
between 1 to N and 1 to P (vehicle set) respectively maintaining the TSP condi-
tions such as not repeating of cities (nodes) and also satisfying the constraints.
Fitness are evaluated by summing the costs and times between the consecutive
cities (nodes) of each solution (chromosome). The solution f(Xi) represents the
i-th solution fitness in the solution space. Since the maximum population size is
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M, so M numbers of solutions (chromosomes) are generated randomly.
(ii) Rough set based Selection:

This part is given in section 4.5.1.
(iii) Rough Extended Age Based Selection:

It is given in section 4.6.1.
(iii) Crossover:

This part is given in section 4.3.1(c)(iii).
(iv) Generation Dependent Mutation:
This part given in section 6.2.1.
(v) Algorithm for Rough age based GA:

Input: max gen, pop size, Max age, Min age, Problem Data (cost matrix,
risk matrix).

Output: The optimum and near optimum solutions.
1. Start
2. g← 0 // g: iteration/generation number
3. Initialize P(g) // randomly generate initial population P (g)
4. Evaluate f(P(g)); //Evaluate fitness of each chromosome of P(g).
5. while(g ≤max gen)
6. Evaluate the average fitness
7. if average fitness > current fitness
8. age(xi)=avg(age)+k∗(avgfit−f(Xi))

(avgfit−minfit)
9. else
10. age(xi)=

avg(age)
2 + k∗(f(Xi)−avgfit)

(maxfit−avgfit)
11. if(age(xi) > maximumage)
12. age(xi)= maximum age
13. else if (age(xi)< minimum age)
14. age(xi)= minimum age
15. Determine average age
16. Determine common rough age
17. Switch (Choice)
18. Case I:// RSGA-I

(a). Developed linguistic variables young, middle, old
(b). for each pair of parents do
(c). Trust based pc created
(d). end for
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19. Case-II:// RSGA-II
(a). Developed variables very young, young, middle, old, very old
(b). for each pair of parents do
(c). Extended trust based pc created
(d). end for// end switch

20. for i=1 to Pop Size//min-point crossover
21. Choose pair of chromosomes according to pc
22. Randomly generate node between 1 to N (say ar)
23. Replace ar at first place of each parents chromosomes
24. Determine min-point value of each corresponding node
25. for j=1 to N
26. Compare min-point value
27. Check the existence of corresponding node in child
28. Concatenated node to the child (offspring)
29. end for
30. Replace ar at end place of each parents chromosomes
31. Compare min-point value from end of the each corresponding nodes
32. for j=1 to N
33. Compare min-point value
34. Check the existence of corresponding node in child
35. Concatenated node to the child (offspring)
36. end for
37. Replace the child’s in offspring’s set
38. end for
39. Switch (Choice) // Mutation
40. Case-I(simple):

(a). for i=0 to pop size
(b). Select chromosome depending pm
(c). Randomly select two different nodes between [1,N]
(d). Replace the places of the selected two nodes
(e). end for

41. Case-II(variable):
(a). pm= k√

g , k∈[0,1]
(b). Determine T= pm*N // total number of mutated node
(c). for i=0 to pop size
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(d). Select chromosome depending pm
(e). for j=1 to T //Type -I
(f). Randomly select two different nodes between [1,N]
(g). Replace the places of the selected two nodes
(h). end for
(i). end for

42. Case-III(variable):
(a). pm= k√

g , k∈[0,1]
(b). Determine T= pm*N
(c). for i=0 to pop size
(d). Select chromosome depending pm
(e). for j=1 to T

2 or (T2 + 1)// T even or odd(Type-II)
(f). Replace the places of the any two nodes
(g). end for
(h). end for

43. Store the new off springs into offspring set
44. Reproduce a new P(g)
45. Evaluate f(P(g));//evaluate the fitness of reproduce chromosome
46. Store the local optimum and near optimum solutions
47. g← g+1
48. endwhile
49. Store the global optimum and near optimum results
50. End Algorithm.

(vi) Division of P (T ) into disjoint subsets having non-dominated solutions:
This part is already discussed in section 6.2.1.(vii).

(vii) To determine distance of a solution of subset F from other solutions:
This part is discussed in section 6.2.1.(viii).

(viii) Termination Criteria:
RSGA-I (Rough set based) and RSGA-II (Rough extended set based) algo-

rithms are terminated if any one of the following conditions is satisfied (which
over is earlier):

(a) the best solution does not improve within 20 consecutive generations
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(b) number of generations reaches user defined iterations (generations).
The same termination criteria are used for other algorithms used in this inves-

tigation.
(ix) Complexity analysis:

MOGAs, that use non-dominated sorting and sharing are mainly criticized
for their O(MN3) complexity, but fast and elitist non-dominated sorting algo-
rithm has O(MN2) computational complexity where N is the popsize and M is the
number of objectives. Here also the proposed R-MOGA has the same O(MN2)
computational complexity.

6.3.2 Mathematical Formulation and Its crisp equivalence

Model 6.2A: Multi-Objective TSP with Risk/Discomfort Constraints (CMOTSP):
The model 6.2A is described previously in Equ. 6.4.
Model 6.2B: MOSTSP with Risk/Discomfort Constraints (CMOSTSP):
This model 9B is given in Equ. 6.5.

Model 6.2C: CMOSTSP in Rough Environment (RCMOSTSP):
In the Equ. 6.5, if costs, times and risk/discomfort factors are rough variables,

i.e, ĉ(i, j, k), t̂(i, j, k) and r̂(i, j, k) respectively and maximum risk/discomfort
limit rmax is crisp. then the Equ. 6.5 reduces to:

minimize Z =
N−1∑
i=1

ĉ(xi, xi+1, vi) + ĉ(xN , x1, vl)

minimize T =
N−1∑
i=1

t̂(xi, xi+1, vi) + t̂(xN , x1, vl)

subject to
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂(xN , x1, vl) ≤ rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}


(6.28)

(the parameters with on the top represent rough quantities)
The above equations written as

Minimize Ẑ = Ĉ(x, v)

Minimize T̂ = T̂ (x, v)

subject to R̂(x, v) ≤ Rmax

 (6.29)
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where Ĉ =
N−1∑
i=1

ĉ(xi, xi+1, vi)+ĉ(xN , x1, vl), T̂ =
N−1∑
i=1

t̂(xi, xi+1, vi)+t̂(xN , x1, vl),

R̂ =
N−1∑
i=1

r̂(xi, xi+1, vi) + r̂1(xN , x1, vl), Rmax = rmax, and Ĉ=([a,b],[c,d]),

T̂=([t2, t3], [t1, t4]), R̂=([R2], [R3], [R1, R4]) (say) are rough variables.
Now using trust measure, the above model reduces to:

minimize Z1, T1

Tr{Ĉ(x, v) ≤ Z1} ≥ α

Tr{T̂ (x, v) ≤ T1} ≥ β

Tr{R̂(x, v) ≤ Rmax} ≥ η
where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.

 (6.30)

Thus the above model are transformed as minimize{Z1, T1}

Z1 =


c+ 2α(d− c), if c ≤ Z1 ≤ a
c(b−a)+a(d−c)+2α(d−c)(b−a)

d−c+b−a if a ≤ Z1 ≤ b
c+ (d− c)(2α− 1) if b ≤ Z1 ≤ d
d if d ≤ Z1

(6.31)

and

T1 =


t1 + 2(t4 − t1)β, if t1 ≤ T1 ≤ t2
t1(t3−t2)+t2(t4−t1)+2β(t4−t1)(t3−t2)

t4−t1+t3−t2 if t2 ≤ T1 ≤ t3
t1 + (t4 − t1)(2β − 1) if t3 ≤ T1 ≤ t4
t4 if t4 ≤ T1

(6.32)

s.t.

Rmax ≥


R1 + 2(R4 −R1)η, if R1 ≤ Rmax ≤ R
R1(R3−R2)+R2(R4−R1)+2η(R4−R1)(R3−R2)

R4−R1+R3−R2
if R2 ≤ Rmax ≤ R3

R1 + (R4 −R1)(2η − 1) if R3 ≤ Rmax ≤ R4

R4 if R4 ≤ Rmax

(6.33)
Here α, β and η are predetermined confidence levels.
Model 6.2D: CMOSTSP in Fuzzy Rough Environment (FRCMOSTSP):

In the Equ. 6.5, if costs, times and risk/discomfort factors are fuzzy rough
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variables, i.e, ˜̂c(i, j, k), ˜̂t(i, j, k) and ˜̂r(i, j, k) respectively and maximum risk/dis-
comfort limit rmax is also fuzzy rough variables ˜̂rmax, then the Equ. 6.5 reduces
to:

to minimize Z =
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl)

to minimize T =
N−1∑
i=1

˜̂t(xi, xi+1, vi) + ˜̂t(xN , x1, vl)

subject to
N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r(xN , x1, vl) ≤ ˜̂rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.34)

Above Equ. 6.34 can be reformulated, where the objective function are
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl) ≤ F ,

N−1∑
i=1

˜̂t(xi, xi+1, vi) +˜̂(xN , x1, vl) ≤ T , where F and T are given crisps, and equa-

tions evaluated using FRCCMOP according to theorem 3.12 and Equ. 3.40 in
section 3.13.14.

to minimize F and T

s.t. Ch{
N−1∑
i=1

˜̂c(xi, xi+1, vi) + ˜̂c(xN , x1, vl) ≤ F}(α) ≥ β

Ch{
N−1∑
i=1

˜̂t(xi, xi+1, vi) + ˜̂t(xN , x1, vl) ≤ T}(α1) ≥ β1

Ch
N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r(xN , x1, vl) ≤ ˜̂rmax}(α2) ≥ β2

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.35)

Here the parameters α, β, α1, β1, α2, β2, are predetermined confidence levels in
[0,1].
The above Equ. 6.35 is reformulated as

minimize {F, T}
s.t Ch{ ˜̂

Cx ≤ Z}(α) ≥ β

Ch{ ˜̂
T1x ≤ T}(α1) ≥ β1

Ch{ ˜̂
R1x ≤ ˜̂

Rmax}(α2) ≥ β2

x ∈ X


(6.36)
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where ˜̂
C =

N−1∑
i=1

˜̂c(xi, xi+1, vi)+˜̂c(xN , x1, vl), ˜̂
T1 =

N−1∑
i=1

˜̂t(xi, xi+1, vi)+
˜̂t(xN , x1, vl),

˜̂
R1 =

N−1∑
i=1

˜̂r(xi, xi+1, vi) + ˜̂r1(xN , x1, vl), ˜̂
Rmax = ˜̂rmax, and X is a fixed set that

usually determined by a finite of inequalities involving functions of x as a deci-
sion vectors.
It follows from section 3.13.14, the Equ. 6.36 is converted as follows using Trust
Possibility measure

minimize{F, T}
s.t. Tr{λ|Pos{ ˜̂

Cx ≤ Z} ≥ β} ≥ α

Tr{λ|Pos{ ˜̂
T1x ≤ T} ≥ β1} ≥ α1

Tr{λ|Pos{ ˜̂
R1x ≤ ˜̂

Rmax} ≥ β2} ≥ α2

x ∈ X


(6.37)

and the Probability Necessity measure form as given below

minimize{F, T}
s.t. Tr{ω|Nes{ ˜̂

Cx ≤ F} ≥ β} ≥ α

Tr{ω|Nes{ ˜̂
T1x ≤ T} ≥ β1} ≥ α1

Tr{ω|Nes{ ˜̂
R1x ≤ ˜̂

Rmax} ≥ β2} ≥ α2

x ∈ X


(6.38)

where α, β, α1, β1, α2, β2 ∈ (0, 1] are the predetermined confidence levels, Pos{.}
denotes possibility of the fuzzy events and Tr{.} denotes the trust measures of
the rough events in {.}.

To find the crisp values of trust possibility model according in section 3.13.14
the above model Equ. 6.37 is transformed as follows: minimizes {F, T}

F =


c+ 2α(d− c)− L−1(β)γcT , if c ≤ W ≤ a
c(b−a)+a(d−c)+2α(d−c)(b−a)

d−c+b−a − L−1(β)γcT if a ≤ W ≤ b
c+ (d− c)(2α− 1)− L−1(β)γcT if b ≤ W ≤ d
d− L−1(β)γcT if d ≤ W

(6.39)
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T =


t1 + 2α1(t4 − t1)− L−1(β1)γ

tT , if t1 ≤ S ≤ t2
t1(t3−t2)+t2(t4−t1)+2α1(t4−t1)(t3−t2)

t4−t1+t3−t2 − L−1(β1)γ
tT if t2 ≤ S ≤ t3

t1 + (t4 − t1)(2α− 1)− L−1(β1)γ
tT if t3 ≤ S ≤ t4

t4 − L−1(β1)γ
tT if t4 ≤ S

(6.40)
s.t

Rmax ≥


R1 + 2(R4 −R1)α2, if R1 ≤ Rmax ≤ R2
R1(R3−R2)+R2(R4−R1)+2α2(R4−R1)(R3−R2)

R4−R1+R2−R2
if R2 ≤ Rmax ≤ R2

R1 + (R4 −R1)(2α2 − 1) if R2 ≤ Rmax ≤ R4

R4 if R4 ≤ Rmax

(6.41)
where Rmax=R−1(β2)δ

rmax + L−1(β2)γ
rT , W = Z + L−1(β)γcT and S= T +

L−1(β1)γ
tT . Here δrmax and S=γrT are the right and left spread of LR fuzzy

numbers. Also reference functions L, R :[0,1]→ [0,1] with L(1)=R(1)=0 and
L(0)=R(0)=1 are non-increasing continuous functions.
Model 6.2E: CMOSTSP in Random-Rough Environment (RRCMOSTSP):

In the Equ. 6.5, if costs, times and risk/discomfort factors are random-rough
variables, i.e, ˆ̃c(i, j, k), ˆ̃t(i, j, k) and ˆ̃r(i, j, k) respectively and maximum risk/dis-
comfort limit rmax is also a random-rough variable ˆ̃rmax, then the Equ.6.5 reduces
to:

minimize Z =
N−1∑
i=1

˜̄c(xi, xi+1, vi) + ˜̄c(xN , x1, vl)

minimize T =
N−1∑
i=1

˜̄t(xi, xi+1, vi) + ˜̄t(xN , x1, vl)

subject to
N−1∑
i=1

˜̄r(xi, xi+1, vi) + ˜̄r(xN , x1, vl) ≤ ˜̄rmax

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.42)

Above Equ.6.42 can be reformulated as given below where the objective func-
tions are

N−1∑
i=1

˜̄c(xi, xi+1, vi) + ˜̄c(xN , x1, vl) ≤ Z1, Z1 being a crisp quantity.

N−1∑
i=1

˜̄t(xi, xi+1, vi) + ˜̄t(xN , x1, vl) ≤ T1, T1 is a crisp quantity.

Now the Equ. 6.42 , using section 3.13.17, defined as RRCMOSTSP is given
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below

minimize Z1 and T1

Tr{Pr{
N−1∑
i=1

ˆ̃c(xi, xi+1, vi) + ˆ̃c(xN , x1, vl) ≤ Z1} ≥ β} ≥ α

Tr{Pr{
N−1∑
i=1

ˆ̃t(xi, xi+1, vi) + ˆ̃t(xN , x1, vl) ≤ T1} ≥ β1} ≥ α1

s.t Tr{Pr{
N−1∑
i=1

ˆ̃r(xi, xi+1, vi) + ˆ̃r(xN , x1, vl) ≤ ˆ̃rmax} ≥ β2} ≥ α2

where xi 6= xj, i, j = 1, 2...N, vi, vl ∈ {1, 2.., orP}.


(6.43)

α, β, α1, β1, α2, β2 ∈ (0, 1] are predetermined confidence levels. The above Equ.
6.43 is equivalently written into according to section 3.13.18 as below Thus the
above model transformed as minimize{Z1, T1}

Z1 =


c+ 2α(d− c) + φ−1(β)

√
xTV cx, if c ≤ R ≤ a,

c(b−a)+a(d−c)+2α(d−c)(b−a)
d−c+b−a + φ−1(β)

√
xTV cx if a ≤ R ≤ b

c+ (d− c)(2α− 1) + φ−1(β)
√
xTV cx if b ≤ R ≤ d

d+ φ−1(β)
√
xTV cx if d ≤ R

(6.44)

and

T1 =


t1 + 2α1(t4 − t1) + φ−1(β1)

√
xTV tx, if t1 ≤ Q ≤ t2

t1(t3−t2)+t2(t4−t1)+2α1(t4−t1)(t3−t2)
t4−t1+t3−t2 + φ−1(β)

√
xTV tx if t2 ≤ Q ≤ t3

t1 + (t4 − t1)(2α1 − 1) + φ−1(β1)
√
xTV tx if t3 ≤ Q ≤ t4

t4 + φ−1(β1)
√
xTV cx if t4 ≤ Q

(6.45)
s.t.

Rmax ≥


R1 + 2(R4 −R1)α2, if R1 ≤ Rmax ≤ R
R1(R3−R2)+R2(R4−R1)+2α2(R4−R1)(R3−R2)

R4−R1+R3−R2
if R2 ≤ Rmax ≤ R3

R1 + (R4 −R1)(2α2 − 1) if R3 ≤ Rmax ≤ R4

R4 if R4 ≤ Rmax

(6.46)
whereRmax= - φ−1(β2)

√
xTV Rx+ (σrmax)2, R=Z1+φ

−1(β)
√
xTV cx and Q=T1−

φ−1(β1)
√
xTV tx. Here α, β, α1, β1, α2, β2 are predetermined confidence levels.

Again σrmax, V c, V t, V R are standard deviation and variances of costs, times
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Table 6.25: Test TSPLIB Problems by R-MOGA
Instances Single Multi R-MOGA MOGA

Cost Iteration Time Cost Iteration Time
bays29 2020 2270 2834
bayg29 1610 - 1839 169 .23 2487 473 4.71
eil76 538 - 759 936
pr76 108159 124247 238 2.31 156721 718 6.54

kroa100 21282
krob100 22141 49639 [148] 49428 198 2.52 53745 567 5.58
kroa100 21282
kroc100 20749 50245[148] 50292 159 1.46 51634 673 6.12
krob100 22141 24582 26156
kroc100 20749 - 21390 246 2.49 23689 638 5.47

and maximum of risk/discomfort factors which we assume that all are standard
normal variates with known mean and variances. Also Φ is the standard normal
variate distributions.
Solution Procedures:

The deterministic forms of the uncertain RCMOSTSPs given by Eqs.6.31,
6.32 and 6.33 for rough environment, again Eqs. 6.39, 6.40 and 6.41 for FRC-
MOSTSP in fuzzy rough environment, Eqs.6.44, 6.45 and 6.46 for RRCMOSTSP
in random rough environment are solved by the proposed R-MOGA, developed
for this purpose in the section.

6.3.3 Numerical Experiments

Testing for R-MOGA:
To judge the effectiveness and feasibility of the developed algorithm R-MOGA,

we have applied it on the standard two TSP problems from TSPLIB [162] with
the combination of same size test problems. Table 6.25 gives the results of
along with the standard MOGA comparison in terms of total cost and itera-
tions and CPU time in minutes. Here classical MOGA is the combinations of
RW-selection, cyclic crossover and random mutation, where as our proposed R-
MOGA is the combinations rough extended age based selection (REA), adaptive
crossover and generation dependent (GD) mutations.

Moreover, for a particular test problem kora100 and korc100, both standard
MOGA and proposed R-MOGA are used with different Pc’s, Pm’s. The obtained
Pareto optimal solutions are presented in Tables 6.26 and 6.27.
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Table 6.26: Comparison of R-MOGAs and MOGA

Algorithm Selection Crossover Generation pc pm ps Result
MOGA-I Roulette Wheel Cyclic 423 0.31 0.3 -
MOGA-II Probabilistic Cyclic 402 0.31 0.3 -
MOGA-III Probabilistic Adaptive 356 0.4 0.3 -
MOGA-III Probabilistic Adaptive 376 0.44 0.3 -
MOGA-IV Probabilistic Adaptive 363 - 0.3 0.3 [25528, 24764]
R-MOGA-I Rough Age based Adaptive 282 - 0.3 -
R-MOGA-II REA Adaptive 193 - 0.3 -
R-MOGA-III REA Adaptive 159 - GD -

Table 6.27: Comparison of Different operators of R-MOGAs
Algorithm Selection Crossover Mutation Generation Pm Result

582 0.4
Simple 542 0.3

597 0.2
Rough 248 0.4

Random 226 0.3
R-MOGA Age 276 0.2 [25528, 24764]

Based Adaptive 193 0.4
Fixed 147 0.3

168 0.2
GD 127 -

Model 6.2B: Results of CMOTSP and CMOSTSP with Risk/Discomfort
Constraint in Crisp Environment:

Here we consider a deterministic CMOSTSP given by Equ. 6.32, whose
costs, times and risk/discomfort matrices are given by Table 6.28. The prob-
lem is solved by R-MOGA and the results are presented in Tables 6.29 and 6.30.
Here, for the CMOSTSP, we consider three types of conveyances. With the same
data for the 1st conveyance, we solve the CMOTSP (with single conveyance) and
the results are presented in Table 6.29.

For Table 6.29, we took maximum generation=1000 and max-popsize =100
and Table 6.31 maximum generation=2000, and maximum popsize=150.

Model 6.2C: CMOSTSP with Risk/Discomfort Constraint in Rough En-
vironment (RCMOSTSP):
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567 0.4
Simple 451 0.3

479 0.2
Rough 211 0.4

R-MOGA Random 109 0.3
136 0.2 [25528, 24764]

Extended Adaptive 157 0.4
Age Based Fixed 102 0.3

131 0.2
GD 92 -

Table 6.28: Input Data: Crisp CMOSTSP (Model 6.2B)
Crisp Cost Matrix(10 × 10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 35,36,27 18,39,30 20,33,34 30,21,62 6,23,8 15,36,47 27,38,19 40,31,42 20,31,42
2 35,26,17 ∞ 40,21,32 18,29,10 35,26,37 40,31,22 40,31,59 33,42,59 18,37,20 24,16,18
3 38,30,29 17,58,34 ∞ 12,25,14 42,25,46 35,36,34 19,11,8 32,33,25 30,19,41 30,22,33
4 28,20,11 10,22,14 17,8,29 ∞ 30,19,24 25,16,27 21,31,33 35,36,17 12,23,34 27,48,39
5 17,15,9 42,23,34 35,36,37 20,31,43 ∞ 30,21,42 45,16,27 30,31,13 19,10,8 28,26,7
6 15,6,7 30,21,29 5,26,28 8,9,12 28,29,40 ∞ 33,42,24 40,31,22 32,23,35 30,41,32
7 38,39,30 25,54,26 30,38,26 22,43,24 37,58,39 40,21,45 ∞ 10,41,13 32,33,35 20,15,26
8 40,41,23 25,6,17 32,53,45 40,21,42 35,36,47 25,16,5 40,22,43 ∞ 22,53,24 37,37,39
9 40,11,33 40,39,36 3,36,37 25,34,29 20,32,21 22,33,25 7,38,39 32,33,14 ∞ 28,19,26

10 18,27,29 30,21,32 28,19,30 20,31,22 11,33,22 32,12,34 37,28,39 40,41,33 30,51,33 ∞
Crisp Time Matrix(10 ×10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ 15,16,17 28,19,20 30,13,14 20,31,12 62,13,68 25,16,27 17,28,39 30,21,22 30,21,22
2 15,16,27 ∞ 30,31,22 38,19,40 15,16,17 30,21,32 30,21,9 13,22,9 28,17,10 14,36,28
3 30,21,32 17,58,34 ∞ 12,25,14 42,25,46 35,36,34 19,11,8 32,33,25 30,19,41 30,22,33
4 28,20,11 10,22,14 17,8,29 ∞ 30,19,24 25,16,27 21,31,33 35,36,17 12,23,34 27,48,39
5 17,15,9 42,23,34 35,36,37 20,31,43 ∞ 30,21,42 45,16,27 30,31,13 19,10,8 28,26,7
6 25,26,37 20,31,19 55,16,18 61,58,55 18,19,20 ∞ 13,22,14 30,21,32 22,33,15 20,11,12
7 27,8,14 25,12,36 20,18,16 20,31,12 17,8,19 20,21,25 ∞ 30,21,33 22,13,15 30,25,16
8 38,19,40 15,16,17 28,19,20 30,13,14 20,31,12 62,13,68 25,16,27 ∞ 17,28,39 30,21,22
9 40,11,33 40,39,36 3,36,37 25,34,29 20,32,21 22,33,25 7,38,39 32,33,14 ∞ 28,19,26

10 28,17,19 20,31,12 18,39,20 30,11,18 31,33,22 32,12,34 37,28,39 40,41,33 30,51,33 ∞
Crisp Risks/Discomforts Matrix(10×10) With Three Conveyances

i/j 1 2 3 4 5 6 7 8 9 10
1 ∞ .69,.68,.75 .84,.63,.7 .82,.7,.71 .72,.8,.42 .96,.79,.93 .87,.66,.55 .74,.42,.81 .41,.7,.59 .81,.7,.59
2 .67,.76,.84 ∞ .61,.8,.7 .83,.73,.92 .67,.76,.65 .41,.71,.79 .41,.71,.43 .69,.6,.42 .83,.64,.81 .77,.85,.3
3 .63,.71,.73 .83,.44,.67 ∞ .89,.76,.86 .59,.76,.55 .66,.65,.67 .83,.91,.94 .69,.68,.76 .71,.82,.6 .71,.79,.68
4 .73,.81,.9 .9,.78,.86 .84,.93,.72 ∞ .71,.82,.77 .77,.86,.75 .81,.71,.69 .66,.65,.84 .89,.79,.77 .74,.53,.43
5 .84,.86,.92 .59,.78,.67 .66,.65,.64 .82,.71,.59 ∞ .71,.81,.59 .57,.85,.74 .71,.7,.88 .82,.91,.93 .74,.75,.93
6 .85,.84,.93 .7,.8,.71 .95,.74,.72 .92,.91,.89 .73,.72,.61 ∞ .69,.59,.77 .61,.71,.79 .69,.78,.66 .71,.6,.69
7 .63,.62,.71 .77,.47,.76 .71,.63,.76 .79,.59,.77 .66,.43,.62 .6,.79,.55 ∞ .9,.6,.87 .69,.68,.66 .81,.87,.76
8 .61,.6,.78 .76,.95,.84 .69,.47,.56 .61,.81,.6 .67,.66,.55 .6,.85,.95 .61,.8,.59 ∞ .79,.48,.77 .64,.64,.62
9 .61,.91,.71 .61,.62,.65 .97,.65,.64 .76,.77,.72 .81,.69,.73 .79,.68,.76 .94,.66,.63 .69,.68,.87 ∞ .73,.82,.75

10 .83,.74,.72 .71,.8,.69 .73,.83,.72 .8,.69,.78 .89,.67,.78 .7,.9,.71 .64,.74,.22 .61,.59,.68 .71,.5,.67 ∞
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Table 6.29: Results of CMOTSP in Crisp (Model 6.2B)
Algorithm Path Value Rmax

10-2-8-5-9-6-1-4-3-7 [110,132] Without Rmax

8-2-10-5-3-6-7-4-9-1 [110, 132] 8.75
R-MOGA-III 7-9-6-4-3-5-10-8-2-1 [121,124] 8.75

5-3-2-10-4-8-7-9-1-6 [134, 115] 8.75
3-8-2-10-5-9-6-1-4-7 [140, 106] 8.75

R-MOGA-III 2-7-1-5-9-6-10-4-3-2 [167, 100] 8.5
MOGA 9-8-2-5-10-6-1-4-3-7 [207, 117] 8.5

R-MOGA-II 3-5-9-6-1-4-8-7-2-10 [228, 106] 8.00
MOGA 10-2-5-1-4-3-7-9-6-8 [315, 129] 8.00

R-MOGA-II 6-2-7-9-1-4-8-5-10-3 [237, 102] 8.00

Table 6.30: Results of CMOSTSP in Crisp (Model 6.2B)

Algorithm Path(Vehicle) Cost Risk achieved Rmax

2(3)-10(2)-5(3)-4(1)-1(2)-9(3)-3(2)-7(1)-8(3)-612) [112, 137] 8.69
6(2)-7(1)-8(1)-9(3)-1(1)-3(1)-4(1)-2(1)-10(1)-5(3) [130, 123] 8.50 8.75
6(1)-2(2)-10(1)-9(1)-8(1)-4(2)-3(3)-7(2)-5(2)-1(3) [147, 121] 8.50

R-MOGA-III 2(1)-8(1)-6(2)-1(1)-10(3)-5(2)-4(3)-7(3)-9(1)-3(2) [153, 117] 8.26 8.75
MOGA-I 1(2)-9(1)-3(3)-7(3)-8(2)-6(1)-2(3)-10(2)-5(2)-4(1) [200, 128] 8.71 8.75

3(2)-4(3)-2(1)-9(3)-8(1)-6(3)-1(1)-5(2)-7(1)-10(1) [149, 101] 7.87
R-MOGA-III 1(2)-10(3)-9(1)-3(1)-7(1)-8(1)-6(2)-2(1)-5(2)-4(1) [176, 96] 7.69 8.00

6(1)-5(2)-4(3)-2(2)-9(2)-3(1)-8(1)-7(1)-1(2)-10(2) [245, 87] 7.7
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Table 6.31: Input Data: RCMOSTSP (Model 6.2C)
Rough Cost Matrix(10 ×10) for RCMOSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
([29,30],[27,32]) ([13,15],[12,17]) ([20,21],[18,22]) ([28,29],[26,31]) ([23,26],[21, 27]) ([15,16],[13,17]) ([26,28],[23,29])

1 ∞ ([35,37],[34,39]) ([36,37][34,39]) ([31,33],[30,34]) ([19,20],[18,21]) ([21,23],[20,25]) ([34,36],[32,37]) ([37,38],[35,39])
([24,25],[23,28]) ([29,30],[27,31]) ([29,30],[28,35]) ([58,59],[57,62]) ([7,8],[6,10]) ([44,46],[43,47]) ([17,18],[16,20])

([33,34],[33,35] ([38,39],[37,41]) ([15,16],[14,18]) ([33,34],[32,35]) ([39,40],[37,41]) ([39,40],[38,41]) ([32,33],[31,34])
2 ([23,24],[22,26]) ∞ ([20,21],[19,22]) ([28,29],[27,30]) ([25,26],[24,27]) ([28,29],27,31]) ([29,30],[28,31]) ([40,41],[39,42])

([15,16],[14,17]) ([29,30],[28,32]) ([9,10],[8,11]) ([33,35],[32.37]) ([2,22],[20,23]) ([57,59],[56,61]) ([54,55],[53,59])
([34,35],[33,38]) ([15,17],[13,18]) ([11,12],10,13]) ([39,40],[37,42]) ([33,35],[32,36]) ([18,19],[17,20]) ([29,32],[28,33])

3 ([28,29],[27,30]) ([54,56],[53,58]) ∞ ([22,24],[21,25]) ([23,24],[22,25]) ([33,34],[31,36]) ([10,11],[9,13]) ([32,33],[31,30])
([28,29],[27,30]) ([30,31],[29,34]) ([13,14],[11,15]) ([44,45],[43,46]) ([32,33],31,34]) ([7,8],[6,10]) ([23,25],[22,26])
([26,28],[25,29]) ([9,10],[8,11]) ([15,16],[14,18]) ([28,30],[27,31]) ([23,25],[22,26]) ([19,21],[18,22]) ([33,35],[32,36])

4 ([17,18],[16,20]) ([19,20],[18,22]) ([8,9],[7,10]) ∞ ([18,19],[17,20]) ([14,16],[13,17]) ([30,31],[29,33]) ([33,34],[32,36])
([9,10],[8,11]) ([14,15],[13,17]) ([27,29],[26,30]) ([22,23],[21,24]) ([25,27],[26,28]) ([31,33],[30,34]) ([15,16],[14,17])

([15,17],[14,18]) ([39,40],[38,42]) ([33,35],[32,36]) ([18,19],[17,20]) ([29,30],[28,32]) ([43,44],[42,45]) ([28,29],[27,30])
5 ([13,15],[12,16]) ([21,23],[20,24]) ([33,34],[32,36]) ([11,13],[10,14]) ∞ ([20,21],,[19,22]) ([15,16],[13,17]) ([29,30],[27,31])

([6,7],[5,8]) ([31,34],[30,35]) ([35,37],[34,38]) ([42,43],[41,44]) ([40,41],[39,43]) ([25,27],[24,28]) ([12,13],[11.14])
([15,16],14,18]) ([27,28],[26,29]) ([4,6],[3,8]) ([6,7],[5,8]) ([26,27],[28,30]) ([32,33],[30,34]) ([39,40],[38,42])

6 ([6,7].[5,8]) ([21,22],[20,23]) ([25,26],[24,27]) ([7,9],[6,10]) ([27,29],[26,30]) ∞ ([41,42],[40,44]) ([29,31],[28,30])
([7,8],[6,10]) ([28,29],[27,30]) ([26,28],[25,29]) ([11,12],[10,15]) ([38,39],[37,40]) ([23,24],[22,25]) ([21,22],[20,25])

([33,34],[35,37]) ([25,26],[23,28]) ([28,29],[27,30]) ([21,22],[20,23]) ([36,37],[35,38]) ([39,40],[38,42]) ([8,9],[7,10])
7 ([36,39],[35,40]) ([48,49],[47,53]) ([37,38],[36,39]) ([40,43],[39,44]) ([55,56],[54,58]) ([20,21],[19,25]) ∞ ([39,40],[38,43])

([28,30],[27,31]) ([25,26],[23,27]) ([24,25],[23,26]) ([23,24],[22,25]) ([39,40],[38,41]) ([43,44],[42,45]) ([11,13],[10,14])
([39,40],[37,41]) ([23,25],[22,26]) ([29,32],[28,33]) ([38,40],[37,41]) ([35,36],[33,38]) ([23,25],[22,27]) ([40,41],[39,42])

8 ([41,42],[40,44]) ([5,6],[4,7]) ([49,53],[48,54]) ([19,21],[18,22]) ([33,36],[31,37]) ([13,16],[12,18]) ([20,21],[19,22]) ∞
([22,23],[21,24]) ([15,17],[14,18]) ([44,45],[43,47]) ([39,40],[38,42]) ([45,47],[44,48]) ([5,6],[4,7]) ([41,43],[39,44])

Rough Time Matrix(10×10) for RCMOSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8

([20,21],[19,22]) (]27,29],[26,30]) ([29,30],[28,31]) ([17,19],[16,21]) ([33,37],[32.38]) ([25,26],[24,27]) ([17,18],[16,19])
1 ∞ ([16,17],[15,18]) ([17,19],[16,20]) ([28,31],[27,33]) ([29,30],[27,31]) ([29,30],[28,33]) ([14,5],[13,16]) ([17,19],[16,22])

([16,18],[15,19]) ([18,20],[17,21]) ([13,15],[12,17]) ([11,12],[10,14]) ([31,33],[30,38]) ([7,8],[6,9]) ([36,38],[34,39])
([15,16],[13,17]) ([20,21],[19,23]) ([17,18],[16,20]) ([33,34],[32,35]) ([19,20],[18,21]) ([18,20],[17,21]) ([12,13],[11,15])

2 ([13,14],[12,16]) ∞ ([20,21],[19,23]) ([18,19],[17,20]) ([14,16],[13,15]) ([20,21],[19,23]) ([19,20],[18,22]) ([21,22],[19,23])
([34,35],[33,37]) ([20,22],[19,23]) ([9,10],[8,11]) ([13,14],[15,17]) ([32,33],[30,35]) ([8,9],[7,11]) ([36,38],[33,39])
([18,19],[17,20]) ([26,27],[25,29]) ([11,12],[10,15]) ([10,12],[9,13]) ([23,25],[22,27]) ([33,39],[31,35]) ([11,12],[10,14])

3 ([19,20],[18,22]) ([7,8],[6,10]) ∞ ([11,15],[10,17]) ([13,14],[12,15]) ([23,25],[21,26]) ([28,30],[27,31]) ([11,13],[10,12])
([19,20],[18,22]) ([13,14],[12,15]) ([33,34],[31,35]) ([5,6],[4,7]) ([11,14],[10,16]) ([34,35],[33,38]) ([14,15],[13,17])
([18,19],[17,20]) ([29,30],[27,31]) ([33,38],[32,39]) ([18,19],[16,20]) ([15,16].[13,18]) ([30,31],[29,32]) ([24,25],[22,27])

4 ([28,30],[27,32]) ([29,32],[27,33]) ([34,35],[33,39]) ∞ ([33,37],[32,39]) ([43,45],[42,46]) ([20,21],[18,22]) ([15,16],[14,17])
([39,40],[38,42]) ([23,24],[21,26]) ([18,19],[17,20]) ([23,24],[22,26]) ([13,17],[12,18]) ([21,23],[20,25]) ([33,36],[31,40])
([37,38],[36,39]) ([22,23],[20,25]) ([13,15],[12,17]) ([18,20],[17,21]) ([18,20],[17,21]) ([4,5],[3,7]) ([18,20],[17,21])

5 ([33,35],[32,36]) ([31,33],[30,34]) ([15,16],[13,18]) ([11,13],[10,14]) ∞ ([20,21],[18,23]) ([33,35],[30,37]) ([20,21],[19,23])
([43,44],[40,48]) ([14,15],[13,17]) ([18,19],[17,20]) ([41,43],[40,44]) ([20,21],[19,24]) ([17,18],[16,17]) ([31,32],[30,33])
([33,34],[31,35]) ([18,19],[17,22]) ([41,42],[40,44]) ([8,9],[7,10]) ([16,17],[15,18]) ([21,22],[20,23]) ([19,20],[18,22])

6 ([43,46],[40,47]) ([11,13],[10,14]) ([15,16],[13,17]) ([8,9],[7,10]) ([17,18],[16,20]) ∞ ([21,22],[20,23]) ([19,20],[18,21])
([33,34],[31,37]) ([18,19],[17,20]) ([16,18],[15,19]) ([11,12],[10,14]) ([21,23],[20,29]) ([11,14],[10,15]) ([21,22],[20,24])
([13,17],[12,18]) ([15,17],[13,19]) ([19,20],[18,21]) ([20,22],[19,24]) ([23,27],[22,26]) ([19,20],[18,21]) ([18,20],[17,21])

7 ([18,19],[17,20]) ([2,3],[1,6]) ([17,18],[16,19]) ([42,43],[41,44]) ([7,8],[6,9]) ([10,11],[9,12]) ∞ ([41,43],[40,45])
([19,20],[18,21]) ([14,16],[13,17]) ([23,26],[21,24]) ([22,25],[21,26]) ([19,20],[18,23]) ([14,15],[13,17]) ([11,13],[10,15])

Here we have taken the costs, times and risk/discomfort values as rough for
the CMOSTSP. Also we consider three types of conveyances. The rough cost,
time matrices for the CMOSTSP corresponding random risk/discomfort matrix
are given in Table 6.31. The Pareto optimum results of this CMOSTSP model for
different values of risk are obtained by R-MOGA and presented in Table 6.32.

Model 6.2D: CMOSTSP with Risks/Discomforts Constraint in Fuzzy Rough
Environment (FRCMOSTSP):

Here the costs, times and risks/discomforts are in fuzzy rough values for the
CMOSTSP. Also we consider three types of conveyances. Assume that ξ is a
rough variable with corresponding values of Table 6.31 and in the Table 6.33 its
fuzzy values are given for cost, time and risk values.
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([29,31],[28,33]) ([14,16],[13,18]) ([12,13],[11,14]) ([32,37],[31,40]) ([13,15],[12,17]) ([15,16],[13,17]) ([10,11],[9,14])
8 ([22,23].[21,24]) ([43,44],[41,46]) ([6,7],[5,8]) ([20,21],[19.22]) ([23,26],[20,27]) ([23,26],[21,27]) ([20,21],[19,22]) ∞

([31,33],[30,34]) ([35,37],[34,39]) ([4,5],[3,8]) ([42,43],[40,44]) ([13,17],[12,18]) ([33,35],[31,37]) ([11,13],[10,15])
Rough Risks/Discomforts Matrix(10×10) for RCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
([.56,.58],[.55,.62]) ([.71,.73],[.7,.75]) ([.68,.69],[.67,.7]) ([.62,.64],[.61,.66]) ([.81,.83],[.8,.87]) ([.76,.77],[.75,.8]) ([.67,.68],[.66,.69])

1 ∞ ([.52,.54],[.51,.55]) ([.51,.53],[.5,.56]) ([.57,.6],[.54,.61]) ([.71,.73],[.7,.78]) ([.69,.71],[.68,.73]) ([.55,.58],[.53,.59]) ([.48,.52],[.47,.54])
([.25,.27],[.23,.28]) ([.63,.64],[.61,.67]) ([.54,.56],[.53,.59]) ([.31,.33],[.3,.34]) ([.81,.83],[.8,.88]) ([.47,.49],[.45,.5]) ([.65,.66],[.64,.68])

([.54,.55],[.53,.6]) ([.51,.52],[.5,.54]) ([.7,71],[.67,.77]) ([.63,.64],[.61,.6]) ([.53,.55],[.51,.56]) ([.5,.51],[.52,.54]) ([.6,.62],[.57,.63])
2 ([.64,.65],[.61,.67]) ∞ ([.71,.72],[.69,.74]) ([.6,.62],[.57,.63]) ([.61,.62],[.58,.68]) ([.6,.63],[.57,.64]) ([.61,.62],[.6,.66]) ([.51,.52],[.5,.53])

([.72,.73],[.7,.79]) ([.61,.63],[.6,.64]) ([.76,.77],[.74,.85]) ([.55,.56],[.52,.58]) ([.66,.67],[.65,.7]) ([.33,.35],[.31,.36]) ([.27,.29],[.26,.32])
([.55,.56],[.53,.58]) ([.71,.72],[.7,.77]) ([.76,.77],[.75,.79]) ([.53,.54],[.51,.54]) ([.53,.54],[.5,.59]) ([.71,.72],[.7,.74]) ([.57,.59],[.56,.62])

3 ([.6,.62],[.59,.64]) ([.33,.34],[.31,.35]) ∞ ([.67,.7],[.66,.72]) ([.7,.71],[.69,.74]) ([.55,.56],[.53,.59]) ([.81,.83],[.79,.85]) ([.6,.61],[.59,.63])
([.61,.63],[.6,.66]) ([.6,62],[.57,.64]) ([.76,.77],[.73,.8]) ([.43,.44],[.42,.49]) ([.6,.62],[.57,.58]) ([.83,.84],[.81,.86]) ([.68,.67],[.66,.67])
([.61,.62],[.6,.65]) ([.81,.82],[.79,.85]) ([.77,.78],[.76,.79]) ([.65,.66],[.63,.67]) ([.68,.69],[.67,.7]) ([.71,.73],[.7,.77]) ([.67,.68],[.64,.69])

4 ([.73,.74],[.7,.76]) ([.71,.73],[.7,.74]) ([.85,.87],[.83,.9]) ∞ ([.73,.74],[.7,.79]) ([.71,.72],[.73,.77]) ([.6,.63],[.56,.65]) ([.56,.58],[.55,.6])
([.76,.78],[.74,.84]) ([.76,.77],[.75,.79]) ([.63,.65],[.62,.66]) ([.67,.68],[.65,.71]) ([.66,.69,],[.64,.7]) ([.61,.63],[.6,.66]) ([.71,.73],[.7,.77])
([.76,.77],[.74,.8]) ([.52,.54],[.51,.55]) ([.56,.57],[.55,.6]) ([.73,.75],[.72,.76]) ([.63,.65],[.6,.66]) ([.47,.48],[.44,.5]) ([.61,.63],[.58,.64])

5 ([.76,.77],[.73,.8]) ([.67,.68,],[.65,.69]) ([.56,.58],[.55,.6]) ([.78,.79],[.76,.82]) ∞ ([.73,.74],[.7,.76]) ([.76,.78],[.75,.8]) ([.63,.64],[.62,.66])
([.83,.84],[.8,.88]) ([.56,.58],[.55,.6]) ([.51,.53],[.5,56]) ([.49,.51],[.47,.52]) ([.53,.54],[.5,.55]) ([.67,.68][.66,.69]) ([.74,.76],[.73,.8])
([.78,.8],[.7,.81]) ([.67,.68],[.59,.69]) ([.86,.88],[.83,.89]) ([.8,.85],[.78,.88]) ([.69,.7],[.66,.71]) ([.6,.63],[.56,.64]) ([.51,.55],[.5,.56])

6 ([.87,.89],[.85,.9]) ([.77,.79],[.76,.8]) ([.73,.74],[.72,.76]) ([.83,.88],[.81,.89]) ([.67,.68],[.66,.7]) ∞ ([.53,.55],[.51,.56]) ([.61,.63],[.6,.67])
([.8,.81],[.78,.85]) ([.67,.7],[.66,.71]) ([.63,.65],[.6,.66]) ([.76,.8],[.73,.81]) ([.51,.53],[.5,.54]) ([.73,.74],[.7,.75]) ([.7,.78])
([.55,.56],[.5,.57]) ([.66,.67],[.65,.68]) ([.63,.64],[.62,.67]) ([.71,.72],[.69,.75]) ([.61,.62],[.6,.63]) ([.5,.54],[.49,.56]) ([.78,.79],[.77,.84])

7 ([.55,.57],[.53,.6]) ([.41,.42],[.4,43]) ([.56,.59],[.55,.6]) ([.49,.52],[.47,.56]) ([.33,.37],[.31,.39]) ([.73,.76],[.71,.77]) ∞ ([.55,.56],[.54,.58])
([.63,64],[.6,.67]) ([.68,.7],[.66,.71]) ([.67,.68],[.66,.71]) ([.65,.69],[.64,.7]) ([.49,.54],[.48,.55]) ([.5,.56],[.49,.57]) ([.79,.8],[.77,.82])
([.51,.55],[.5,.56]) ([.67,.7],[.65,.71]) ([.63,.65],[.6,.66]) ([.57,.58],[.55,.6]) ([.56,.57],[.55,.59]) ([.66,.68],[.65,.69]) ([.56,.57],[.55,.59])

8 ([.51,.55],[.5,.56]) ([.73,.74],[.7,.78]) ([.41,.42],[.39,.43]) ([.7,.71],[.67,.72]) ([.56,.6],[.55,.57]) ([.76,.77],[.75,.78]) ([.71,.72],[.7,.74]) ∞
([.7,.72],[.69,.73]) ([.73,.74],[.7,.77]) ([.49,.5],[.47,.52]) ([.52,.54],[.5,.55]) ([.45,.48],[.43,.49]) ([.87,.88],[.86,.89]) ([.5,.52],[.49,.55])

Table 6.32: Results of RCMOSTSP (Model 6.2C)

α β η Algorithm Path(Vehicle) Costs & Time Rmax

R-MOGA-III 5(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) [62.5, 41.7 ] 8.5
.9 .9 .9 MOGA-I 5(1)-2(2)-4(1)-3(3)-8(1)-6(2)-1(3)-7(3) [65.25, 45.65] 8.5

R-MOGA-III 7(3)-4(2)-1(3)-5(1)-6(1)-2(2)-3(3)-8(2) [76.60, 33.20] 8.5
.95 .95 .95 MOGA-I 5(1)-2(2)-4(1)-3(3)-8(1)-6(2)-1(3)-7(3) [84.32, 68.5] 8.5
.95 .95 0.95 R-MOGA-III 5(2)1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) [73.5, 43.3] 8.5.
.97 .97 .97 R-MOGA-III 5(2)-1(1)-6(1)-4(2)-3(3)-7(1)-8(2)-2(3) [80.24, 26.28] 8.5
.9 .9 .9 R-MOGA-III 6(2)-4(3)-3(1)-5(1)-7(1)-8(2)-2(1)-1(2) [71.5, 36.4] 8.25
.9 .9 .9 MOGA-I 4(2)-2(2)-5(3)-3(3)-8(1)-6(2)-1(3)-7(3) [84.17, 71.8] 8.0

Table 6.33: Input Data: FRCMOSTSP (Model 6.2D)
Fuzzy Rough Cost Matrix(10 ×10) for FRCMOSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
(ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-3, ξ, ξ+3) (ξ-9, ξ, ξ+9) (ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-11, ξ, ξ+11)

1 ∞ (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-10, ξ, ξ+10) (ξ-11, ξ, ξ+11) (ξ-3, ξ, ξ+3)
(ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-2, ξ, ξ+2) (ξ-13, ξ, ξ+13) (ξ-4, ξ, ξ+4) (ξ-6, ξ, ξ+6)

(ξ-8, ξ, ξ+8) (ξ-7, ξ, ξ+7) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-12, ξ, ξ+12) (ξ-9, ξ, ξ+9) (ξ-1, ξ, ξ+1)
2 (ξ-7, ξ, ξ+7) ∞ (ξ-6, ξ, ξ+6) (ξ-2, ξ, ξ+2) (ξ-2, ξ, ξ+2) (ξ-10, ξ, ξ+10) (ξ-9, ξ, ξ+9) (ξ-14, ξ, ξ+14)

(ξ-4, ξ, ξ+4) (ξ-1, ξ, ξ+1) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-12, ξ, ξ+12) (ξ-10, ξ, ξ+10) (ξ-3, ξ, ξ+3)
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(ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-1, ξ, ξ+1) (ξ-10, ξ, ξ+10) (ξ-12, ξ, ξ+12 (ξ-13, ξ, ξ+13)
3 (ξ-16, ξ, ξ+16) (ξ-12, ξ, ξ+12 ∞ (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-10, ξ, ξ+10) (ξ-14, ξ, ξ+14) (ξ-2, ξ, ξ+2)

(ξ-3, ξ, ξ+3) (ξ-11, ξ, ξ+11) (ξ-13, ξ, ξ+13) (ξ-17, ξ,ξ+17) (ξ-1, ξ, ξ+1) (ξ-6, ξ, ξ+6) (ξ-8, ξ, ξ+8)
(ξ-2, ξ, ξ+) (ξ-3, ξ, ξ+63 (ξ-3, ξ, ξ+3) (ξ-11, ξ, ξ+11) (ξ-13, ξ, ξ+13) (ξ-11, ξ, ξ+11) (ξ-1, ξ, ξ+1)

4 (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-12, ξ, ξ+12) ∞ (ξ-5, ξ, ξ+5) (ξ-1, ξ, ξ+1) (ξ-13, ξ, ξ+13) (ξ-14, ξ, ξ+14)
(ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-12, ξ, ξ+12) (ξ-15, ξ, ξ+15) (ξ-12, ξ, ξ+12)
(ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-3, ξ, ξ+3) (ξ-5, ξ, ξ+5) (ξ-1, ξ, ξ+1) (ξ-14, ξ, ξ+14) (ξ-11, ξ, ξ+11)

5 (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) ∞ (ξ-10, ξ, ξ+10) (ξ-3, ξ, ξ+3) (ξ-13, ξ, ξ+13)
(ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-12, ξ, ξ+12) (ξ-15, ξ, ξ+15) (ξ-12, ξ, ξ+12)
(ξ-6, ξ, ξ+6) (ξ-7, ξ, ξ+7) (ξ-13, ξ, ξ+13) (ξ-14, ξ, ξ+14) (ξ-2, ξ, ξ+2) (ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5)

6 (ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-2, ξ, ξ+2) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) ∞ (ξ-12, ξ, ξ+12) (ξ-4, ξ, ξ+4)
(ξ-11, ξ, ξ+11) (ξ-17, ξ, ξ+17) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-2, ξ, ξ+2) (ξ-1, ξ, ξ+1) (ξ-12, ξ, ξ+12)
(ξ-15, ξ, ξ+15) (ξ-6, ξ, ξ+6) (ξ-3, ξ, ξ+3) (ξ-2, ξ, ξ+2) (ξ-11, ξ, ξ+11) (ξ-12, ξ, ξ+12) (ξ-1, ξ, ξ+1)

7 (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-12, ξ, ξ+12) (ξ-4, ξ, ξ+4) ∞ (ξ-7, ξ, ξ+7)
(ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-1, ξ, ξ+1) (ξ-8, ξ, ξ+8) (ξ-4, ξ, ξ+4)
(ξ-8, ξ, ξ+8) (ξ-7, ξ, ξ+7) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-10, ξ, ξ+10) (ξ-10, ξ, ξ+10) (ξ-10, ξ, ξ+10)

8 (ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-2, ξ, ξ+2) (ξ-2, ξ, ξ+2) (ξ-10, ξ, ξ+10) (ξ-10, ξ, ξ+10) (ξ-11, ξ, ξ+11) ∞
(ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-5, ξ, ξ+5) (ξ-13, ξ, ξ+13) (ξ-4, ξ, ξ+4) (ξ-4, ξ, ξ+4) (ξ-4, ξ, ξ+4)

Fuzzy Rough Time Matrix(10 ×10) for FRCMOSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8

(ξ-1, ξ, ξ+1) (ξ-2, ξ, ξ+2) (ξ-3, ξ, ξ+3) (ξ-19, ξ, ξ+19) (ξ-15, ξ, ξ+15) (ξ-3, ξ, ξ+3) (ξ-6, ξ, ξ+6)
1 ∞ (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-1, ξ, ξ+1) (ξ-11, ξ, ξ+11) (ξ-5, ξ, ξ+5)

(ξ-2, ξ, ξ+2) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-6, ξ, ξ+6) (ξ-6, ξ, ξ+6) (ξ-8, ξ, ξ+8) (ξ-7, ξ, ξ+7)
(ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-2, ξ, ξ+2) (ξ-1, ξ, ξ+1) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-5, ξ, ξ+5)

2 (ξ-6, ξ, ξ+6) ∞ (ξ-2, ξ, ξ+2) (ξ-1, ξ, ξ+1) (ξ-3, ξ, ξ+3) (ξ-11, ξ, ξ+11) (ξ-4, ξ, ξ+4) (ξ-3, ξ, ξ+3)
(ξ-5, ξ, ξ+5) (ξ-2, ξ, ξ+2) (ξ-6, ξ, ξ+6) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-3, ξ, ξ+3) (ξ-2, ξ, ξ+2)
(ξ-1, ξ, ξ+1) (ξ-2, ξ, ξ+2) (ξ-4, ξ, ξ+4) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-12, ξ, ξ+12) (ξ-9, ξ, ξ+9)

3 (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) ∞ (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-11, ξ, ξ+11) (ξ-2, ξ, ξ+2) (ξ-11, ξ, ξ+11)
(ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-10, ξ, ξ+10) (ξ-1, ξ, ξ+1) (ξ-4, ξ, ξ+4)
(ξ-7, ξ, ξ+7) (ξ-7, ξ, ξ+7) (ξ-3, ξ, ξ+3) (ξ-12, ξ, ξ+12) (ξ-10, ξ, ξ+10) (ξ-1, ξ, ξ+1) (ξ-11, ξ, ξ+11)

4 (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) ∞ (ξ-5, ξ, ξ+5) (ξ-12, ξ, ξ+12) (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7)
(ξ-2, ξ, ξ+2) (ξ-7, ξ, ξ+7) (ξ-5, ξ, ξ+5) (ξ-3, ξ,ξ+3) (ξ-4, ξ, ξ+4) (ξ-6, ξ, ξ+6) (ξ-12, ξ, ξ+12)
(ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-6, ξ, ξ+6)

5 (ξ-2, ξ, ξ+2) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-8, ξ, ξ+8) ∞ (ξ-3, ξ, ξ+3) (ξ-11, ξ, ξ+11) (ξ-2, ξ, ξ+2)
(ξ-10, ξ, ξ+10) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-7, ξ, ξ+7)

(ξ-9, ξ, ξ+9) (ξ-7, ξ, ξ+7) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-11, ξ, ξ+11) (ξ-1, ξ, ξ+1) (ξ-3, ξ, ξ+3)
6 (ξ-4, ξ, ξ+4) (ξ-6, ξ, ξ+6) (ξ-2, ξ, ξ+2) (ξ-3, ξ, ξ+3) (ξ-12, ξ, ξ+12) ∞ (ξ-4, ξ, ξ+4) (ξ-5, ξ, ξ+5)

(ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-1, ξ, ξ+1) (ξ-11, ξ, ξ+11) (ξ-9, ξ, ξ+9)
(ξ-2, ξ, ξ+2) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2)

7 (ξ-4, ξ, ξ+4) (ξ-7, ξ, ξ+7) (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-12, ξ, ξ+12) (ξ-4, ξ, ξ+4) ∞ (ξ-7, ξ, ξ+7)
(ξ-6, ξ, ξ+6) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-7, ξ, ξ+7) (ξ-5, ξ, ξ+5) (ξ-2, ξ, ξ+2) (ξ-1, ξ, ξ+1)
(ξ-8, ξ, ξ+8) (ξ-7, ξ, ξ+7) (ξ-3, ξ, ξ+3) (ξ-4, ξ, ξ+4) (ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-7, ξ, ξ+7)

8 (ξ-5, ξ, ξ+5) (ξ-6, ξ, ξ+6) (ξ-2, ξ, ξ+2) (ξ-2, ξ, ξ+2) (ξ-1, ξ, ξ+1) (ξ-11, ξ, ξ+11) (ξ-10, ξ, ξ+10) ∞
(ξ-12, ξ, ξ+12) (ξ-7, ξ, ξ+7) (ξ-5, ξ, ξ+5) (ξ-3, ξ, ξ+3) (ξ-2, ξ, ξ+2) (ξ-5, ξ, ξ+5) (ξ-1, ξ, ξ+1)

Fuzzy Rough Risk Matrix(10 ×10) for FRCMOSTSP With Three Conveyances
i/j 1 2 3 4 5 6 7 8

(ξ-.15, ξ, ξ+.15) (ξ-.16, ξ, ξ+.16) (ξ-.13, ξ, ξ+.13) (ξ-.19, ξ, ξ+.19) (ξ-.17, ξ, ξ+.17) (ξ-.1, ξ, ξ+.1) (ξ-.12, ξ, ξ+.12)
1 ∞ (ξ-.14, ξ, ξ+.14) (ξ-.1, ξ, ξ+.1) (ξ.08, ξ, ξ+.08) (ξ-.25, ξ, ξ+.25) (ξ-.11, ξ, ξ+.11) (ξ-.18, ξ, ξ+.18) (ξ-.21, ξ, ξ+.21)

(ξ-.36, ξ, ξ+.36) (ξ-.15, ξ, ξ+.15) (ξ-.13, ξ, ξ+.13) (ξ-.05, ξ, ξ+.05) (ξ-.1, ξ, ξ+.1) (ξ-.17, ξ, ξ+.17) (ξ-.21, ξ, ξ+.21)
(ξ-.18, ξ, ξ+.18) (ξ-.17, ξ, ξ+.17) (ξ-.13, ξ, ξ+.13) (ξ-.14, ξ, ξ+.14) (ξ-.1, ξ, ξ+.1) (ξ-.16, ξ, ξ+.16) (ξ-.21, ξ, ξ+.21)

2 (ξ-.25, ξ, ξ+.25) ∞ (ξ-.06, ξ, ξ+.06) (ξ-.12, ξ, ξ+.12) (ξ-.23, ξ, ξ+.23) (ξ-.1, ξ, ξ+.1) (ξ-.11, ξ, ξ+.11) (ξ-.14, ξ, ξ+.14)
(ξ-.04, ξ, ξ+.04) (ξ-.07, ξ, ξ+.07) (ξ-.05, ξ, ξ+.05) (ξ-.03, ξ, ξ+.03) (ξ-.1, ξ, ξ+.1) (ξ-.11, ξ, ξ+.11) (ξ-.4, ξ, ξ+.4)
(ξ-.15, ξ, ξ+.15) (ξ-.16, ξ, ξ+.16) (ξ-.13, ξ, ξ+.13) (ξ-.12, ξ, ξ+.12) (ξ-.1, ξ, ξ+.1) (ξ-.21, ξ, ξ+.21) (ξ-.03, ξ, ξ+.03)

3 (ξ-.14, ξ, ξ+.14) (ξ-.17, ξ, ξ+.17) ∞ (ξ-.12, ξ, ξ+.12) (ξ-.15, ξ, ξ+.15) (ξ-.1, ξ, ξ+.1) (ξ-.22, ξ, ξ+.22) (ξ-.03, ξ, ξ+.03)
(ξ-.06, ξ, ξ+.06) (ξ-.05, ξ, ξ+.05) (ξ-.03, ξ, ξ+.03) (ξ-.07, ξ, ξ+.07) (ξ-.1, ξ, ξ+.1) (ξ-.2, ξ, ξ+.2) (ξ-.3, ξ, ξ+.3)
(ξ-.17, ξ, ξ+.17) (ξ-.07, ξ, ξ+.07) (ξ-.13, ξ, ξ+.13) (ξ-.12, ξ, ξ+.12) (ξ-.1, ξ, ξ+.1) (ξ-.2, ξ, ξ+.2) (ξ-.11, ξ, ξ+.11)

4 (ξ-.16, ξ, ξ+.16) (ξ-.06, ξ, ξ+.06) (ξ-.12, ξ, ξ+.12) ∞ (ξ-.21, ξ, ξ+.21) (ξ-.1, ξ, ξ+.1) (ξ-.13, ξ, ξ+.13) (ξ-.12, ξ, ξ+.12)
(ξ-.12, ξ, ξ+.12) (ξ-.07, ξ, ξ+.07) (ξ-.05, ξ, ξ+.05) (ξ-.03, ξ,ξ+.03) (ξ-.12, ξ, ξ+.12) (ξ-.13, ξ, ξ+.13) (ξ-.3, ξ, ξ+.3)
(ξ-.15, ξ, ξ+.15) (ξ-.16, ξ, ξ+.16) (ξ-.13, ξ, ξ+.13) (ξ-.15, ξ, ξ+.15) (ξ-.1, ξ, ξ+.1) (ξ-.21, ξ, ξ+.21) (ξ-.12, ξ, ξ+.12)

5 (ξ-.14, ξ, ξ+.14) (ξ-.17, ξ, ξ+.17) (ξ-.12, ξ, ξ+.12) (ξ-.05, ξ, ξ+.05) ∞ (ξ-.1, ξ, ξ+.1) (ξ-.01, ξ, ξ+.01) (ξ-.31, ξ, ξ+.31)
(ξ-.16, ξ, ξ+.16) (ξ-.15, ξ, ξ+.15) (ξ-.13, ξ, ξ+.13) (ξ-.17, ξ, ξ+.17) (ξ-.1, ξ, ξ+.1) (ξ-.11, ξ, ξ+.11) (ξ-.31, ξ, ξ+.31)
(ξ-.18, ξ, ξ+.18) (ξ-.17, ξ, ξ+.17) (ξ-.13, ξ, ξ+.13) (ξ-.04, ξ, ξ+.04) (ξ-.1, ξ, ξ+.1) (ξ-.11, ξ, ξ+.11) (ξ-.21, ξ, ξ+.21)

6 (ξ-.15, ξ, ξ+.15) (ξ-.06, ξ, ξ+.06) (ξ-.2, ξ, ξ+.2) (ξ-.12, ξ, ξ+.12) (ξ-.1, ξ, ξ+.1) ∞ (ξ-.13, ξ, ξ+.13) (ξ-.14, ξ, ξ+.14)
(ξ-.04, ξ, ξ+.04) (ξ-.07, ξ, ξ+.07) (ξ-.05, ξ, ξ+.05) (ξ-.03, ξ, ξ+.03) (ξ-.1, ξ, ξ+.1) (ξ-.11, ξ, ξ+.11) (ξ-.12, ξ, ξ+.12)
(ξ-.15, ξ, ξ+.15) (ξ-.06, ξ, ξ+.06) (ξ-.3, ξ, ξ+.3) (ξ-.15, ξ, ξ+.15) (ξ-.1, ξ, ξ+.1) (ξ-.21, ξ, ξ+.21) (ξ-.4, ξ, ξ+.4)

7 (ξ-.14, ξ, ξ+.14) (ξ-.07, ξ, ξ+.07) (ξ-.02, ξ, ξ+.02) (ξ-.05, ξ, ξ+.05) (ξ-.1, ξ, ξ+.1) (ξ-.1, ξ, ξ+.1) ∞ (ξ-.15, ξ, ξ+.15)
(ξ-.06, ξ, ξ+.06) (ξ-.15, ξ, ξ+.15) (ξ-.13, ξ, ξ+.13) (ξ-.07, ξ, ξ+.07) (ξ-.1, ξ, ξ+.1) (ξ-.11, ξ, ξ+.11) (ξ-.2, ξ, ξ+.2)
(ξ-.08, ξ, ξ+.08) (ξ-.17, ξ, ξ+.17) (ξ-.13, ξ, ξ+.13) (ξ-.04, ξ, ξ+.04) (ξ-.13, ξ, ξ+.13) (ξ-.21, ξ, ξ+.21) (ξ-.12, ξ, ξ+.12)

8 (ξ-.15, ξ, ξ+.15) (ξ-.16, ξ, ξ+.16) (ξ-.12, ξ, ξ+.12) (ξ-.02, ξ, ξ+.02) (ξ-.21, ξ, ξ+.21) (ξ-.21, ξ, ξ+.21) (ξ-.14, ξ, ξ+.14) ∞
(ξ-.04, ξ, ξ+.04) (ξ-.07, ξ, ξ+.07) (ξ-.05, ξ, ξ+.05) (ξ-.03, ξ, ξ+.03) (ξ-.04, ξ, ξ+.04) (ξ-.14, ξ, ξ+,14) (ξ-.13, ξ, ξ+.13)
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Table 6.34: Results of FRCMOSTSP (Model 6.2D)

α α1 α2 β β1 β2 Algorithm ODM Path(Vehicle) Costs Rmax

R-MOGA-I ODM 3(1)-2(3)-7(3)-8(1)-6(2)-1(1)-5(2)-4(3) [166.32, 132.6]
R-MOGA-III ODM 3(4)-2(3)-7(3)-8(2)-6(2)-1(1)-5(2)-4(2) [151.3, 126.7] 8.5
R-MOGA-I ODM 5(1)-2(2)-4(1)-3(3)-8(1)-6(2)-1(3)-7(3) [143.5, 97.5]

R-MOGA-III ODM 5(3)-2(2)-4(3)-3(3)-8(1)-6(2)-1(3)-7(1) [134.5, 112.3]
.9 .9 .9 .9 .9 .9 R-MOGA-I ODM 2(2)-3(1)-7(2)-5(1)-4(2)-1(3)-8(1)-6(1) [143.7, 121.2]

R-MOGA-III ODM 1(2)-7(1)-5(2)-3(1)-4(2)-2(3)-6(1)-8(1) [118.3, 132.2] 7.5
MOGA ODM 6(1)-2(2)-4(1)-3(3)-8(1)-5(2)-1(3)-7(3) [211.2, 101.5] 7.0

R-MOGA-III ODM 6(1)-2(2)-4(1)-3(3)-8(1)-5(2)-1(3)-7(3) [151.4, 110.2]
.95 .95 .95 .95 .95 .95 R-MOGA-I ODM 6(2)-8(1)-7(1)-1(1)-5(3)-2(3)-3(1)-4(2) [145.2, 132.7] 7.5

R-MOGA-III ODM 6(2)-8(1)-7(1)-1(1)-5(3)-2(3)-3(1)-4(2) [141.7, 138.2] 6.75
.97 .97 .97 .97 .97 .97 R-MOGA-I ODM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-2(1)-3(1) [175.4, 108.4]

R-MOGA-III ODM 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-2(1)-3(1) [163.7, 107.3] 6.5
.99 .99 .99 .99 .99 .99 R-MOGA-I ODM 3(1)-4(3)-2(3)-5(3)-8(1)-6(1)-1(3)-7(2) [161.2, 123.1]

R-MOGA-III ODM 3(1)-4(3)-2(3)-5(3)-8(1)-6(1)-1(3)-7(2) [132.3, 112.2] 6.0

We set L(x)=1-x, as references function where right spreads are respectively
δcT , δtT , δrT for cost ,time and risk values and left spreads are γcT and γtT for
cost and time are given.
Model 6.2E: CMOSTSP in Random rough Environment ( RRCMOSTSP):

Here we have taken the costs, times and risk/discomfort as random rough val-
ues for the CMOSTSP. Also we consider three types of conveyances. We assume
that the costs, times and risks as maintaining normal distribution with exception
as rough variables. Now c∼N(ξ,σ) where expectation ξ is a rough variable find in
the corresponding position on Table 6.31 and the normal distributed values given
below in Table 6.35. Also σ is the corresponding standard deviation. The random
rough costs, times matrices for the CMOSTSP and corresponding random rough
risk/discomfort matrix are represented in Table 6.35.

Here we took permissible probability levels β = β1 =β2= 0.9, With these
data, The RRCMOSTSP model is solved by R-MOGA for different values of αs
and βs and the optimum results are presented in Table 6.36.

6.3.4 Statistical test and Sensitivity Analyses

Performance Measure for R-MOGAs:
Unlike in single objective optimization, there are two goals in a bi-objective

optimization problem. The first goal is to achieve the convergence to the Pareto
optimal set and second one is preserve the diversity in solutions of the given
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6.3. MODEL-6.2: A ROUGH MOGA FOR CMOSTSP UNDER UNCERTAIN
ENVIRONMENTS

Table 6.35: Input Data: RRCMOSTSP (Model 6.2E)
Random Rough Cost Matrix(10×10) for RRCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)

1 ∞ c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)
c∼N(ξ,2)] c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,4) c∼N(ξ,4) c∼N(ξ,4)

c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)] c∼N(∼,2) c∼N(ξ,1) c∼N(ξ,3)
2 c∼N(ξ,3) ∞ c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3) c∼N(ξ,2)

c∼N(ξ,4) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,6) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,1)

3 c∼N(ξ,3) c∼N(ξ,1) ∞ c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,5 c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3)

4 c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) ∞ c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,6) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,5) c∼N(ξ,4) c∼N(ξ,6)
c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2)

5 c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) ∞ c∼N(ξ,1) c∼N(ξ,8) c∼N(ξ,4)
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,7) c∼N(ξ,1) c∼N(ξ,4)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,5) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,5) c∼N(ξ,6)

6 c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) ∞ c∼N(ξ,9) c∼N(ξ,4)
c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3) c∼N(ξ,4) c∼N(ξ,8) c∼N(ξ,5)
c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,9) c∼N(ξ,6)

7 c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,4) ∞ c∼N(ξ,6)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,7) c∼N(ξ,7)
c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,8) c∼N(ξ,9)

8 c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,7) c∼N(ξ,6) ∞
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,5)
Random Rough Time Matrix(10×10) for RRCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)

1 ∞ c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)
c∼N(ξ,2)] c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,4) c∼N(ξ,4) c∼N(ξ,4)

c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)] c∼N(∼,2) c∼N(ξ,1) c∼N(ξ,3)
2 c∼N(ξ,3) ∞ c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3) c∼N(ξ,2)

c∼N(ξ,4) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,6) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,1)

3 c∼N(ξ,3) c∼N(ξ,1) ∞ c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,5 c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3)

4 c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) ∞ c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,6) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,5) c∼N(ξ,4) c∼N(ξ,6)
c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2)

5 c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) ∞ c∼N(ξ,1) c∼N(ξ,8) c∼N(ξ,4)
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,7) c∼N(ξ,1) c∼N(ξ,4)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,5) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,5) c∼N(ξ,6)

6 c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) ∞ c∼N(ξ,9) c∼N(ξ,4)
c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3) c∼N(ξ,4) c∼N(ξ,8) c∼N(ξ,5)
c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,9) c∼N(ξ,6)

7 c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,4) ∞ c∼N(ξ,6)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,7) c∼N(ξ,7)
c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,8) c∼N(ξ,9)

8 c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,7) c∼N(ξ,6) ∞
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,5)
Random Rough Risk Matrix(10×10) for RRCSTSP With Three Conveyances

i/j 1 2 3 4 5 6 7 8
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)

1 ∞ c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)
c∼N(ξ,2)] c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,4) c∼N(ξ,4) c∼N(ξ,4)

c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2)] c∼N(∼,2) c∼N(ξ,1) c∼N(ξ,3)
2 c∼N(ξ,3) ∞ c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3) c∼N(ξ,2)

c∼N(ξ,4) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,6) c∼N(ξ,2)
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c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,1)
3 c∼N(ξ,3) c∼N(ξ,1) ∞ c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,1) c∼N(ξ,2)

c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,5 c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3)

4 c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) ∞ c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,6) c∼N(ξ,2)
c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,5) c∼N(ξ,4) c∼N(ξ,6)
c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2)

5 c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,2) ∞ c∼N(ξ,1) c∼N(ξ,8) c∼N(ξ,4)
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,7) c∼N(ξ,1) c∼N(ξ,4)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,5) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,5) c∼N(ξ,6)

6 c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) ∞ c∼N(ξ,9) c∼N(ξ,4)
c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,3) c∼N(ξ,4) c∼N(ξ,8) c∼N(ξ,5)
c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,9) c∼N(ξ,6)

7 c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,4) ∞ c∼N(ξ,6)
c∼N(ξ,1) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,7) c∼N(ξ,7)
c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,8) c∼N(ξ,9)

8 c∼N(ξ,2) c∼N(ξ,4) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,7) c∼N(ξ,6) ∞
c∼N(ξ,2) c∼N(ξ,3) c∼N(ξ,2) c∼N(ξ,2) c∼N(ξ,1) c∼N(ξ,3) c∼N(ξ,5)

Table 6.36: Results of RRCSTSP(Model 6.2E)

α α1 α2 Algorithm Path(Vehicle) Costs & Times Rmax

R-MOGA-I 4(2)-2(3)-7(3)-8(1)-6(3)-1(1)-5(2)-3(1) [148.56, 102.43]
R-MOGA-III 4(2)-2(3)-7(3)-8(1)-6(3)-1(1)-5(2)-3(1) [140.13, 113.86]
R-MOGA-I 6(3)-2(2)-4(1)-3(3)-8(1)-5(2)-1(1)-7(2) [151.21, 99.32] 8.5

R-MOGA-III 6(3)-2(2)-4(1)-3(3)-8(1)-5(2)-113)-7(2) [147.18, 104.51]
.9 .9 .9 R-MOGA-I 1(3)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [166.25, 94.73]

R-MOGA-III 1(3)-5(1)-7(2)-3(1)-4(2)-2(3)-8(1)-6(1) [151.31, 98.31] 6.75
MOGA 6(1)-2(2)-4(1)-3(3)-8(1)-5(2)-1(3)-7(3) [169.21, 118.62]

R-MOGA-III 6(1)-2(2)-4(1)-3(3)-8(1)-5(2)-1(3)-7(3) [162.45, 115.75] 6.0
.95 .95 .95 R-MOGA-I 3(2)-8(1)-7(1)-1(1)-5(3)-2(3)-4(1)-6(2) [155.76, 124.84]

R-MOGA-III 4(1)-8(3)-7(1)-1(1)-5(3)-2(3)-3(1)-6(2) [142.18, 106.57] 6.75
.99 .99 .99 R-MOGA-I 5(3)-7(1)-8(1)-6(2)-1(2)-4(1)-2(1)-3(1) [161.34, 97.43]

R-MOGA-III 4(3)-7(1)-8(1)-6(2)-1(2)-5(1)-2(1)-3(1) [164.13, 95.38] 6.5
.95 .95 .95 R-MOGA-I 1(3)-4(3)-2(3)-5(3)-8(1)-6(1)-3(3)-7(3) [168.45, 100.37]

R-MOGA-III 1(1)-4(3)-2(3)-5(3)-8(1)-6(1)-1(3)-7(2) [146.93, 107.64] 6.0
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6.3. MODEL-6.2: A ROUGH MOGA FOR CMOSTSP UNDER UNCERTAIN
ENVIRONMENTS

Table 6.37: Mean and Variance of the diversity metric

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZTD4
NSGA-II 0.031223 0.32725 0.423164 0.024210 0.345122 0.535073 0.117382 0.414373

0.00135 0.017217 0.021836 0.035364 0.015125 0.032531 0.032163 0.012172
MOGA-I 0.052943 0.453495 0.310266 0.231765 0.3548221 0.213267 0.076296 0.197286

0.002769 0.036234 0.006362 0.003368 0.001513 0.003537 0.003164 0.023154
R-MOGA-III 0.030145 0.220041 0.206712 0.010234 0.23412 0.182748 0.2917521 0.319317

0.001081 0.001918 0.010366 0.002619 0.0010003 0.001891 0.000902 0.001001

Table 6.38: Mean and Variance of the convergence metric

Algorithm SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZTD4
NSGA-II 0.003287 0.023942 0.020341 0.003275 0.125612 0.003562 0.001382 0.014317

0.000156 0.013231 0.001367 0.001364 0.000512 0.000538 0.002162 0.013183
MOGA-I 0.003162 0.024534 0.010261 0.004763 0.025481 0.013248 0.002373 0.021928

0.001505 0.005413 0.000721 0.001421 0.001639 0.000456 0.002036 0.000218
R-MOGA-III 0.002001 0.001241 0.005113 0.000114 0.02271 0.020157 0.00117 0.007319

0.000071 0.0004522 0.003267 0.000457 0.000168 0.000301 0.000191 0.001147

Pareto optimal set. Here two performance matrices according Deb et al. [36] are
obtained for the multi objective optimization algorithms.

To show the performance of the proposed R-MOGA-III, we used it for
some standard multi objective test functions according to Deb et al. [36] and He
et al. [65]. Here the test functions are same as in Deb et al. [36] and He et al.
[65], each function is compared with the Pareto optimal solutions of proposed R-
MOGA-III. For all instances of test functions, we set the parameters as described
above and the experimental results are presented in Tables 6.37 and 6.38. In Ta-
ble 6.38, we compare the mean and standard deviation (δ) of the convergence
metric used by Deb et al. [36] for NSGA-II, classical MOGA and proposed R-
MOGA-III. This table demands that proposed R-MOGA-III gives better results
in the case of mean and standard deviation of the convergence metric. Again
from the Table 6.37, we find out the diversity metrics according to Deb et al.
[36] using the same parameters against three algorithms NSGA-II, MOGA and
R-MOGA-III. From the Table 6.37, it is observed that proposed algorithm gives
better results except some few cases.
Efficiency Test for R-MOGAs with other algorithms by ANOVA:

Some standard test problems are solved using the developed algorithm R-
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Table 6.39: ANOVA: Number of win for different algorithms

Problem SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
R-MOGA-III 81 86 78 85 71 88 91 70 82

NSGA-II 67 76 66 78 63 68 73 69 71
MOGA 61 51 64 66 61 59 69 57 58

Table 6.40: ANOVA: Subtracted table from Table 6.39

Problem SCH FON POL KUR ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 Mean
X1 21 26 18 25 11 28 31 20 22 X1=22.44
X2 7 16 6 18 3 8 13 9 11 X2=10.11
X3 1 -9 4 6 1 -1 9 -3 -2 X3=0.67

MOGAs. Different parametric values of R-MOGAs, used for this purpose, are
given below:

Here for three algorithms R-MOGA-III, NSGA-II and Classical MOGA, Pop-
size=100 and Maxgen=2000.

As multi objective standard TSP (test problems) not available in the liter-
ature, the algorithm is tested against a list of standard test functions of crisp
valued benchmark problems [36]. Results obtained for these standard problems
and number of wins for 100 runs of the algorithms R-MOGA-III, NSGA-II and
MOGA are presented in Table-19. To compare the efficiency of the developed
algorithm, another two established heuristic technique NSGA-II ( developed by
Deb et al. [36] and used by Changder et al. [24] and classical MOGA are used
against these standard test functions and their results (number of wins for 100
runs) are obtained.

For statistical comparison of the results (obtained by these three algorithms),
i.e., sample of runs for the algorithms ( number of wins for 100 runs ), the
ANOVA procedure is performed. When a set of algorithms are compared, the
common statistical method for testing the differences between more than two
related sample means is the repeated-measures ANOVA. Different steps of this
ANOVA are as follows.
For calculation of different steps of ANOVA easily, we subtract 60 (with out lose

of generality) from each numbers and the Table 6.39 reduces as given below.
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6.3. MODEL-6.2: A ROUGH MOGA FOR CMOSTSP UNDER UNCERTAIN
ENVIRONMENTS

Table 6.41: ANOVA: Summary table (data taken from Table 6.40
Source of variation Sum of square df Mean of square F
Between groups SSB=2144.54 J-1=2 MSB=SSB

J−1
=1072.27

Within groups SSW=617.68 J(I-1)=24 MSW= SSW

J(I−1)
=25.73 MSB

MSW
=41.66

Total SST=2762.22 IJ-1=26

Here, total sample size of each algorithm is equal and say, it I=9 and number
of algorithm is say, J=3. Mean of the sample means, X=11.07.

Critical F values, F0.05(2,24) ≈ 3.4. As the compared F (form Table-19) is
higher than the critical F values for 0.05 level of significance, it may be inferred
that there is a significant differences between the groups. When F ratio is found
to be significant in an ANOVA with more than two groups, it should be followed
by a multiple comparison test to find which group means differ significantly from
each other. Scheffe’s multiple comparison F- test is done for this purpose to find
out whether R-MOGA-III & NSGA-II and/or R-MOGA-III & MOGA are sig-
nificant. For the first pair i.e., for R-MOGA-III & MOGA, calculated F value is
given by F= (X1−X3)2

MSW ( 1
I+ 1

J )
=41.44. Similarly, for the second pair i.e., for R-MOGA-III

and NSGA-II, calculated F= 13.3. As both calculated F values are greater than
the tabulated values (3.4), there is significant difference between R-MOGA-III
& classical MOGA and also R-MOGA-III & NSGA-II. From Table-19 it is ob-
served that the mean (X1) of X1 is higher than the other two means (X2 and X3).
Significant differences between the algorithms are observed (discussion already
given) and therefore, it can be concluded that R-MOGA-III is better compared to
the other two algorithms.

6.3.5 Discussion

To validate the feasibility and effectiveness of the proposed algorithm, we
have applied the R-MOGAs on some standard TSP combinations, problems are
taken from TSPLIB [162]. The proposed algorithm is the combination of rough
extended based selection, adaptive crossover and generation depended mutation
which was implemented in C++ with 200 chromosomes and 2000 iterations in
maximum.

To find out the Pareto optimal solution, Table 6.25 shows the comparisons
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between MOGA and R-MOGA for the some standard TSP problems. It is seen
that the number of iterations is less in R-MOGA than classical MOGA, where
the classical MOGA are the combinations of RW selection, cyclic crossover and
random mutations. Here we consider the multi objective standard TSP from
TSPLIB combining the same sizes problems. Again Table 6.25 asserts that the
effectiveness of the proposed algorithm with respect to CPU time. In Table 6.26,
we survey the importances of different parameters and operators in proposed R-
MOGA. It indicates that for the Pareto optimal solution of the standard TSP,
combination of bayg29 and bays29, and Pareto optimal solutions show that it
navigate the sample space better for generation dependent mutation. In this case,
Pareto optimal results are obtained quickly by 169 iterations only. Here also, R-
MOGA performs better than the classical MOGA.

In Table 6.28, we consider 10 × 10 crisp costs and times, risk/discomfort ma-
trices for a CSTSP. The Pareto optimal results are presented in Table 6.29 for
only CMOTSP considering single conveyance for the given data in Tables 6.28.
It is observed that CMOTSP without any total risk factor as a goal gives the low-
est minimum cost and time and as the total risk/discomfort decreases, total cost
as well as time increases. It is realistically true in our day-to-day life. For a
particular value of risk/discomfort, some near Pareto optimum results along with
the Pareto optimum one are presented. Due to some reasons, if the TS fails to
implement the optimum results, he/she may be to achieve the most feasible near
Pareto optimum solution. Again, we formulated a CMOSTSP with the three con-
veyances i.e. (10×10×3) costs, times and risk/discomfort matrices and the data
are presented in Table 6.28. Along each route, the corresponding conveyance
is in parentheses. Next the Pareto optimum results of CMOSTSP are given in
Table 6.30. Here also as total risk/discomfort goes down, the corresponding trav-
elling cost and time increases. A (10×10×3) RCMOSTSP is presented in Table
6.31 where all costs, times and risk/discomfort factors are rough variable. The
Pareto optimum results are presented in Table 6.32. As expected, as the risk goes
down, corresponding costs and times compromise each other and go up. For
fuzzy rough CMOSTSP, fuzzy rough input data and Pareto optimum results are
presented in Table 6.33. Here, costs, times and risk/discomfort factors are L-R
fuzzy numbers. For a fixed β (0.9), results in possibility approaches are given and
as before, optimistic (Possibilistic) representation gives better result (less cost,
less time) presents. Again random rough input data are given in Table 6.35 with
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the costs, times and risk factor, where we have taken, mean as random variables
(standard normal variate ) with expectation is the rough variables with known
standard deviation. The results presented in Table 6.36, show that Pareto optimal
solution gives costs and times w.r. to risk factor smooth movements as realistic
work. In all cases, the near Pareto optimum solutions and Pareto optimum solu-
tion are available. Also R-MOGAs gives better results than the classical MOGA.

6.4 Conclusion

In this chapter, two MOGAs, called imprecise MOGA (iMOGA) and Rough
MOGA (R-MOGA) are proposed and illustrated in CMOSTSP formulated in
different environments. Both the multi-objective algorithms are also tested with
some test problems from TSPLIB [162] and compared with classical MOGA
and NSGA-II. In iMOGA, fuzzy age based and fuzzy extended age based selec-
tion operators are used where as for R-MOGA, a rough age, rough extended age
based with adaptive crossover are used along with generation dependent muta-
tions. Such CMOSTSPs are here formulated with crisp, rough, random, fuzzy-
random, random-fuzzy, bi-random, fuzzy rough and random rough costs, times
and risk/discomfort levels and solved by the proposed algorithms. Here, devel-
opment of multi objective algorithms are in general form and it can be applied in
other discrete problems such as network optimization, graph theory, solid trans-
portation problems, vehicle routing, VLSI chip design, etc. In spite of the better
results by proposed algorithms, there is a lot of scope for variation in iMOGA
and R-MOGAs, specially with respect to the CMOSTSPs. In three dimensional
TSPs with conveyances, we have assigned a conveyance arbitrarily during each
crossover and mutation for the optimum selection of the routes. This is a limi-
tation of the present CMOSTSPs. The formulated CMOSTSPs can be extended
to include some more features /restrictions such as 4DTSP to include/omit some
specific routes, time windows, multi-TS, profit maximization, etc.
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Chapter 7

Summary and Future Research Scope

In this dissertation, main objectives are (i) to develop/modify some evolu-
tionary methods, specially Genetic Algorithm (GA), Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO), (ii) to develop some hybrid evo-
lutionary methods connecting GA, ACO and PSO and (iii) to formulate some
new uncertain (random and imprecise) singe/ multi-objective TSP problems and
to solve them using the developed evolutionary methods (GAs) and hybrid evo-
lutionary methods.

Here, for the first time, constrained single/multi-objective some 3D- and 4D-
TSPs have been formulated in crisp, fuzzy, random, bi-random, bi-fuzzy, rough,
bi-rough, fuzzy-rough, fuzzy-random, random-fuzzy, random-rough, etc, envi-
ronments. Some uncertain risk/safety constraints along the routes and time con-
straints for the tour are also imposed. These virgin problems have been solved by
developed evolutionary and hybrid evolutionary methods. Restrictions on vehi-
cles and paths are imposed in 3D- and 4D- TSPs respectively. In this thesis, in de-
veloping different GAs, nine (9) different types of selections such as probabilistic
selection, probability of selection parameter, fuzzy age based, fuzzy -extended
age based, rough age based (3, 5 and 7 point scale), rough pheromone based,
three (3) types of crossover such as adaptive crossover, comparison crossover,
min-point crossover and five (5) types of mutations such as nodes oriented, gen-
eration dependent (two types), fixed point location and random mutations are
used. Also two (2) types of hybrid evolutionary algorithms such as ACO-GA and
ACO-PSO-GA have been developed and used. Here, in ACO, rough pheromone
has been defined and used. In PSO, swap sequence based updatation of velocities
and positions has been used. To the best of my knowledge, none developed and
used these operators before.

307



CHAPTER 7. SUMMARY AND FUTURE RESEARCH SCOPE

In total, nine (9) virgin constrained TSP models have been formulated and
solved.

These new algorithms have been tested against standard problems from TSPLIB
to establish the efficiency of the developed techniques. The results from these
methods are statistically tested. The statistical tests include Mean, SD, error
analysis, ANOVA, Firedman Test and Post hoc paired comparison.

The thesis has been divided into four parts. Part-I contains three chapters-
chapter-1 contains Introduction, chapter-2 preliminaries of algorithms and chapter-
3 different uncertainties. Part-II contains two chapters where chapter-4 and chapter-
5 contains single objective constraints respectively 3D-TSP and 4D-TSP prob-
lems solved by single (GA) and hybrid evolutionary (ACO-GA and ACO-PSO-
GA) techniques. In chapter-6, multi-objective TSP problems are formulated and
solved by developed evolutionary algorithm. All these TSP models are formu-
lated in uncertain environments.

In chapter-7, Part-IV summary and future extensions along with bibliography
and index are given.

Limitations and Future Extension

The present investigation has been confined to the development of different
types of GA, ACO,PSO and two hybridization of GA, ACO and PSO in uncertain
environments. There are other several evolutionary algorithms such as Artificial
Bees Colony (ABC), Tabu search, etc., which can also be extended in uncertain
(random and imprecise) environments and can be used tio solve the Np-hard TSP,
CSP, VRP, etc., problems.

In three dimensional TSPs with conveyances, we have assigned a conveyance
arbitrarily during each crossover and mutation for the optimum selection of the
routes. This is a limitation of the present CSTSPs. The formulated CSTSPs can
be extended to include some more features /restrictions such as 4DTSP to in-
clude/omit some specific routes, time windows, multi-TS, profit maximization,
etc. In the literature, these several types of TSPs such as multiple TSP, MAx TSP
etc., which can be developed in different uncertain environments not dealt in this
thesis and solved by the proposed algorithms.
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In this paper, a Modified Genetic Algorithm (MGA) is developed to solve Constrained Solid Travelling
Salesman Problems (CSTSPs) in crisp, fuzzy, random, random-fuzzy, fuzzy-random and bi-random
environments. In the proposed MGA, for the first time, a new ‘probabilistic selection’ technique and a
‘comparison crossover’ are used along with conventional random mutation. A Solid Travelling
Salesman Problem (STSP) is a Travelling Salesman Problem (TSP) in which, at each station, there are a
number of conveyances available to travel to another station. Thus STSP is a generalization of classical
TSP and CSTSP is a STSP with constraints. In CSTSP, along each route, there may be some risk/discomfort
in reaching the destination and the salesman desires to have the total risk/discomfort for the entire tour
less than a desired value. Here we model the CSTSP with traveling costs and route risk/discomfort factors
as crisp, fuzzy, random, random-fuzzy, fuzzy-random and bi-random in nature. A number of benchmark
problems from standard data set, TSPLIB are tested against the existing Genetic Algorithm (with Roulette
Wheel Selection (RWS), cyclic crossover and random mutation) and the proposed algorithm and hence
the efficiency of the new algorithm is established. In this paper, CSTSPs are illustrated numerically by
some empirical data using this algorithm. In each environment, some sensitivity studies due to different
risk/discomfort factors and other system parameters are presented.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The TSP was first formulated as a mathematical problem in
1930 and became increasingly popular after 1950. It is one of the
most intensively studied problems in optimization even in recent
years. A TSP is to find a possible tour along which a Travelling
Salesman (TS) visits each city exactly once for a given list of cities
and back to the starting city, so that total cost spent/distance cov-
ered is minimal. TSP is a well-known NP-hard combinatorial
optimization problem (Lawler, Lenstra, Rinnooy Kan, & Shmoys,
1985). Different types of TSPs have been solved by researchers dur-
ing last two decades. These are TSPs with time windows (Focacci,
Lodi, & Milano, 2002), stochastic TSP (Chang, Wan, & Tooi, 2009),
double TSP (Petersen & Madsen, 2009), asymmetric TSP
(Majumder & Bhunia, 2011; Mestria, Ochi, & Martins, 2013), TSP
with precedence constraints (Moon, Ki, Choi, & Seo, 2002; Rakke,
Christiansen, Fagerholt, & Laportei, 2012), etc.

In TSP, it is assumed that a TS travels from one city to another
using only one conveyance. But in real life, a set of conveyances
may be available at each city. In that case, a TS has to design his/
her tour for minimum cost maintaining the TSP conditions and
using the suitable conveyances at different cities. This problem is
called Solid Travelling Salesman Problem (STSP). Traveling cost
from one city to another city depends on the types of conveyances,
condition of roads, geographical areas, weather condition at the
time of the travel, etc., so there always prevail some uncertain-
ties/vagueness. For this reason it is better to model the costs by
uncertain parameters as fuzzy, random, random-fuzzy, bi-random
and fuzzy random values. To analyses the large scale/amount of
data throughout a long time interval, we observe that the data
values are fluctuating over a period of time/year/session etc. So,
for the decision making problem, twofold random phenomena is
well suited/realistic approach. Also since TS may use different con-
veyances to travel along different routes, there may be correspond-
ing some risk/discomfort factors, which depend on the condition of
roads, types and conditions of vehicles, law and order condition
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In this paper, an imprecise Multi-Objective Genetic Algorithm (iMOGA) is developed to solve Constrained

Multi-Objective Solid Travelling Salesman Problems (CMOSTSPs) in crisp, random, random-fuzzy, fuzzy-

random and bi-random environments. In the proposed iMOGA, ‘3- and 5-level linguistic based age oriented

selection’, ‘probabilistic selection’ and an ‘adaptive crossover’ are used along with a new generation depen-

dent mutation. In each environment, some sensitivity studies due to different risk/discomfort factors and

other system parameters are presented. To test the efficiency, combining same size single objective problems

from standard TSPLIB, the results of such multi-objective problems are obtained by the proposed algorithm,

simple MOGA (Roulette wheel selection, cyclic crossover and random mutation), NSGA-II, MOEA-D/ACO and

compared. Moreover, a statistical analysis (Analysis of Variance) is carried out to show the supremacy of the

proposed algorithm.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Genetic algorithms (GAs) are robust search algorithms that use the

operations of natural genetics to find the optimum through a search

space. Recently, GAs have been used to solve several single and multi-

objective decision making problems. In multi-objective optimization

techniques (MOOTs), a Pareto Front (PF) is generated and an optimum

solution set should be very close to the true PF. But, the above two

goals are conflicting for the fixed number of functions, evaluations as

the first property requires intensive search over a particular region

of the search space and the second one for the uniform search of the

whole region. Thus MOOTs make a trade-off between exploration and

exploitation. The first real implication of multi-objective evolution-

ary algorithm (vector evaluated GA or VEGA) was suggested by David

Schaffer in 1984. Then Goldberg suggested to implement domination

principle in evolutionary algorithm (EA). Realizing the potential of

a good multi-objective evolutionary algorithm (MOEA) (Deb, 2001;

Rubio, Sen, Longstaff, & Fletcher, 2013) which can be derived from

Goldberg’s suggestions, researchers developed different versions of

MOEAs such as multi-objective GAs (MOGAs), Niched Pareto GAs

(NPGAs) (Horn, Nafpliotis, & Goldberg, 1994), non-dominated sort-

ing GAs (NSGAs) (Deb, 2002), hybrid scatter search like MOGA by
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urillo, Nebro, Luma, and Alba (2009), decomposition -based MOAs

ike MOiA/D-DE (Li & Zhang, 2009), archive-based micro GAs like

MGA2 (Tiwari, Adel, & Deb, 2011), etc. In AMGA2, a modified defini-

ion of crowding distance for the generation of mating pool has been

resented. Recently, an archived-based steady-state micro genetic al-

orithm (ASMiGA) has been developed with new environmental se-

ection and mating selection strategies (Nag, Pal, & Pal, 2015).

TSP is a well-known NP-hard combinatorial optimization problem

Lawler, Lenstra, Rinnooy Kan, & Shmoys, 1985). Different types of

SPs have been solved by the researchers during last two decades.

hese are TSPs with time windows (Focacci, Lodi, & Milano, 2002),

tochastic TSP (Chang, Wan, & Tooi, 2009), double TSP (Petersen &

adsen, 2009), asymmetric TSP (Majumder & Bhunia, 2011), TSP with

recedence constraints (Moon, Ki, Choi, & Seo, 2002). Wang (2015)

roposed an approximate method on sparse graph for TSP, Nagata

nd Soler (2012) developed a new GA for asymmetric TSP, Che and

hiem (2012) considered genetic simulated annealing ant colony sys-

ems with PSO to solve TSP, Dong, Guo, and Tickle (2012) proposed a

ooperative GA for general TSP, Albanyrak and Allahverdi (2011) de-

eloped a new mutation operator to solve TSP by GA, Xu and Tao

2012) solved multi-objective problem with power station opera-

ion, Elaoud, Teghem, and Loukil (2010) proposed multiple crossover

nd mutation operators with dynamic selection scheme in MOGA for

ulti-objective TSP (MOTSP), Lust and Teghan (2010) presented two-

hase Pareto local search (2PPLS) for bi objective TSP, Filippi and Ste-

anato (2013) considered a Pareto ε approximation named as ABE
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