2016

STATISTICS

[Honours]

PAPER - III

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[OLD SYLLABUS]

GROUP - A

Answer any three questions:

 18×3

1. (a) Let $X_{PX1} = (X_1 ... X_P)'$ have the distribution $N_P(\mu, \Sigma)$. Show that $C_1 X_1 + \cdots + C_P X_P$ as a normal random variable.

- (b) If $X_{PX1} = (X_1 ... X_P)'$ follow P-variate normal distribution and Y = AX with A non-singular, show that Y is also normal random vector. 6
- (c) Obtain the MGF of X, where $X \sim N_p(\mu, \Sigma)$. 6
- 2. (a) Suppose $\underline{X} = (X_1, \dots X_x)'$ follow multinomial distribution with parameters $(m, p_1, \dots p_x)$ where $p_i > 0$, $i = 1, 2 \dots x$.

$$\sum_{i=1}^{x} P_i = 1$$
 and $\sum_{i=1}^{x} X_i = m$.

- Obtain the variance-covariance matrix for $\underline{X} = (X_1, \dots, X_x)$. Indicate the condition for non-singularity of the above mentioned matrix.
- (b) Explain the idea of concentration ellipsoid for univariate random variable. Extend it for bivariate distributions.
- 3. (a) Define chi-square distribution. Show that if $X_1 \sim \chi^2_{(n_1)}$ and $X_2 \sim \chi^2_{(n_2)}$ where X_1 and X_2 are independent, then $X_1 + X_2 \sim \chi^2_{(n_1 + n_2)}$.

8

(b) Let $X_1, X_2, ..., X_n$ be independent random variables, and $X_i \sim N(0, 1)$, i = 1, 2, ..., n. Obtain the conditional distribution of $X_1^2 + ... + X_n^2$ under *m*-restrictions

$$a_{11}X_1 + a_{12}X_2 + \cdots + a_{1n}X_n = 0$$

$$\vdots \qquad \vdots$$

$$a_{m1}X_1 + \cdots + a_{mn}X_n = 0$$
10

4. (a) Let X_1 , X_2 , X_3 be independent N(0, 1) random variables. Find the distribution of

$$\frac{(X_1+X_2+X_3)/\sqrt{3}}{(X_1-2\bar{X}_2+X_3)/\sqrt{6}}.$$

(b) If X_1 and X_2 are independently distributed random variables each in the form U(0, 1). Show that

$$Y_1 = \sqrt{-2 \ln X_1} \cos 2A X_2$$

and $Y_2 = \sqrt{-2 \ln X_1} \sin 2A X_2$

are independent.

- (c) Let $X_1, X_2, ..., X_n$ be a random sample from U(0, 1). Find the distribution of their geometric mean.
- 5. (a) Let $X_1, X_2 \sim U(0, 1)$. Find the distributions of $X_1 + X_2$ and $X_1 X_2$.
 - (b) Let $X_i \sim N(0, 1)$, i = 1, 2, ..., n. Establish the independence of

$$Y_{1} = \frac{X_{1}}{\sqrt{\sum_{i=2}^{n} X_{i}^{2}}}, Y_{2} = \frac{X_{2}}{\sqrt{\sum_{i=3}^{n} X_{i}^{2}}} \cdots Y_{n-1} = \frac{X_{n-1}}{|X_{n}|}, Y_{n} = \sum_{i=1}^{n} X_{i}^{2}.$$

Determine the distribution of each Y_i . 10

GROUP - B

Answer any one question:

 18×1

- 6. (a) Explain 3-sigma limits and probability limits for control charts.
 - (b) Describe control charts for number of defectives and control charts for number of defects.

7.	(a)	Explain Consumer's risk and Producer's risk	
		in the context for sampling inspection plan.	

(b) Explain single sampling inspection plan.

Obtain expression of OC and ASN functions. 12

GROUP - C

Answer any one question:

8.	(a)	Write an algorithm to calculate AM, GM and HM of ungrouped data.	ç
	(b)	Write an algorithm to find factorial of a positive integer.	9
9.	(a)	Write a C-program to generate a random sample of size 'n' from exponential	

(b) Write a C-program to calculate correlation coefficient from a ungrouped data.

distribution.

9

 18×1