2015

BIOTECHNOLOGY

[Honours]

PAPER - III

Full Marks: 90

Time: 4 hours

The figures in the right-hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

Illustrate the answers wherever necessary

GROUP - A

[Marks: 30]

Answer any two questions from the following

1. (a) What is Ori C? Why is it important for replication?

(b)	Why is it necessary to regulate the events of DNA replication?	5
(c)	If the size of $E coli$ DNA is with 4.8×10^6 base pair, how long would it take to replicate this DNA at the rate of 1000 bases/second?	(3)
(d)	Why the mutations in following genes are lathal to <i>E coli</i> : DNA B, DNA G, DNAA?	3
(a)	Under which specific situation, following repair system would remove damage from DNA?	
4	(i) NER system(ii) BER system(iii) Mismatch repair system.	
(b)	Why N-terminal tails of histones are important in regulating gene espression?	
(c) ·	Mitochondria and Chloroplast have evolved from their free living ancestors as endo- symbiont. Justify this hypothesis by analyzing their genomes.	

(d)	"The number of genes has not increased proportionately with the increased genome size of organism" – Justify the statement.
(a)	Distinguish between pseudo dominance and codominance. Cite examples. 2 +
(b)	Describe different blood groups under 'ABO' system in human being with an interpretation on their genotypes.
(c)	What is 'bead theory' of inheritance? How does it differ from pseudoallele concept?
(d)	Describe Mendel's law of independence.
(a)	Distinguish between complete and incomplete linkage.
(b)	The result of a test cross considering three recessive mutants m , n and o in Drosophila are given below:

3.

Phenotype		Number of progenies
m, n, o		280
wild		300
m, o		150
n		.130
m	n ^e	75
o, n		65
	٠	Total = 1000

Calculate the map distance between the genes m, n and o on the chromosome. Which expected classes are missing and why? 4+2

GROUP - B

[Marks: 40]

Answer any five questions from the following: 8×5

- 5. (a) What are autotrophs and heterotrops. 3
 - (b) Describe briefly the method for the detection of Biochemical mutants in Neurospora.

5

6.	(a) What is Okazaki fragment?	2000
18	(b) Mention the role of DNA repair system in maintaining the genomic stability of Eukaryotic system.	
7.	(a) You have inserted human insulin cDNA in the cloning vector pBluescript II and transformed the clone into E.coli but insulin was not expressed. Explain why.	
	(b) Briefly summarise the role of epigenetic control of gene regulation in Eukaryotes.	
8.	(a) What is the basic difference between Dideoxy sequencing methods and Maxam Gilbert sequencing Method.	
9	(b) How is the presence of a gene identified in a given sequence?	
9.	(a) Describe the structure of t-RNA and its role in protein synthesis.	
	(b) State the role of telomerase in preventing chromosome shortening.	

10	7	N TUIL DATA	strands are called	antinarallel	' 2
16	(a)	WNVIJNA	strands are called	ammananci	-

- (b) Summarise briefly the role of helicase, primase and topoisomerase in replication of DNA. 2+2+2
- 11. (a) What is the role of glucose in regulating lac operon?
 - (b) What will be the situation in the following mesozygotes for the expression of lac gene z in presence and absence of lactose in the culture medium. $2\frac{1}{2} + 2\frac{1}{2}$
 - (i) $i^+ O^c z^- / i^- O^+ z^+$
 - (ii) i' $O^+ z^- / i^+ O^+ z^+$
 - 12. (a) What are snurps? State their role in splicing. 2+4
 - (b) What are the major components of nucleosome core particle?
 - 13. (a) What are retrotransposons? Describe the structure of IS element. 2+3

(b) What is Holliday structure? State its importance in molecular recombination: 1 + 2

GROUP - C

[Marks : 20]

[<i>Marks</i> : 20]	
Answer any five questions from the following: $4 \times$	5
14. What is gain of function and loss of function in mutation?	4
15. Discuss the expression of human haemoglobin genes during development.	4
16. What is RNAi?	4
17. Describe the mechanism of Genomic imprinting.	4
18. What is SINEs and LINEs?	4
19. (a) What is split gene?	2
(b) What are 'gene clusters'?	2

2 + 220. What are c-value paradox and cot-curve?

21. (a) What is a 'DNA vaccine'?

(b) What are ribozymes?