2015

BIOTECHNOLOGY

[Honours]

PAPER - I (New)

Full Marks: 90

Time: 4 hours

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

Illustrate the answers wherever necessary

[NEW SYLLABUS]

GROUP - A

Answer any two questions from the following: 15×2

- 1. (a) What is Zwitterion?
 - (b) Describe the alpha helix and beta-pleated sheet structure of protein. 4+4

	(c)	What do you know about membrane proteins?	5
2.	(a)	Classify enzymes with proper examples.	6
	(b)	What is Michaelis-Menten equation of enzyme kinetics? Mention its limitation. 3 +	2
	(c)	How would you obtain Lineweaver-Burk double reciprocal plot from it?	4
3.	(a)	Describe the process of TCA cycle.	7
	(b)	State the significance of Glycolysis.	3
	(c)	Critically discuss the regulatory steps of TCA cycle.	5
4.	(a)	Discuss the molecular mechanism of peptide hormone action.	5
	(b)	Describe the role of insulin in the metabolism of carbohydrate and lipid. 3 +	3
	(c)	State the functions of growth hormone.	4

GROUP - B

Answer any five questions from the following: 8 x			
5.	Describe the structure of mitochondria. Mention its major functions.	8	
6.	Discuss different types of connective tissue with distribution and functions.	8	
7.	Describe the fluid mosaic model of plasma membrane structure with proper diagram.	8	
8.	What is exocytosis? Write a brief note on active transport.	8	
9.	What do you mean by 'vesicular trafficking'? Briefly describe the transport mechanism of protein into Golgi complex. 2+		
10.	What do you know about ligand receptor interaction? Describe the structure and function of G-protein linked receptor.	8	
11.	Describe the different phases of cell cycle. Name the check points of this cycle.	8	

12.	Discuss the structure	of	skeletal	muscle	with
	proper diagram.				

8

GROUP - C

Ans	swer any five questions from the following: $4 \times$	4
13.	Mention the functions of m RNA and t RNA.	4
14.	State the function of telomere. What is histone?	4
15.	Briefly explain semiconservative replication.	4
16.	What do you know about the different enkaryotic RNA polymerases?	4
17.	State Crick-Wobble hypothesis.	4
18.	Give the structure and function of Lac operon.	4
19.	Briefly describe the SOS repair pathway in	j