MCA 4th Semester Examination, 2016 COMPILER DESIGN

PAPER-MCA-403
Full Marks : 100
Time : $\mathbf{3}$ hours
Answer Q.No 1 and any four from the rest
The figures in the right-hand margin indicate marks
Candidates are required to give their answers in their own words as far as practicable
Illustrate the answers wherever necessary

1. Answer any seven questions: 2×7
(a) What is compiler?
(b) What is Interpreter?
(c) Define cross compiler.
(d) What do you mean by left recursion? Give example.
(e) What is left factoring? How do you remove left factoring?
(f) What is token?
(g) What are the function of semantic analysis?
(h) Define Handle.
(i) What is symbol Table? What are its contents?
(j) Define backpatching.
(k) Define basic block.
(l) What are the characteristics of peephole optimization?
2. Consider the following grammar with terminals (, [,) and]

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{TS}|[\mathrm{~S}] \mathrm{S}|) \mathrm{S} \mid \in \\
& \mathrm{T} \rightarrow(\mathrm{X}) \\
& \mathrm{X} \rightarrow \mathrm{TX}|[\mathrm{X}] \mathrm{X}| \in
\end{aligned}
$$

(a) Construct First and follow sets for the non-terminals.
(b) Construct its LL(1) parsing table.
(c) Is this grammar LL(1)? $\quad 7+6+1$
3. Consider the following grammar

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathrm{aS} \mid \mathbf{A b} \\
& \mathbf{A} \rightarrow \mathrm{XYZ} \mid \mathbf{E} \\
& \mathbf{X} \rightarrow \mathrm{cS} \mid \mathbf{E} \\
& \mathbf{Y} \rightarrow \mathrm{dS} \mid \mathbf{E} \\
& \mathrm{Z} \rightarrow \mathrm{eS}
\end{aligned}
$$

(a) Is this LL(1) grammar?
(b) Give a left most derivation of the string aebb.
(c) If we add the production $\mathrm{X} \rightarrow \mathrm{bS}$ then the grammar will be LL(1) or not. $5+4+5$
4. Consider the following grammar :

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

(a) Frame the transition table and Action/Goto table of the given grammar.
(b) Demonstrate that the grammar is SLR or not.
5. Consider the grammar

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aABe} \\
& \mathrm{~A} \rightarrow \mathrm{Abc} \mid \mathrm{b} \\
& \mathrm{~B} \rightarrow \mathrm{~d}
\end{aligned}
$$

Construct the canonical passing table for this grammar.
6. Construct an LALR (1) parsing table for the following grammar :14
$\mathrm{D} \rightarrow \mathrm{L}: \mathrm{T}$
$\mathrm{L} \rightarrow \mathrm{L}$, id \mid id
$\mathrm{T} \rightarrow$ integer
7. (a) What do you mean by syntax directed definition and syntax directed translation scheme?
$(2+2)$
(b) What is inherited and synthesized attribute?

(5)

(c) Explain with example, syntax directed definition and translation scheme and their attribute. $\quad(3+3)$
8. (a) Consider the following three address code : 7

1. $\mathrm{PROD}=0$
2. $I=1$
3. $T_{1}=4$ * I
4. $T_{2}=\operatorname{addr}(A)-4$
5. $T_{3}=\operatorname{addr}(B)-4$
6. $T_{5}=T_{4}\left[T_{1}\right]$
7. $T_{6}=T_{3} * T_{5}$
8. $\operatorname{PROD}=$ PROD $+T_{6}$
9. $\mathrm{I}=\mathrm{I}+1$
10. if $I<=20$ goto (3)
(i) Find the basic blocks and flow graph of above reduce.
(ii) Optimize the code reduce.
(b) Construct DAG for the following basic block: 7
11. $\mathrm{D} \equiv \mathrm{B}^{*} \mathrm{C}$
12. $E=A+B$

> 3. $B=B^{*} C$
> 4. $G=A+B$
> 5. $\mathrm{A}=\mathrm{E}-\mathrm{D}$
> 6. $F=E^{*} D$
> 7. IF $\mathrm{F} \leq 10$ goto (1).
[Internal Assessment : 30 Marks]

