MCA 2nd Semester Examination, 2016
 MCA
 (Computer Oriented Numerical Methods Lab.)
 (Pratical)
 PAPER-MCA-208

Full Marks : 100
Time : 6 hours
The questions are of equal value
Answer any one question (by Lottery basis)

1. Write a C-program to evaluate

$$
\int_{0}^{1} \sqrt{1-x^{3}} d x
$$

using Simpson's $1 / 3$ rule with 6 intervals.
4. 2. Write a program in C to find the value of $y(1-1)$ from the following table using Newton's Forward difference interpolation formula :

x	1.0	2.0	3.0	4.0	5.0	6.0
y	0.0	3.0	8.0	15.0	24.0	35.0

3. Write a C-program to evaluate

$$
\int_{0.1}^{0.7}\left(e^{x}+2 x\right) d x
$$

using Trapezoidal rule, taking $h=0 \cdot 1$.
4. Write a program in C to find the value of $y(0.5)$ from the following table using Newton's forward difference interpolation formula :

x	0	1	2	3	4	5	6	7
y	0	7	26	63	124	215	342	511

5. Write a program in \mathbf{C} to compute by Simpson's $1 / 3$ rule, the integral

$$
\int_{0}^{1} x^{2}(1-x) d x
$$

taking step length equal to 0.1 .
6. Write a program in \mathbf{C} to find the value of $f(5)$ from. the following table using Lagrange's interpolation formula :

x	2	4	7	9
$f(x)$	10	26	65	101

7. Write a program in \mathbf{C} to find a root of the equation

$$
x^{3}-9 x+1=0
$$

using bisection method correct upto three decimal places.
8. Write a program in C to find the value of $\log _{10}^{(35)}$ from the following table using Lagrange's interpolation formula :

x	2	3	5	7
$\log _{10}$	0.301	0.477	0.699	0.845

9. Write a program in C to find a root of the equation

$$
x^{3}-1 \cdot 1 x^{2}+4 x-4 \cdot 4=0
$$

using bisection method correct upto three decimal places.
10. Write a program in C to find a real root of the equation

$$
x^{3}+2 x-2=0
$$

using Regula-Falsi method correct upto three decimal places.
11. Write a program in C to solve the system of equations using Gauss-Seidal method.

$$
\begin{aligned}
& 6 \cdot 1 x_{1}+2 \cdot 2 x_{2}+1 \cdot 2 x_{3}=16.55 \\
& 2 \cdot 2 x_{1}+5.5 x_{2}-1.5 x_{3}=10.55 \\
& 1 \cdot 2 x_{1}-1.5 x_{2}+7 \cdot 2 x_{3}=16.80
\end{aligned}
$$

12. Write a program in C to find a real root of the equation

$$
3 x-\cos x-1=0
$$

using Regula-Falsi method correct upto three decimal places.
13. Write a C-program to solve the system of equations using Gauss-Seidalmethod.

$$
\begin{aligned}
& 4.50 x_{1}+0.15 x_{2}+0.30 x_{3}=1.57 \\
& .15 x_{1}-10.50 x_{2}+0.45 x_{3}=-3.86 \\
& .45 x_{1}+0.30 x_{2}-15.00 x_{3}=14.28
\end{aligned}
$$

14. Write a C program to find the root of the equation

$$
x^{3}-8 x-4=0
$$

using Newtón-Raphson's method cortect upto 3 decimal places.

(6)

15. Write a C program to solve the system of equations using Gauss elimination method :

$$
\begin{aligned}
& 2 x+y+z=10 \\
& 3 x+2 y+3 z=18 \\
& x+4 y+9 z=16
\end{aligned}
$$

16. Write a C program to find a root of the equation

$$
10^{x}+x-4=0
$$

using Newton-Raphson method correct upto 3 decimal places.
17. Write a C program to solve the system of equations using Gauss elimination method :

$$
\begin{aligned}
& 6.7 x_{1}+1 \cdot 1 x_{2}+2.2 x_{3}=20.5 \\
& 3 \cdot 1 x_{1}+9.4 x_{2}-1.5 x_{3}=22.9 \\
& 2.1 x_{1}-1.5 x_{2}+8.4 x_{3}=28.8
\end{aligned}
$$

(7)

18. Write a C program to find a root of the equation

$$
x^{3}+x-1=0
$$

using fixed point iteration method.
19. Write a C-program to find the value of the integral

$$
\int_{0}^{1} \frac{\log \left(1+x^{2}\right)}{1+\dot{x}^{2}} d x
$$

using Weddle's rule taking: 13 ordinates.
20. Write a \mathbf{C} program to find the root of the equation

$$
x^{3}+x^{2}-1=0
$$

using fixed point iteration method correct upto 3 decimal places.
21. Write a C-program to find the value of the integral

$$
\int_{1}^{2} \frac{d x}{\sqrt{x^{2}+1}}
$$

using Trapezoidal rule taking 13 ordinates correct to six decimal places.

(8)

22. Write a C program to solve

$$
\int_{0}^{\pi / 2} \sqrt{1-0 \cdot 162 \sin ^{2} \phi} d \phi
$$

by Simpson's one-third rule, correct upto two places of decimal, taking 12 intervals. ${ }^{\text {. }}$
23. Write a C program to solve the system of equations

$$
\begin{gathered}
2 x+3 y+z=9 \\
x+2 y+3 z=6 \\
3 x+y+2 z=8
\end{gathered}
$$

using Gauss-elimination method.
24. Write a C program to find one root of

$$
10^{x}+\sin x+2 x=0
$$

by the bisection method, upto three significant figures.
25. Write a C program to find a root of $\log x=\cos x$, between 1 and 2, correct to two decimal places, by bisection method.
26. Write a \mathbf{C} program to find a real root of

$$
x^{x}+x-4=0,
$$

by Newton-Raphson method, correct to six decimal places.
27. Write a C program to find a positive root of

$$
x+\ln x-2=0,
$$

by Newton-Raphson method, correct to six significant figures.
28. Write a C program to find a root of the equation

$$
2 x-\log _{10} x-7=0
$$

by Regula-Falsi method, which between 3 and 4, correct to three decimal places.
29. Write a C program to find a root of

$$
3 x-\cos x-1=0
$$

by Regula-Falsi method, correct to four significant figure.

(10)

30. Write a \mathbf{C} program to find the value of

$$
\int_{0}^{\pi / 2} e^{\sin x} d x
$$

taking 12 sub-intervals by Simpson's one-third rule, correct to five decimal places.
31. Write a \mathbf{C} program to find the value of

$$
\int_{0.4}^{1-6} \frac{x d x}{\sin h x}
$$

taking 13 ordinates by Weddle's rule correct to five decimal places.
32. Write a C program to find the value of

$$
\int_{0}^{1} \sqrt{1-x^{3}} d x
$$

by Trapezoidal rule, taking 10 equal intervals, correct to 2 decimal places.

When $x=1 \cdot 4$, using Newton's forward difference interpolation formula.
38. Write a C program to find the value $\sin 32^{\circ}$ from the table

| $x:$ |
| :--- |$: \quad 30^{\circ} \quad 35^{\circ} \quad 40^{\circ} \quad 45^{\circ} \quad 50^{\circ} \quad 55^{\circ}$ using Newton's Forward interpolation formula.

(11)

33. Write a C program to find the value of

$$
\int_{0}^{\pi / 2} \sqrt{\sin x} d x
$$

by Trapezoidal rule, taking $n=6$, correct to four significant figure.
34. Write a C program to solve the system of equations

$$
\begin{aligned}
& 27 x_{1}+6 x_{2}-x_{3}=85 \cdot 10 \\
& 6 x_{1}+15 x_{2}+2 x_{3}=72 \cdot 00 \\
& x_{1}+x_{2}+54 x_{3}=110.22
\end{aligned}
$$

using Gauss-Seidal iteration method.
35. Write a C program to solve the system of equations

$$
\begin{array}{r}
-10 x_{1}+6 x_{2}+3 x_{3}+100=0 \\
6 x_{1}-5 x_{2}+5 x_{3}+100=0 \\
3 x_{1}+6 x_{2}-10 x_{3}+100=0
\end{array}
$$

Correct up to three significant figures, using Gauss-elimination method.
39. Write a C program to find the value of $t(0.39)$ from the table

x	$:$	0.30	0.32	0.34	0.36	0.38
$f(x)$	$:$	1.7596	1.7698	1.7804	1.7912	1.8024
using Newton's Backward interpolation formula.						

Viva-voce	-30
PNB	-10

