PG/IIS/MCA-205/16

MCA 2nd Semester Examination, 2016 COMPUTER ORIENTED NUMERICAL METHODS

PAPER-MCA - 205

Full Marks : 100

Time : $\mathbf{3}$ hours
Answer any five questions
The figures in the right-hand margin indicate marks Candidates are required to give their answers in their own words as far as practicable Illustrate the answers wherever necessary

1. (a) What is interpolation? Compute $f(0.5)$ from the following table, using Newton's Forward difference interpolation formula :7

x	0	1	2	3
$f(x)$	1	2	11	34

(2)
(b) Use the following table, to compute $f(1-38)$:

x	1.1	1.2	1.3	1.4
$f(x)$	7.831	8.728	9.697	10.744

2. (a) Explain the Gauss-elimination method to solve a system of 3 linear equations in 3 unknowns. 7
(b) Solve the following system of equation

$$
\left(\begin{array}{lll}
8 & 1 & 1 \\
2 & 4 & 1 \\
1 & 3 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
8 \\
4 \\
5
\end{array}\right)
$$

by Gauss-Seidel iteration method correct to 2. 3 decimal places.
r
3. (a) Explain the Newton-Raphson method for computing a real root of an equation $f(x)=0$. When the method fails?

PC/ISS/MCA-205/16
(b) Solve the equation $x^{3}-9 x+1=0$ for the root lying between 2 and 3 , by bisection method, correct to 3 significant figures. 7
4. (a) Compute the positive root of $x^{3}-x-0.1=0$, by Newton-Raphson method, correct to six significant figure.7
(b) Explain Regula-Falsi method for computing a simple real root of an equation $f(x)=0, \quad 7$
5. (a) Describe Trapezoidal rule by using Newton's Forward interpolation formula. Give its geometrical interpretation. Also write down 7-points composite rule.10
(b) Calculate the value of

$$
\int_{0}^{1} \frac{x}{1+x} d x
$$

correct up to three significant figures, taking six intervals by Simpson's one-third rule.
6. (a) Compute $\boldsymbol{y}(0.3)$, from the equation

$$
\frac{d y}{d x}=x-y, \quad y(0)=1,
$$

taking $h=0.1$, by fourth order Runge-Kutta method, correct to five decimal places.
(b) Give geometrical interpretation of Newton -Raphson Method.
7. (a) Compute $y(z)$, if $y(x)$ satisfies the equation

$$
\frac{d y}{d x}=\frac{1}{2}(x+y),
$$

given that $y(0)=2, y(0.5)=2.636$, $y(1.0)=3.595$ and $y(1.5)=4.968$, using predictor-corrector method.
(b) Explain the method of bisection of computing a simple root of an equation $f(x)=0$.
[Internal Assessment : 30. Marks]

