## 2016

## M.Sc.

## 4th Semester Examination

## ELECTRONICS

PAPER-ELC. 403
Full Marks : 50
Time : 2 hours
The figures in the right-hand margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Ilustrate the answers wherever necessary.

## (Quantum Electronics)

Answer Q. No. 1 and any three from the rest.

1. (a) Why should the direct bandgap semiconducting materials be used for developing opto-electronic devices generally?
(b) What is a photo-multiplier ?
(c) Explain the necessity of narrow barriers in SL structures?
(d) Explain why absolute monochromacity of an electromagnetic radiation is an unattainable goal.
(e) How can we increase $\alpha_{\mathrm{e}} / \alpha_{\mathrm{n}}$ in an APD? $2 \times 5$
2. (a) Using time-independent perturbation theory, obtain the first-order correction to wave-function and energy. State an example where the theory is employed.
(b) Discuss the necessity of intrinsic region in $\mathrm{p}-\mathrm{i}-\mathrm{n}$ photodiode.
3. (a) Explain why MQW structures are important in two dimensional devices.
(b) Show that for a photo-diode working in photovoltaic mode, the output voltage is a logarithmic function of incident irradiance.
(c) Discuss the operation principle of MASER. 2+4+4
4. (a) Define density of states function.
(b) Derive the expression for density of states as a function of energy for a bulk device.
(c) Show graphically how it differs from that of a QW. Explain the cause of the nature of the graph for a QW.

$$
2+4+(2+2)
$$

5. (a) Distinguish between semi-conductor laser and gaslaser.
(b) Explain the action of double heterojunction semiconductor.
(c) What is GRIN SCH? Draw its band diagram.

$$
3+4+(2+1)
$$

6. (a) Describe the working principle of a quantum well infrared photo detector.
(b) With clear diagram explain the action of double
heterojunction semiconductor.

Internal Assessment - 10

